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Abstract
The introduction of first-line combinations had improved the outcomes for metastatic renal cell carcinoma (mRCC) 
compared to sunitinib. However, some patients either have inherent resistance or develop resistance as a result of 
the treatment. Depending on the kind of therapy employed, many factors underlie resistance to systemic therapy. 
Angiogenesis and the tumor immune microenvironment (TIME), nevertheless, are inextricably linked. Although 
angiogenesis and the manipulation of the tumor microenvironment are linked to hypoxia, which emerges as a 
hallmark of renal cell carcinoma (RCC) pathogenesis, it is only one of the potential elements involved in the 
distinctive intra- and inter-tumor heterogeneity of RCC that is still dynamic. We may be able to more correctly 
predict therapy response and comprehend the mechanisms underlying primary or acquired resistance by 
integrating tumor genetic and immunological markers. In order to provide tools for patient selection and to 
generate hypotheses for the development of new strategies to overcome resistance, we reviewed the most recent 
research on the mechanisms of primary and acquired resistance to immune checkpoint inhibitors (ICIs) and 
tyrosine kinase inhibitors (TKIs) that target the vascular endothelial growth factor receptor (VEGFR).We can 
choose patients’ treatments and cancer preventive strategies using an evolutionary approach thanks to the few 
evolutionary trajectories that characterize ccRCC.

Keywords: Renal cell carcinoma, resistance, tumor microenvironment, checkpoint inhibitors, target therapy

Serena Astore1, Giulia Baciarello1, Linda Cerbone1, Fabio Calabrò1,2

1Medical Oncology, San Camillo Forlanini Hospital, Rome 00152, Italy.
2Medical Oncology, IRCSS, National Cancer Institute Regina Elena, Rome 00128, Italy.

Correspondence to: Dr. Fabio Calabrò, Medical Oncology, San Camillo Forlanini Hospital, Circonvallazione Gianicolense 87,
Rome 00152, Italy; Medical Oncology, IRCSS, National Cancer Institute Regina Elena, Rome 00128, Italy. E-mail: 
fcalabro@scamilloforlanini.rm.it

How to cite this article: Astore S, Baciarello G, Cerbone L, Calabrò F. Primary and acquired resistance to first-line therapy for
 

clear cell renal cell carcinoma. Cancer Drug Resist 2023;6:517-46. https://dx.doi.org/10.20517/cdr.2023.33

Received: 17 Apr 2023  First Decision: 8 Jun 2023  Revised: 26 Jun 2023  Accepted: 11 Jul 2023  Published: 2 Aug 2023

 2023;6:517-46

https://creativecommons.org/licenses/by/4.0/
https://cdrjournal.com/
https://dx.doi.org/10.20517/cdr.2023.33
http://crossmark.crossref.org/dialog/?doi=10.20517/cdr.2023.33&domain=pdf


Page 518                                                                                                                               https://dx.doi.org/10.20517/cdr.2023.33

INTRODUCTION
The recent approval of the new first-line combinations, which include immune checkpoint inhibitors (ICIs) 
both plus VEGFR-TKIs or the anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) monoclonal antibody 
(mAb), ipilimumab, has revolutionized the treatment of metastatic renal cell carcinoma, reporting 
improved outcomes in pivotal studies[1-7]. Despite the excellent response rates, some patients are either 
innately resistant to therapy or eventually develop later resistance to it. Hence, a better understanding of the 
mechanisms underlying VEGFR-TKI and/or ICI resistance will be helpful in selecting patients who might 
not respond to this kind of approach and developing strategies to overcome resistance.

Today, the only validated risk assessment tool is risk stratification according to the International mRCC 
Database Consortium (IMDC) score, which is based upon six clinical and laboratory features[8,9]. However, 
this approach lacks the ability to recognize genetic and intrinsic factors that potentially direct response to 
immunotherapy and has only been thoroughly validated for patients treated with single agent VEGFR-
targeted therapies.

Here, we reviewed the most recent research on the factors that contribute to both primary and acquired 
resistance to VEGF-TKI and ICI with the aim of supplying tools for patient selection and generating 
hypotheses in an effort to decrease the proportion of patients who do not respond or to postpone the 
emergence of resistance.

MOLECULAR SUBSETS IN METASTATIC RENAL CELL CARCINOMA
Clear cell renal cell carcinoma (ccRCC) is a highly inflamed and immune-infiltrated tumor type with high 
expression of immune checkpoints, such as PD-L1 and CTLA-4. However, ccRCC has the peculiarity of 
having a high degree of infiltration by exhausted CD8+ tumor-infiltrating lymphocytes (TILs), 
immunosuppressive cells such as M2-like tumor-associated macrophages (TAMs), regulatory T cells 
(Tregs), and myeloid-derived suppressor cells (MDSCs), which characterized a tumor microenvironment 
with immunosuppressive properties[10-12].

Immune cells (IC) are components of tumor immune microenvironment (TIME) and play an important 
role in modulating immune response to tumor cells[13]. These cells could have been implicated both in 
immune tumor suppression and tumor escape.

More than just identifying individual cells, the microenvironment’s composition could provide insight into 
the mechanisms causing immune escape, and choosing more effective targets could lead to better results. 
Using ccRCC samples, Chevrier et al. examined the TIME’s composition and discovered a particular 
exhausted CD8+/PD-1+ T cell phenotype that was defined by the co-expression of inhibitory receptors and 
might be the cause of immune suppression. Additionally, they discovered CD38 to be a marker of 
exhaustion in the CD8+/PD-1+ T cell phenotype, and these cells were closely associated with the presence of 
regulatory CD4+ T cells and of a cluster of macrophages with the highest expression of CD38 and immune 
suppressive activity.

Rather than focusing on each cell individually, TIME composition and the number of immune cells may be 
able to predict outcomes more accurately[14].

Additionally, the TIME could be altered by the use of VEGFR-TKIs and ICIs[15-21], and the TIME may also 
be impacted by genetic changes in ccRCC, such as von Hippel-Lindau (VHL) and PBRM1mutations. As a 
result, different genomic signatures may confer a different response to a specific treatment. Therefore, a 
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deeper comprehension of the molecular traits that uniquely distinguish ccRCC is required to enhance
patient selection, risk stratification, and resistance mechanism definition.

Gene expression patterns that had been previously described in relation to their corresponding biology were
used for the definition of gene signatures. Angio: VEGFA, KDR, ESM1, PECAM1, ANGPTL4, and CD34;
Teff: CD8A, EOMES, PRF1, IFNG, and CD274; myeloid inflammation: IL-6, CXCL1, CXCL2, CXCL3,
CXCL8, and PTGS2[25-27].

Angio gene profile identified a group of patients who would respond to a VEGFR-TKI alone, resulting in
superior outcomes with sunitinib in each study. Given that a high T effector gene signature may indicate an
improved response to a VEGFR-TKI and ICI combination therapy, the presence of a myeloid signature in
the T effector high group identified tumors that are resistant to immunotherapy when used alone, as
demonstrated by the worse outcomes for patients treated with atezolizumab alone in the IMmotion 150
trial. Furthermore, a myeloid infiltrate, which is indicative of innate resistance to immunotherapy alone,
could be overcome by the addition of a therapy targeting angiogenesis. Gene signatures based on a single
class of genes may be effective tools that support patient selection. However, when using two immune
checkpoint inhibitors, a combination of gene signatures including both innate and adaptative immune
response components may be more suggestive of how TIME and therapies interact and may be more
predictive of results. The “Renal 101 Immune signature”, a 26-gene subset of the gene expression signature
(GES) that included regulators of innate and adaptive immunological responses (T cell and NK cell), cell
trafficking, and inflammation, identified in JAVELIN RENAL 101, is an even more comprehensive
molecular predictive tool, underlying the significance of CD8+ T cells in inducing immune response[23].

