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Aluminosilicate catalysts, including zeolites and amorphous silica-alumina (ASA), are popular solid-acid 
catalysts, which are widely employed in petroleum refining, biomass conversion and organic synthesis[1,2]. In 
particular, ASA is advantageous for the conversion of large molecules, notably those derived from biomass, 
which are often complex and viscous, and hence, diffuse slowly into the micropores of zeolites. ASA can be 
prepared by different approaches, including sol-gel synthesis[3], coprecipitation[4], flame-spray pyrolysis[5,6] 
and atomic-layer deposition[7] but they exhibit milder Brønsted acidity than zeolites.

Despite extensive studies, the structure of Brønsted acid sites (BAS) in ASA is still highly debated. It has 
been proposed, notably on the basis of molecular modeling studies, that ASA contains BAS, called pseudo-
bridging silanols (PBS), consisting of a silanol in close proximity to an aluminum atom, which stabilizes the 
silanolate anion and, hence, increases the Brønsted acidity of the PBS[8-10]. In contrast with bridging 
Si−O(H)−Al BAS found in zeolites, there is a lack of covalent bonds between O and Al atoms in PBS. Solid-
state nuclear magnetic resonance (NMR) experiments, which allowed to probe proximities between 1H and 
27Al nuclei and to measure 1H-17O distances in ASA, provided experimental evidence for the existence of 
PBS in these catalysts and their ability to protonate ammonia[11-13].
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Figure 1. (A) 1H NMR spectra under magic-angle spinning of (i) thermally activated ZSM-5, (ii) protonated and (iii) deuterated ASA: as-
prepared catalyst (red line) and after H/D exchange with benzene (dashed blue line). The shaded spectra correspond to the NMR 
spectra of protons close to Al atoms, i.e., BAS. It was obtained as the difference between 1H NMR spectra recorded with and without the 
recoupling of 1H-27Al dipolar interactions; (B) Solid-state NMR measurement of 1H-27Al distances for (i and ii) BAS and (iii and iv) other 
silanol groups in (i and iii) thermally activated ZSM-5 and (ii and iv) partially deuterated ASA. Reprinted with permission from Ref.[17]. 
Copyright 2023, Royal Chemical Society. NMR: Nuclear magnetic resonance; ASA: amorphous silica-alumina; BAS: Brønsted acid sites.

Nevertheless, the existence of BAS in ASA was suggested by their catalytic activity for the propane cracking 
and H/D exchange and the presence of sites with distinct acidities, as detected by infrared spectroscopy 
using probe molecules[14,15]. Recently, solid-state NMR experiments were conducted at an ultra-high 
magnetic field (35.2 T), i.e., a 1H Larmor frequency of 1.5 GHz, to observe the proximity between 1H and 
27Al nuclei and provided the first direct spectral evidence for the existence of BAS in ASA[16]. However, even 
at this ultra-high magnetic field, the 1H NMR spectra of ASA exhibited limited resolution owing to the 
amorphous nature of these catalysts and the distribution of proton local environments.

To confirm the presence of BAS in ASA, Salvia et al. have compared the one-dimensional (1D) 1H NMR 
spectra of thermally activated ZSM-5 and ASA [Figure 1A][17]. As seen in Figure 1A(i), the 1H NMR 
spectrum of ZSM-5 exhibits two resolved resonances at 4.2 and 2.0 ppm, assigned to BAS and non-acidic 
silanol groups distant from aluminum atoms[18]. Conversely, the 1H NMR spectrum of ASA [Figure 1A(ii)] 
is dominated by a narrow peak of silanol groups, including PBS but also exhibits a broad signal extending 
from 2 to 10 ppm. This broad signal must stem from hydroxyl groups with a distribution of local 
environment, which is consistent with the amorphous nature of ASA. Furthermore, these hydroxyl groups 
are close to 27Al nuclei. The intensity of this broad signal is also reduced when ASA is exposed to deuterated 
benzene, suggesting that these protons are exchanged with the deuterons of C6D6. To facilitate the 
observation of these highly acidic sites in ASA, the authors partially deuterated this catalyst with deuterated 
water and then exposed it to isotopically unmodified benzene. This strategy allowed them to label selectively 
with protons the Brønsted sites, which are active towards H/D exchange with benzene [Figure 1A(iii)].
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Then, they compared the dephasing of 1H NMR signals under 1H-27Al dipolar interactions in ZSM-5 and 
ASA [Figure 1B]. Using this approach, they measured H-Al distance of 2.5 ± 0.3 Å for the BAS protons in 
ZSM-5, which resonates at 4.2 ppm [Figure 1B(i)]. A similar distance of 2.4 ± 0.2 Å was obtained for protons 
resonating at the same isotropic chemical shift in deuterated ASA exposed to benzene [Figure 1B(ii)]. These 
NMR observations confirm the existence of BAS in ASA. Interestingly, for the silanol groups, negligible 
dephasing was observed for ZSM-5, whereas distances ranging from 4.2 to 5.7 Å were found for ASA 
[Figure 1B(iii) and (iv)]. These distances are consistent with those predicted using molecular modeling for 
PBS in ASA.

In conclusion, Salvia et al. convincingly demonstrate, using solid-state NMR and selective isotope labeling, 
that besides PBS, ASA contains BAS similar to those found in zeolites, which can activate C−H bonds[17]. 
The employed NMR experiments are expected to be useful in improving the acidity of ASA in a rational 
way. In particular, it will be beneficial to apply them to understand the structure of BAS in ASA with higher 
aluminum content, which exhibits higher catalytic activity toward H/D exchange[19].
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