Table 1 schematically summarizes the correlation of GES (Angio, Teff, Myeloid) with positive outcomes
in IMmotion 150, Javelin RENAL 101, and Checkmate 214.

MOLECULAR SUBSETS IN RCC AS BIOMARKER STRATEGIES FOR PERSONALIZED
TREATMENT
In 2020, McDermott et al. completed a significant research effort to evaluate the outcomes of patients who
received a combination of checkpoint inhibitors, applying the previously developed IMmotion 150
signatures to the IMmotion 151 trial[22]. In order to develop a new molecular categorization of RCC, they
performed an integrative multi-omics analysis of 823 RCC tumors[28,29].

Non-negative matrix factorization (NMF) was used to identify seven distinct molecular clusters, and the
distribution of these clusters across IMDC risk groups was assessed. They examined the somatic alterations
within each cluster and investigated the clinical outcomes of patients who received atezolizumab in
combination with bevacizumab, sunitinib, and atezolizumab across clusters.

Table 2 synthetizes cluster characteristics, gene profile expression, and their correlation with outcomes.

Angiogenic clusters (1 and 2) were enriched in the favorable risk group (evaluated both according to
MSKCC and IMDC risk categories) and showed better progressive-free survival (PFS). However, angiogenic

Three major gene expression signatures have been identified using data from the first-line pivotal trial in 
mRCC (IMmotion 150, JAVELIN RENAL 101, Checkmate 214): Angiogenesis, T-effector (Teff)/IFN-γ 
response, and myeloid inflammatory gene expression signatures[22-24].
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Table 1. Correlation between GES with favorable outcomes

IMmotion 150[22] Javelin renal 101[23] Checkmate 214[24]

Atezo + Beva Atezo Sun Ave + Axi Sun Nivo + Ipi Sun

Angiohigh √ √ √
Angiolow √
Teffhigh √ √
Tefflow √
Myeloidlow √ √
Myeloidhigh √
Teffhigh

Myeloidhigh
√

Teffhigh 
Myeoidlow

√ √

26-gene immune signature √
26-gene immune signature √

signature did not differentiate outcomes between arms. No correlation was also seen for patients belonging
to cluster 3 (complement/-oxidation).

Otherwise, the poor-risk group was more likely to have proliferative clusters (4-6), with stromal/
proliferative clusters demonstrating the shorter PFS irrespective of treatment arm. Teff/proliferative and 
proliferative cluster results, as well as the snoRNAs cluster, experienced better outcomes with the
atezolizumab plus bevacizumab combination.

Among somatic alterations, PBRM1 mutations gave superior results, irrespective of the treatment arm. But
in PBRM1 mutant patients, Atezolizumab + Bevacizumab showed improved PFS and ORR than sunitinib.
Conversely, CDKN2A/B alterations identified patients with worse prognoses. However, CDKN2A/A-
alterated tumors had better PFS and ORR in the atezolizumab + bevacizumab arm compared with the
sunitinib arm.

Better outcomes with the combination were also seen for tumors harboring loss-of-function mutations of
ARID1A and/or KMT2C[28].

In conclusion, these molecular subsets constitute a novel method of reproducible response prediction that
may be useful in patient selection. As shown for clusters 1 and 2, the angiogenesis pathway confers a
biological behavior that is comparable for tumors treated with a VEGFR-TKI alone or in combination. A
proliferative pattern, on the other hand, suggests a lack of response to a therapy that targets angiogenesis
alone and a potentially better response to a combination therapy that includes ICIs. This classification does
not include the combination of dual checkpoint inhibitors, which would restrict its reproducibility.
However, we are aware that nivolumab + ipilimumab has shown superior outcomes in the category of
intermediate-poor risk.

The tumors from patients with favorable risk in this study exhibited a higher expression of the VEGF
pathway-associated angiogenesis signature, which provides a potential explanation for why the dual
combination failed to improve outcomes in the favorable risk subgroup.

Angio: Angiogenic; Atezo: atezolizumab; Ave: avelumab; Axi: axitinib; Beva: bevacizumab; GES: gene expression signature; Ipi: ipilimumab; Nivo: 
nivolumab; Sun: sunitinib; Teff: T-effector.
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Table 2. Molecular clusters by NMF, gene expression profiles, DNA alterations, and correlation with outcomes

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Name Angiogenic/ 
Stromal

Angiogenic Complement/ 
-Oxidation

Teff/
Proliferative

Proliferative Stromal/ 
Proliferative

snoRNA

Transcriptional 
Pathways

Angiogenesis 
Stroma

Angiogenesis 
Catabolic 
metabolism 
(FAO)

Complement cascade 
-oxidation

Cell-cycle
Teff
Anabolic metabolism
(FAS)

Cell-cycle 
Anabolic metabolism (FAS) 
Myeloid inflammation

Cell-cycle 
Stroma

snoRNAs

Gene expression 
module

TGF, WNT, Hedgehog, 
NOTCH 
 

TGF, WNT, Hedgehog, 
NOTCH 
 

 
 
Moderate expression:
Teff genes

Complement cascade  
 
 
Cytochrome P450 
family 
 
 
Moderate expression: 
Cell-cycle genes 

Cell-cycle
 
 
Anabolic mb 
FAS 
Pentose phosphate  

Teff JAK/
STAT IFN- 
and -

Cell-cycle
 
 
Anabolic mb 

 
 
Myeloid inflammation 
genes

Cell-cycle
 
 
Anabolic mb 
 
Stroma-genes 
 
EMT transcriptional 
 
Myeloid inflammation 
genes

C/D box snoRNAs 
(SNORDs)

DNA alterations PBRM1 
VHL 
KDM5C 
PTEN

VHL 
PBRM1 
KDM5C

VHL 
PBRM1 
KDM5C 
PTEN 
BAP1

VHL 
CDKN2A/B 
BAP1

CDKN2A/B 
TP53 
TFE fusions (mTORC1 
pathway)

VHL 
CDKN2A/B 
TP53

VHL  
SETD2 
PTEN

Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun

15.3 13.9 13.8 14.2 8.1 7.1 10.9 6.1 8.3 4.3 6.8 5.2 NR 7.4

PFS 
Months 
HR (95%CI)

HR 1.11 
(0.65-1.88) 
P = 0.708

HR 1.16 
(0.82-1.63) 
P = 0.397

HR 0.92  
(0.63-1.34) 
P = 0.666

HR 0.52 
(0.33-0.82) 
P = 0.005

HR 0.47 
(0.27-0.82) 
P = 0.007

HR 0.81 
(0.52-1.25) 
P = 0.331 

HR 0.10 
(0.01-0.77) 
P = 0.028

Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun Ate/bev Sun

NR 48.2 46.2 NR 35 36.6 38.7 23.3 21.7 15.5 15.9 12.7 NR NR

OS 
Months 
HR (95%CI)

HR 0.94 (0.52-1.72) HR 1.32 
(0.91-1.91)

HR 0.99
(0.64-1.54)

HR 0.66 
(0.41-1.06)

HR 0.66 
(0.39-1.12)

HR 0.90 
(0.57-1.40)

HR NC

AMPK: Activate protein kinase; Ate: atezolizumab; Bev: bevacizumab; FAO: fatty acid oxidation; FAS: fatty acid synthesis; Mb: metabolism; Sun: sunitinib; TGF: tumor growth factor beta.

Stroma-genes: 
Fibroblast-derived genes 
FAP, FN1, PSTN, MMP2 

Catabolic mb: 
FAO/AMPK genes 

α
γ
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MECHANISMS OF PRIMARY RESISTANCE TO TYROSINE KINASE INHIBITOR IN RENAL 
CELL CARCINOMA
Primary resistance is characterized as a lack of response to therapy, which may be caused by the absence of a 
particular target’s expression or by the existence of inherently resistant clones that do not respond to target 
therapy. Furthermore, primary resistance may be influenced by spatial and temporal heterogeneity[30,31].

Primary resistance to VEGF-TKIs
Hypoxia and von hippel lindau pathway
The tumor suppressor protein von Hippel Lindau (VHL) is frequently mutated in hereditary RCC. VHL is a 
target of hypoxia-inducible factors (HIFs), dimeric proteins composed of O2-sensitive  subunits (HIF-1, -2 
or 3) and a  subunit (HIF-2). In the presence of oxygen, these factors facilitated its degradation. VHL 
inactivation creates a pseudo-hypoxic state and HIF dimers can bind to hypoxia response elements (HREs) 
to induce angiogenesis and cancer cell proliferation. VHL disease is characterized by a decreased expression 
of HIF-1 and an increased expression of HIF-2, the latter connected with c-Myc activity[32].

Gordan et al. analyzed 160 tumor samples and found that VHL-deficient ccRCCs can be distinguished 
based on HIF- expression. Three different subgroups have been defined: (1) Wild-type VHL tumors with no 
HIF- expression; (2) VHL deficient tumors with HIF-1 and-2 expression; and (3) VHL deficient tumors 
with only HIF-2. The third subgroup (HIF-2 expression) displayed enhanced c-Myc activity and higher 
rates of proliferation. The authors also demonstrated an interplay between HIF-2, c-Myc and genome 
instability. Indeed, the VHL-deficient subgroup expressing HIF-2 was even characterized by an 
upregulation of the homologous recombination (HR) effectors BRCA1 and BARD1, and consequentially, 
HIF-2 tumors and no HIF-1 ones had a greater ability to repair DNA damage accumulation induced by 
replication stress[32,33].

Given that VHL-deficient tumors with only HIF-2 expression experienced primary resistance to 
angiogenesis inhibition, thus HIF-2a alone may identify a subset of RCCs in which targeted therapies lack 
efficacy.

Membrane transporters and lysosomal sequestration
The uptake and efflux of several TKIs (e.g., sunitinib, cabozantinib, pazopanib) could be mediated by 
multidrug resistance (MDR)-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters, 
respectively[34,35]. A number of variables, including pH, drug concentration, and affinity, can affect the 
interaction between TKIs and transporters. As a result of insufficient intracellular drug concentration, these 
transporters can be responsible for intrinsic resistance.

The most studied ABC transporters implicated in MDR include P-glycoprotein (Pgp, ABCB1), multidrug 
resistance protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2). Due to a 
substrate-like characteristic, TKIs can be pumped outside the cells with an efflux mechanism at lower 
concentrations. However, at higher concentrations, TKIs can act as inhibitors.

TKIs usually inhibit ABC transporters without altering their expression or localization. As an example, 
cabozantinib competitively interacts with the drug-substrate binding site to decrease the ATPase activity of 
the ABCG2 transporter[36]. Pazopanib has both substrate-like and inhibitory effects. In the canine kidney cell 
line MDCKII, it was reported as both an ABCB1 and ABCG2 substrate and as an inhibitor of ABCB1 and its 
efflux characteristics[37-39].
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SECONDARY AND ACQUIRED RESISTANCE TO VEGFR-TKI
Bergers and Hanahan categorize resistance to VEGFR-TKI as intrinsic or primary and adaptative or evasive
(secondary)[44]. Sometimes, it was impossible to clearly and immediately shift the biological basis of these
two types of resistance. The majority of the time, primary resistance could be explained by the abundance of
angiogenic receptors and downstream pathways. However, the hypoxic state induced by VEGFR-TKI
therapy could be responsible for an “angiogenic switch” towards a different molecular pathway, driving a
different pattern of response [Figure 1].

Acquired resistance develops throughout treatment, usually following an initial response to therapy, and
could be induced by the pressure of a specific therapy. The selection of particular clones that are resistant to
therapy results in the progression of cancer. Additionally, cancers might develop resistance to a particular
treatment through other pathways that are not affected by targeted therapy.

Tumor plasticity
A loss of cell polarity and contact promotes epithelial-mesenchymal transition (EMT). E-cadherin and other
epithelial cell markers are downregulated during this transition, while mesenchymal markers including

upregulated[45,46]. It has been shown that HIF-1 activation caused by hypoxia can induce EMT, a process that
is associated with drug resistance[47-51]. EMT-associated transcription factors (EMT-TFs), such as TWIST1,
ZEB1, or SNAI1, can be stimulated to express themselves directly or indirectly by the stabilization of HIFs
under hypoxia. TGF/TGFR, NF-B, and NOTCH signaling are the three regulatory mechanisms most
extensively studied for their potential role in triggering EMT[52-55].

Insulin-growth factor (IGF) signaling, which interacts with the NOTCH and Wnt/-catenin pathways, has
been shown to be a modulator of EMT[56].

Sharma et al. provided evidence that sunitinib-treated RCC tumors underwent a mesenchymal
transformation as seen by higher expression of N cadherin and decreased expression of E cadherin, which
were both connected with an elevation of TGF and IGF1R. Patients with mRCC who expressed IGF1R and
TGF and subsequently had EMT had worse outcomes, as shown by data from the Cancer Genome Atlas
(TCGA) database[57].

Hwang et al. analyzed gene expression profiles and copy number variations of 10 metastatic ccRCC tumor
samples before treatment and immediately after disease progression to a TKI. Microarray analysis of pre-
and post-treatment ccRCC tumors demonstrated an increased expression of EMT-related genes including
CD44, SNAI2, TWIST, and CLDN1 in TKI-resistant cells, acquiring migration and invasion capacity. In
this study, the authors demonstrated that CD44 depletion significantly decreased cell invasiveness. 

Lysosomal sequestration is another mechanism of resistance based on drug physicochemical properties.
This phenomenon is related to ABC transporters since these pumps are present on the membranes of
intracellular compartments and regulate the drug’s influx into lysosomes[37,40,41]. Lysosomal sequestration has
been shown to impact the effectiveness of the drugs sunitinib and pazopanib[42].

Lysosomal intake-induced resistance can be reversed. Indeed, after removing sunitinib from tumor cell
culture, cell lysosomal capacity was restored, regaining drug sensitivity. This can give an explanation of the
recovered sensibility to sunitinib experienced by patients after treatment interruption and subsequent
rechallenge[37,42,43].

S

N-cadherin, vimentin, fibronectin, different matrix metalloproteases (MMPs), and 1 and 3 integrins are 
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Figure 1. Cross-talking between TKI receptors, hypoxia and growth factor receptors and relationship with tumor growth and resistance
to TKIs. Several trans-membrane TKI receptors interact with each other and mediate the activation of shared pathways, most implicated
in tumor growth and angiogenesis. TGFβ/Smad pathway and the interaction of some cytokines, such as IL-6 with their receptors,
together with the Notch signaling pathway and wnt/β-catenin pathway induce EMT transcription factors and EMT as a mechanism of
resistance to the inhibition of angiogenesis. Finally, hypoxia promotes both angiogenesis and EMT. AKT: Protein kinase B; AXL: AXL
Receptor; EMT: epithelial mesenchymal transition. EMT-TFs: epithelial mesenchymal transition transcription factors; Erk1/2: elk-related
tyrosine kinase; FGF: fibroblast growth factor; FGFR: fibroblast growth factor receptor; Gas6: growth arrest specific protein-6; GSK-3:
glycogen synthase kinase 3 beta; HGF: hepatocyte growth factor; HIF: hypoxia-inducible factor; IGF: insulin growth factor; TGF-: tumor
growth factor; IGFR: insulin growth factor receptor; JAK: janus kinase; Mek1/2: MAP kinase-ERK kinase; MET: hepatocyte growth factor
receptor; mTOR: mammalian target of rapamycin; NFκB: nuclear factor kappa B; PDGFR: platelet derived growth factor receptor; PDGF-β:

 platelet derived growth factor-β; PI3K:  phosphatidyl inositol 3-kinase; Raf: RAF proto-oncogene serine/threonine-protein kinase; Ras:
rat sarcoma protein; STAT3: signal transducer and activator of transcription 3; VEGF: vascular endothelial growth factor; VEGFR:
vascular endothelial growth factor receptor; VHL: von hippel-lindau protein.

experimental models. Furthermore, compared to pre-treatment ccRCC, TKI-resistant tumors had an
increased proportion of sarcomatoid features[58].

It may be crucial to understand the various pathways that underlie EMT and the indicators of this process
in order to design strategies that combine therapies addressing both hypoxia and EMT.

Non-angiogenic pathway and by-pass pathways

Claudin-1 is a component of tight junctions, and it has been suggested that it could be implicated in EMT 
induction. In this study, claudin-1 expression seems to be a mediator of TKI resistance in both clinical and 

Vascular co-option is a way to use pre-existing vessels. Using 164 lung metastasis specimens, Bridgeman 
et al. identified four different histopathological growth patterns (HGPs), each with a different 
vascularization (alveolar, interstitial, perivascular cuffing, and pushing). The tumors vascularize through 
angiogenesis exclusively in the pushing HGP pattern; a co-option vascular mechanism was employed in the 
other patterns. The authors showed that vascular co-option might act as a mediator of sunitinib resistance. 
In mice models, sunitinib induced a switch from the most frequent angiogenic pushing HGP to an alveolar/
interstitial HGP that vascularizes through vessel co‐option, thus inducing resistance[59].
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Furthermore, cancer resistance can arise when tumor cells employ other signaling pathways that are 
unaffected by VEGF/VEGFR suppression.

Fibroblast growth factor/fibroblast growth factor receptor pathway
Fibroblast growth factors (FGFs) are proteins that are involved in proliferation, differentiation, migration, 
and apoptosis of tumor cells[60].

FGF2, also known as basic FGF, has been recognized as a potential mediator of TKI resistance. Cell cultures 
were treated with VEGF and 100 nM sunitinib by Welti et al. Endothelial cell proliferation was restored by 
FGF1 and FGF2 to levels that were comparable to (FGF1) or greater than (FGF2) those seen in the absence 
of sunitinib[61]. Indeed, FGF2 induces angiogenesis through the activation of signaling pathways such as Ras-
Raf-MEK-ERK 1/2 and PLC-PKC, bypassing the VEGF/VEGFR signal. It has been reported that FGF2 
upregulates the expression of both fibroblast growth factor receptor (FGFR) and VEGFR in endothelial cells 
and systemic administration of VEGFR-2 antagonists inhibits both VEGF and FGF2-induced angiogenesis 
in vitro and in vivo[62-64]. In contrast to what was expected by previous studies, Welti et al. showed that while 
sunitinib inhibits VEGFR2-mediated activation of ERK 1/2 and PLC, it is not able to prevent the FGF2-
mediated activation of these pathways, raising the possibility that cancer cells may use this way to bypass 
VEGF-mediated angiogenesis inhibition[61].

MET/HGF signaling
When the hepatocyte growth factor/scatter factor (HGF/SF) binds to its receptor tyrosine kinase MET, the 
activation of the RAS-MAPK and PI3K-AKT pathways results in the development and angiogenesis of 
endothelial cells. HGF/SF-MET interaction is a potent regulator of the angiogenic switch. Common 
signaling intermediaries such as ERK-MAPK, protein kinase B (AKT), and focal adhesion kinase (FAK) are 
activated by both MET and VEGFR[65-68].

A remarkable new finding is that the MET/HGF pathway may be activated by hypoxia caused by blocking 
angiogenesis with VEGFR-TKIs in a HIF-mediated manner, hence increasing the MET-dependent spread 
of cancer cells[69-72].

Additionally, it is hypothesized a relationship between the MET axis and the immune system. Several 
immune cells, including mast cells, neutrophils, and dendritic cells (DCs), may have increased MET 
expression. MET/HGF-SF signaling could impact the ability of T cells to respond competently to cancer 
cells, by reducing the DCs’ capacity to present antigens and recruiting immunosuppressive cells. Therefore, 
MET inhibition may be a way to restore neutrophils and DCs’ capacity[73,74].

Cabozantinib is an oral multiple tyrosine kinase receptor inhibitor: VEGFR2, c-MET, and RET. Inhibition 
of VEGFR and c-MET decreases resistance to VEGFR inhibitors via the c-MET axis. However, resistance to 
MET inhibition can occur. Huang et al. reported some of the most common mechanisms inducing acquired 
resistance to HGF/MET-target therapy: hypoxia-induced MET phosphorylation reduction, with no effect 
on downstream signaling pathway, mutations in the MET kinase domain, bypass signaling, copy number 
changes and constitutive activation of AKT and ERK-MAPK pathway[73,75-77].

GAS6/Axl signaling
AXL is a receptor tyrosine kinase (RTK) that is a member of the TAM RTK. AXL signaling is implicated in 
tumor growth, EMT, angiogenesis, metastasis spread, and the development of resistance to targeted therapy. 
The AXL-ligand Gas6 is a vitamin K-dependent protein and the GAS6/AXL signaling can be constitutively 
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activated in ccRCC cells[78-82].

Gustafsson et al. found that sunitinib enhanced Gas6-induced AXL phosphorylation in ccRCC, and 
consequentially activated the AKT pathway. Indeed, in the absence of sunitinib, the activation of the main 
MAPK pathways (ERK1-2, P38MAPK, and SAPK-JNK) by Gas6 alone was insufficient to activate AXL. 
Furthermore, it was shown that Gas6 activated the EGFR pathway when sunitinib was present. This 
pathway, along with AXL, is thought to be implicated in cancer’s resistance mechanism[83].

Cytokines
Treatment with sunitinib has been shown to increase the expression of IL-6 and IL-8. These cytokines have 
been linked to TKI resistance, suggesting that they could play an important role in inducing angiogenesis in 
a HIF-independent way. IL-6 activates the AKT/mTOR and transcription factor STAT3 cascade, resulting 
in increased expression of VEGFA and VEGFR2. In endothelial cells, IL-8 promotes the accumulation of 
VEGFA mRNA in normoxic conditions as well as the endothelial cells are exposed to hypoxia. Even when 
HIF-1 is blocked, CXCL8/IL-8 can still induce VEGFA promoter-driven transcription[84,85].

Pilskog et al. evaluated the expression of IL6R in RCC tumor cells and discovered that the expression of 
IL6Ra may predict responsiveness to TKI treatment. In fact, a significant correlation between IL6R 
expression and the objective response rate was identified but not with PFS or OS, indicating that IL6R 
expression may have predictive significance. IL-6 ligand expression may also play a prognostic role, as 
demonstrated by the association between its lack of expression or low expression with PFS[86,87].

Huang et al. developed sunitinib-resistant xenograft models and discovered that sunitinib-treated ccRCC 
cell lines developed resistance and displayed an elevated IL-8 expression. They observed that only when 
sunitinib treatment was sustained over a longer period did the reduction of IL-8 function decrease tumor 
growth. Only after the emergence of resistance to tyrosine kinase inhibition could IL-8 function inhibition 
affect tumor growth[88,89].

Tumor microenvironment and immune cells as mediators of TKI-resistance
There is growing interest in the connection between TIME, immune cells, and angiogenesis, and there is 
evidence that the tumor microenvironment has a direct role in the emergence of resistance to targeted 
therapies. The recently approved combination of ICIs and VEGFR-TKIs is also supported by this 
association. Therefore, it is critical to understand how TIME affects the mechanisms of resistance to target 
therapy in order to better understand resistance to combination therapy [Figure 2].

MDSCs
MDSCs are the major component of TIME. Growing evidence indicates that tumors release pro-angiogenic 
signals that recruit MDSCs, which may act as mediators in the development of resistance to TKIs[91-94].

Ko et al. had demonstrated that sunitinib therapy significantly reduced MDSC accumulation in tumor-
bearing mice models, leading to improved peripheral T-cell function. It appears that even when sunitinib 
diminishes peripheral MDSC accumulation, intra-tumoral MDSCs can be much less impacted. Intra-
tumoral MDSCs from sunitinib-treated mice retained T-cell suppressive capacities comparable to those 
from untreated mice. The authors quantified MDSC subsets in tumor specimens of untreated and sunitinib-
treated RCC. In contrast to the substantial reduction in peripheral blood MDSCs seen in RCC patients 
treated with sunitinib, the proportion of MDSCs in tumor samples nevertheless remained greater and these 
cells maintained their suppressive capabilities, as assessed by IFN production.
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Figure 2. Interaction between angiogenesis and tumor microenvironment. Immune cells are recruited by chemokines and angiogenic
factors and the tumor infiltration by immune cells is, in turn, implicated in promoting angiogenesis. The balance between immune
response and immunosuppression is crucial to induce tumor killing from one side or tumor escape to the other. CAF: Cancer-associated
fibroblasts; EGF: epidermal growth factor; EMT: epithelial-mesenchymal transition; G-CSF: granulocyte colony-stimulating factor; GM-
CSF: granulocyte-macrophage colony-stimulating factor; HGF: hepatocyte growth factor; HIF-1α: hypoxia-inducible factor 1α; IFNγ:
interferon-γ; IL-2/4/6/10/8: interleukin; MDSC: myeloid-derived suppressor cell; MMP: matrix metalloproteinases; NK: natural killer;
PDGF: platelet-derived growth factor; PDL1: programmed death-ligand 1; TAM: tumor-associated macrophages; TAN: tumor-associated
neutrophils; TGF-  : tumor growth factor beta; TLR: toll-like receptor; TNFα: tumor necrosis factor α; Treg: regulatory T cells; VEGF: 

vascular endothelial growth factor[90].

Additionally, sunitinib did not significantly affect the amount of GM-CSF produced by RCC tumors in 
vitro. Due to the stimulation of the STAT5 pathway, the pro-proliferative cytokine GM-CSF confers 
peripheral MDSCs sunitinib resistance. Sunitinib decreased pSTAT3 in the absence of GM-CSF, which 
made MDSCs more susceptible to the drug. In contrast, STAT5-mediated pathways are prominent in the 
presence of GM-CSF, resulting in a phenotype of MDSCs that is resistant to sunitinib[95].

These findings have been confirmed by Finke et al., who examined MSDCs both in peripheral blood and in 
tumors of RCC patients. They discovered that the sunitinib-induced maximum drop in MDSC numbers 
occurred after the second cycle and continued until later than the fourth cycle, although there is some 
recovery in MDSC levels at this point. In this study, the impact of pro-angiogenic factors on sunitinib 
resistance was also evaluated. Pro-angiogenic variables’ effects on sunitinib resistance were also assessed in 
this study. The analysis of tumor tissue lysates from patients who had neoadjuvant therapy revealed that 
there was an increase in the expression of pro-angiogenic proteins [Matrix metallopeptidase (MMP9), 
MMP8, and IL-8] in tumors with a greater level of MDSCs. Additionally, sunitinib causes an increase in 
plasma IL-8 levels, and larger levels are associated with a worse PFS. The presence of MDSCs in tumors 
might promote the production of IL-8, which could activate alternative pro-angiogenic pathways (MMP9/
MMP8/IL8) to prevent cell death[96].

C Marcela Diaz-Montero et al. used a patient-derived xenograft (PDX) model of RCC and performed a 
microarray analysis of sunitinib-responsive and -resistant tumors. Resistance to sunitinib was associated 
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with the upregulation of genes involved in cell movement and immune cell trafficking in both human and
murine expression analyses. Furthermore, tumors resistant to sunitinib had higher levels of G-CSF and,
consequently, higher levels of G-MDSCs. G-MDSCs are MDSCs that resemble granulocytes both
phenotypically and functionally. G-MDSCs have the ability to inhibit the immune response, and they can
additionally promote angiogenesis and the spread of tumors[97].

Cancer-associated fibroblasts
Tumor-growth factor (TGF) and platelet-derived growth factor (PDGF) induce the transformation of
tumor fibroblasts (FHNR) in cancer-associated fibroblasts (CAFs), which play a key role in tumor
progression, producing pro-tumoral cytokines (e.g., IL-6, IL-8, TNF, IL-10). Fibroblast-associated protein
(FAP) is a marker of CAFs. Ambrosetti et al. demonstrated that high levels of FAP mRNA were correlated
with shorter PFS and OS in metastatic ccRCC (PFS, P = 0.054 and OS, P = 0.022). Sunitinib stimulated
FHNR to differentiate towards CAFs. Mice with induced mRCC were treated with sunitinib or with
placebo. Compared to the placebo group, the sunitinib-treated mice’s tumors had higher FAP mRNA levels
(P = 0.049). Sunitinib primary resistance has also been linked to CAFs, which create a barrier to the drug’s
ability to reach tumor cells. Finally, CAFs appear to be a mediator of tumor cell EMT[98].

TAMs
Some of the most numerous immune cells identified within tumors are TAMs. Two subsets of 
TAMs are typically recognized: M1 and M2. M1-like TAMs have a pro-inflammatory phenotype 
and inhibit tumor growth, whereas M2-like TAMs have tumor-promoting capabilities involving 
immuno-suppression, angiogenesis, and neovascularization, as well as stromal activation and 
remodeling[99]. The functional phenotype M2-like is induced by hypoxia of the TIME, resulting in 
tumor escape[100].

In the genomic and transcriptomic analysis of ccRCC patients treated with TKIs in the COMPARZ phase
III trial, Hakimi et al. observed significantly worse OS (HR 1.54; 95%CI: 1.17-2.03; P = 1.98) among subjects
with high macrophage infiltration and higher macrophage infiltration (Kruskal-Wallis test, P = 0.02) in
patients who experienced progressive disease. Furthermore, they found that a high M2-macrophage
infiltration (M2high) was associated with poor OS (HR 1.38; 95%CI: 1.06-1.81; P = 0.019) and PFS (HR 1.40;
95%CI 1.09-1.78; P = 7.90) compared to the M2low group. Depending on the TKI used, macrophage
infiltration and its impact on the outcomes differed. TAMs infiltration was a prognostic factor in patients
receiving pazopanib but not sunitinib. This supports the notion that sunitinib primarily affects MDSCs[101].

TIL and TKIs interaction with immune-cell infiltration
TIL correlated with poorer prognosis and shorter survival in RCC[102]. Liu et al. compared the percentage 
of immune cells in TKI-exposed RCC tissue with control samples and they found an increased CD3+ 
T-lymphocyte infiltration, CD45RO+ T-lymphocyte infiltration, CD4+ T-lymphocyte infiltration 
and CD8+ T-lymphocyte infiltration both after sunitinib and bevacizumab treatment. The 
infiltration of CD68+ macrophages was higher in sunitinib-treated versus control RCC specimens 
(25.2% vs. 20.3%, P < 0.05) but not in bevacizumab-treated samples (21.3% vs. 20.3%, P > 0.05). In sunitinib-
treated patients, a higher percentage of tumor-infiltrating CD4+ T lymphocytes was associated with 
shorter OS and PFS. TIL composition might be modulated by VEGF target treatment. Indeed,
although not changing either the ratio of CD4+FOXP3+ Tregs to total CD4+ T lymphocytes or the ratio of
Treg to CD8+ T lymphocytes, CD4+FOXP3+ Tregs were greater in cases treated with bevacizumab or
sunitinib.
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Tregs infiltration was higher in sunitinib-treated patients with shorter OS and PFS. Finally, sunitinib 
directly enhanced PD-L1 expression, and those patients who had higher PD-L1 expression had shorter OS 
and PFS (P < 0.05) after receiving sunitinib treatment[103].

The analysis of T cell subsets and MDSCs in peripheral blood mononuclear cells (PBMCs) from ccRCC 
patients receiving cabozantinib and other therapies (nivolumab and pazopanib) revealed that T cell subsets 
composition changed after treatment. Indeed, cabozantinib treatment increased the proportion of Th9, 
Th22, and Th17 cells while having no effect on the number of Th2 cells, Th1, Treg, and CD8+ T cell 
populations. Among these T cells, the proportion of Th22, but not Th9, was associated with better 
outcomes[104].

Epigenetic modification
Non-coding and micro RNA
Non-coding RNAs, known as microRNAs (miRNAs), have significant functions in modulating the 
expression of genes. The role of miRNAs in resistance to TKIs is still being investigated[105].

Yamaguchi et al. conducted one of the first attempts to profile miRNAs in resistant RCC cell lines as they 
developed two sunitinib-resistant cell lines and performed microarray and RT-qPCR analysis on them. 
They identified seven miRNAs (miR-575, miR-642b-3p, miR-4430, miR-18a- 5p, miR-29b-1-5p, miR-431-
3p, miR-4521) whose expression was linked to sunitinib resistance.

It was reported that miR-4430 had a role in modulating expression genes implicated in the inhibition of 
PTEN/mammalian target of rapamycin (mTOR) signaling pathway. miR-18a-5p is associated with hypoxia-
inducible factor 1 alpha (HIF1A)[106]. Sunitinib- resistant cell lines had higher miR-4430 levels and lower 
miR-18a-5p ones, suggesting that the acquisition of sunitinib resistance was associated with PTEN 
downregulation, and FGF1 and HIF1A upregulation[107] [Table 3].

PRIMARY RESISTANCE TO ICI
Availability of antigens and dendritic cells’ (DCs’) presentation of them, T-cell trafficking and tumor
infiltration, T-cell effectiveness, and equilibrium between regulatory and cytotoxic cells in the TIME
composition are all requirements for an immune response against tumor cells to be successful. Immune
escape may occur in any of these phases, resulting in either primary or acquired resistance to immune
checkpoint inhibitors[108].

Antigen availability and DCs presentation capacity
The recognition of a specific antigen by antigen-presentation cells (APCs) is the first step in a successful
immune response. Major Histocompatibility Complex (MHC) proteins, which are classed as class I on all
nucleated cells or class II on specific immune system cells such as macrophages, dendritic cells, and B cells,
are also expressed on the surfaces of APCs. These proteins are necessary for the process of antigen
presentation, which activates T cells in response to the antigen and results in a successful immune
response[109].

Antigen availability may be influenced by the tumor mutational burden, and the absence of neoantigens
may be caused by epigenetic alterations[110]. RCC has a relatively low mutational load. De Velasco et al.
reported a low mutational load in their full exome transcriptome analysis of metastatic RCC patients
included in TCGA, with a median of 1.42 mutations/Mb (range: 0.035-2.77). Classifying the 54 patients
according to the IMDC risk criteria, no differences were seen in mutational load (P = 0.39), as well as in the
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Table 3. Major determinants of primary and acquired resistance to VEGFR-TKIs

Primary resistance to VEGF-TKIs

Missed targets VHL-deficient tumors with HIF2 expression[40,41]

Insufficient intracellular drug 
concentration

MDR-related solute carrier (SLC) and ATB binding cassette (ABC)[44-46] 
Lysosomal sequestration[47-50]

Tumor plasticity Epithelial-mesenchymal transformation (EMT) induced by hypoxia and Insulin-growth factor (IGF)[54-64]

Non-angiogenic pathways Vascular co-option

Bypass pathways FGF/FGFR: FGF2-mediated activation of ERK 1/2 and PLC pathway is not inhibited by sunitinib[68]

MET/HGF: Hypoxia induced by VEGFR-TKIs promotes MET-depended tumor growth[76-79].
GAS6/AXL: VEGFR-TKIs treatment enhances the activation of the MAPK pathway by AXL[90].

Tumor microenvironment interactions Cytokines[91-93]

·IL-6 activates the AKT/mTOR pathway, inducing VEGFA and VEGFR2 expression.
·IL-8 induces VEGFA transcription even when HIF-1 is inhibited.
MDSCs[100-102]

·GM-CSF confers sunitinib-resistance to peripheral MDSCs, via the STAT5 pathway.
·MDSCs produce pro-angiogenic proteins.
CAFs[103]

·FAP mRNA (a marker of CAFs) levels are correlated with worse outcomes.
TAMs[105-106]

·Hypoxia induces M2-macrophages phenotype.
·M2-like TAMs promote tumor growth.
TILs[108]

·TKIs treatment induces CD4+ T cells and Tregs infiltration.
·CD4+ T cells and Tregs infiltration correlate with worse outcomes.

Epigenetic modifications Non-coding RNAs and miRNAs[116]

Sunitinib-resistant cells had higher miR-4430 (PTEN/mTOR signaling) and lower miR-18a-5p (FGF1 and
HIF1A signaling) levels

CAFs: Cancer-associated fibroblasts; FAP: fibroblast associated protein; FGF: fibroblast growth factor; FGFR: fibroblast growth factor receptor; 
HIF: hypoxia-inducible factor; HGF: hepatocyte growth factor; MDR: multidrug resistance; MAPK: mitogen-activated protein kinases; MDSC: 
myeloid-derived suppressor cells; miRNAs: microRNA; TAMs: tumor-associated macrophages; TILs: tumor-infiltrating lymphocytes; VHL: von 
hippel-lindau.

expression of cytolytic genes - granzyme A (GZMA) and perforin (PRF1) - or in selected immune 
checkpoint molecules (PD-1, PD-L1, PD-L2, CTLA-4) (P > 0.05 for all)[111].

Lack of antigen presentation could be affected by MHC mutations or defects in DCs’ functions and 
maturation.

Beta-2-microglobulin (B2M), an important subunit of MHC class I, has essential biological functions and 
roles in tumor immunity. B2M gene deficiency and loss of Beta-2-microglobulin, induced by mutations and 
epigenetic regulation, can lead to complete loss of MHC class I antigen expression. B2M mutations 
frequently result in MHC defects that cannot be repaired, and immunotherapy is ineffective at restoring 
MHC expression[112].

The maturation of DCs can be influenced by numerous factors. Hypoxia, which creates an acidic 
environment with a higher amount of lactates, is one of these. Recent data suggests the existence of DCs 
with immune-suppressive characteristics. These cells may overexpress pathways involved in immune 
tolerance: e.g., STAT3 which induces S100A9, a gene that prevents DCs from maturing and recognizing 
antigens, or FOXO3, a transcription factor that induces the expression of indolamine 2,3-dioxygenase 
(IDO), arginase, and TGF-β and inhibits co-stimulatory molecules[113].

In the TIME, dendritic cells must already be present. A study conducted by Spranger et al. in melanoma 
murine models revealed that tumor-intrinsic active -catenin signaling results in T-cell exclusion and 

Secondary resistance to VEGF-TKIs
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resistance to ICIs. Tumors with active -catenin exhibited a nearly complete absence of activated T cells,
according to an analysis of immunological infiltrates. This absence was attributed to the loss of dendritic

dendritic cells was similarly decreased in the tumor-draining lymph nodes, but not in the spleen, thus
reflecting the fact that these DCs were not recruited due to a defect in chemotactic signals, such as CCL4.
Furthermore, when treated with dual checkpoint inhibition, no therapeutic effect in reducing tumor growth
was detected in active -catenin mice. Re-introduction of dendritic cells restored tumor response to ICI[114].

Human endogenous retroviruses
Human endogenous retroviruses (hERVs) are components of about 8% of our genome that possibly
originated by incorporating ancestral exogenous viruses. There are only a limited number of tools available
for quantifying and identifying hERVs. They could be a source of neoantigen and mediate immune
response in TIME. Smith et al. identified more than 3,000 transcriptionally active hERVs within the TCGA
pan-cancer RNA-Seq database. They explored two mechanisms by which hERV expression could affect the
tumor immune microenvironment in ccRCC. The first mechanism involved innate immune response and
activation of the RIG-I-like pathway signaling by double-stranded RNAs (dsRNA). The second was related
to the adaptive immune response, as documented by the hHERV epitope-trigged activation of the B cells.
Patients with both RIG-I–like downregulation and BCR-associated signatures upregulation had significantly
shorter overall survival, while those with higher expression of the RIG-I-like signature had longer overall
survival. Two significant tumor-specific hERVs were lastly found in ccRCC (CT-RCC hERV-E and hHERV
4700). The CT-RCC hERV-E displayed a Treg signature and was the second most differentially expressed
hERV. In an aPD1-treated ccRCC dataset, hERV 4700 (HERVERI/gammaretro-virus-like) expression was
higher in tumor samples compared to normal tissue, and it was associated with response to
immunotherapy. This could occur because hERV 4700-derived epitopes may be the target of an antitumor
response mediated by aPD1 mAb[115,116].

Immune cell trafficking and recruitment
As discussed above, activation of the WNT/-catenin pathway reduces the recruitment of dendritic cells in
TIME, affecting T-cell activation[114].

Given that pre-existing T-cells in the tumor are essential for response to ICIs, various mechanisms that may
cause initial resistance to immunotherapy with the end result of the absence of immunologically competent
cells in TIME have been investigated so far.

PTEN is a lipid phosphatase that inhibits the activity of PI3K/AKT signaling. PTEN loss has been associated
with altered TIME T-cell composition. Peng et al. found that a lower CD8+ T cell tumor infiltration was
present in melanomas with PTEN loss compared to tumors with PTEN expression (P < 0.001).
Furthermore, PTEN loss resulted in both an up-regulation of inhibitory cytokines including CCL2 and
VEGF and a down-regulation of the T cell effector molecules IFN- and granzyme B. Since PTEN loss and
PI3K/AKT pathway signaling both contribute to immunotherapy resistance, it is possible to reverse this
effect by targeting the PI3K-AKT pathway[117].

T-cell activity in TIME and microenvironment composition
T cells get activated when they come into contact with APCs and the MHC complex through the TCR.
Following this, T cells mostly develop into cytotoxic T cells (CD8+ cells) or T-helper (Th) cells (CD4+ cells),
and they release cytokines that further regulate the immune response[108]. Cytotoxic CD8+ T lymphocytes
are mainly responsible for killing tumor cells. MHC class II proteins trigger the activation of CD4+ Th cells,
which lack the ability to cause cytotoxicity. In fact, they are implicated in the recruitment of additional

βcells, particularly CD103+ dendritic cells with diminished IFN-  expression. The number of CD103+
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immune cells, producing cytokines. IFN-   is a mediator of the Th1 cell response[109].

As tumors grow, persistent exposure to IFN- may be responsible for a down-regulation of IFN signaling
downstream, resulting in primary immunotherapy resistance. Mutations in IFN receptors, Janus kinases
JAK 1/JAK2, are studied mechanisms by which cancer cells could have an advantage in developing
resistance to IFN-mediate anti-proliferative effects. Shing et al. discovered that loss of function mutations in
JAK1/2 in melanoma cells could inhibit T cells killing capacity and IFN’s ability to induce PD-L1
expression, making pharmacological suppression of the PD-L1/PD-1 interaction ineffective. Reduced T-cell
trafficking, along with decreased production of chemokines such as CXCL9, CXCL10, and CXCL11, could
potentially account for the lack of response[118].

For a competent immune response to be effective, there must be a balance between cells that inhibit
immunity and cells that promote response inside the tumor microenvironment. TME is dynamic and
constantly changes. The TIME of ccRCC is unusual, and it is distinguished by a strong inflammatory profile
and T-cell infiltration. The primary immunosuppressive cells in TIME are TAMs, MDSCs, and regulatory T
cells (Treg)[119].

TAMs
In ccRCC, cancer-cell-derived factors such as IL-1β, IL-6, IL-10, tumor necrosis factor-α, epidermal growth
factor, and TGF-β induce macrophage polarization towards a M2 phenotype by cell-cell interactions.
CD163+ M2 TAMs contributed to poor clinical prognosis in patients with ccRCC by activating STAT3
pathway. PI(3)Kinase γ (PI3Kγ) is found to be implicated in themacrophage switch from a M1-phenotype to
a M2-phenotype, inhibiting Akt and mTOR together with the NFκB and C/EBPβ activation. As a result, the
immune suppressive phenotype promotes tumor growth and inflammation[120,121].

Tregs
Through the production of IL-10 and TGF-, Tregs can mediate immunosuppression by inhibiting T cells
and APCs functions. These cells can be recruited in TIME by chemokines and cytokine produced by
exhausted T-cells. Furthermore, cancer cells can play out escape mechanisms upregulating Tregs in
TIME[109]. Hyperactivation of focal adhesion kinase (FAK) (also known as FADK) in tumor cells induces
overexpression of various chemokines (including CCL5), thus recruiting Treg cells and inducing CD8+ T
cell exclusion or exhaustion. Self-antigen-specific CD8+ T cells express restricted co-stimulatory signals,
which impair APC activity and enhance suppression by Tregs, whereas Tregs have a stronger affinity for
TCRs of non-self-antigen specific CD8+ T cells, which are resistant to suppression[121,122].

Immune checkpoints like CTLA-4 and PD-1 are expressed by Tregs as well. In human glioblastoma tissue,
Tregs with high PD-1 exhibit an exhausted phenotype lacking immunosuppressive activity. Anti-PD-1
mAbs may cause hyper-progression, decreasing the number of Tregs that express PD-1 and restore their
ability to inhibit immunological response[121,123-125].

The contribution of the B7x immunological checkpoint to the growth of the Treg population within the
tumor was discussed by John et al. In accordance with their suppressive function, B7x+ Tregs exhibited a
higher level of TGF-LAP (a surface marker of TGF production) and a lower percentage of ki67 marker,
indicating that they originated from peripherally converted CD4+ T cells. B7x increased Foxp3 expression
through increasing STAT5 phosphorylation, whereas it inhibited STAT3 phosphorylation, which affected
CD4+ T cells’ ability to differentiate into the Th17 subtype. What is more intriguing is that the anti-CTLA-4
therapy was not successful in reducing Tregs exclusively in mice that expressed B7x+. In addition, B7x+
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mice showed a substantial reduction in the IFN production generally caused by anti-CTLA-4. Tregs play a 
crucial part in the immune response, as shown by the fact that Treg depletion restored anti-CTLA-4 
capabilities in tumor reduction even in B7x+ mice[126].

MDSCs
MDSCs may differentiate into M2-polarized macrophages with immunosuppressive properties and can 
decrease T-cell activation by metabolic processes (e.g., iNOS, IDO). Additionally, they are able to express 
CD40 and to produce TGF- and IL-1, leading to Tregs expansion and decreasing the capacity of effector T 
cells[93]. In both melanoma patients and prostate cancer patients treated with ipilimumab, a lower baseline 
amount of circulating MDSCs was associated with a higher overall survival rate. Furthermore, high myeloid 
inflammation gene signature expression was associated with reduced PFS in the atezolizumab monotherapy 
arm and in the atezolizumab + bevacizumab arm, but not in the sunitinib arm in the molecular analysis of 
the IMmotion 150[127,22].

DCs
According to their presence in Tertiary lymphoid structures (TLS), DCs in ccRCC can be divided into two 
subtypes: TLS-DCs (CD83+ DC- LAMP+), which are very uncommon in ccRCC and associated with good 
outcomes, and non-TLS-DCs (CD209+ CD83), which are dominant in ccRCC TIME and associated with 
the worst prognosis. In addition to promoting tumor growth by secreting MMP-9 and TNF, NTLS-DCs 
further inhibit CD8+ T-cell activity by the L-arginine pathway and trigger Treg responses by secreting TGF-
[109,119,128,129].

Genomic and single-gene mutation and TIME
The biomarker analyses conducted among patients treated in the IMmotion 150, the Javelin Renal 101 and 
the Checkmate 214 had developed the idea that gene expression profile (GEP) in RCC could predict 
response to ICIs[22-24].

Based on mRNA expression data, Beuselinck et al. performed a clustering analysis and identified four 
molecular subgroups of ccRCC, even if done in a cohort of patients receiving sunitinib: ccrcc1 (“c-myc-
up”), ccrcc2 tumors (“classical”), ccrcc3 (“normal-like”) and ccrcc4 tumors (“c-myc-up and immune-up”). 
The ccRCC4 subtype displayed a strong inflammatory, Th1-oriented but suppressive immune 
microenvironment, with a strong expression of myeloid and T-cell homing factors. Furthermore, this 
subtype had a higher proportion of IL10 as well as inhibitory receptors LAG3 and PD-1 and PD-1 ligands 
PD-L1 and PD-L2. In the validation analysis of single-gene mutations conducted on TGCA samples, SETD2 
mutations were related to a lower T-cell infiltration and immunosuppressive markers (ccrcc1), while BAP1 
mutations were expressed in the subtype with the highest inflammatory infiltration but on the other hand, 
having the strongest expression of immunosuppressive cells (ccrcc4)[130].

In the BIONIKK trial, the authors used Beuselinck’s clustering classification to undertake a biomarker-
driven analysis. Patients with the ccrcc 1 and 4 subtypes were randomized to receive nivolumab either alone 
or in combination with ipilimumab, whereas those with ccrcc 2 and 3 could receive either nivolumab plus 
ipilimumab or a VEGF-TKI. In the ccrcc1 (immune desert subtype), ORR and PFS were improved by the 
dual checkpoint inhibition (HR of PFS for nivolumab vs. nivolumab + ipilimumab 1.27; 95%CI 0.77-2.11). 
In the ccrcc4 (immune infiltrated and inflammatory subtype), both nivolumab alone and in combination 
with ipilimumab obtained higher ORR and longer PFS compared to the ccrcc 1 group. Thus, ccrcc4 seemed 
the best candidate for dual checkpoint inhibition. Furthermore, about 30% of patients in the ccrcc4 group 
who early progressed on nivolumab–ipilimumab did not start a second-line therapy, thus reflecting that 
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progression at first evaluation, does not always indicate resistance[131].

PBRM1 and BAP1
PBRM1 encodes for BAF180, a component of the SWI/SNF chromatin remodeling complex and could be
inactivated in about 36% of clear cell renal cell carcinoma. Its relationship with prognosis in RCC has been
evaluated in several studies, resulting in conflicting findings. PBRM1 mutations have also been documented
in VHL-disease-associated RCC. PBRM1 and VHL mutations were most frequently expressed in ccrcc1
subtypes (immune desert one)[131-134]. In the phase I CA209-009, 35 samples of RCC treated with Nivolumab
were whole-exome sequenced and were consequently divided into three categories according to responses.
Clinical response to Nivolumab was characterized by a higher percentage of PBRM1 loss-of-function. The
same results were seen in a subgroup treated with nivolumab plus ipilimumab[135].

As reported above, in the molecular subsets analysis of the IMmotion 151, PBRM1 mutations conferred
better outcomes to patients, regardless of the treatment arm. However, in patients with PBRM1-non-mutant
tumors, the addiction of immunotherapy to a VEGFR-TKI confers better outcomes compared to target
therapy alone[31].

SETD2
SETD2 mutations, a histone methyltransferase gene, occur in 10% of ccRCC. Wang et al. clustered TGCA
RCC samples based on TME expression profiles and observed two different clusters: the first cluster,
inflamed subtype (IS), was enriched for Treg cells, NK cells, Th cells, neutrophils, macrophages, eosinophils,
B cells and CD8+ T cells, whereas the second cluster, not inflamed subtype (NIS), was enriched for
angiogenesis, plasmacytoid DCs, and mast cells. Mutations in BAP1 were most frequently seen in the IS 

GUT MICROBIOME INFLUENCES PRIMARY RESISTANCE TO IMMUNOTHERAPY
The complex system of the gut microbiota interacts with the host. By producing neoantigens and modifying 
the tumor immunological microenvironment, microorganisms have an impact on immune responses. 
Furthermore, studies have revealed that antibiotics can affect the metabolic balance of the intestinal 
microbiome by increasing some species while decreasing others, leading to dysbiosis[137-140].

Routy et al. demonstrated that the use of antibiotics (ATB) influenced response to ICIs in non-small cell 
lung cancer (NSCLC), RCC and urothelial cancers. As evidenced by poorer outcomes for individuals 
receiving antibiotic treatment, ATB usage did, in fact, cause resistance to PD-1 blockade in all tumor types. 
Analyzing the microbiome composition, Akkermansia muciniphila conferred better PFS to patients treated 
with immunotherapy. Th1 and Tc1 cell reactivity against A. muciniphila was the only immune response to 
ICIs that was associated with clinical outcomes[138].

De rosa et al. confirmed that ATB impaired patients’ responses to immunotherapy by altering the diversity 
and composition of gut microbiota in a metagenomic and network analysis of patients treated with 
nivolumab in the NIVOREN GETUG-AFU 26 phase 2 trial. Responders had an over-representation of 
distinct species including A. muciniphila, Bacteroides salyersiae, and Eubacterium siraeum, and a trend 
towards Clostridium ramosum and Alistipes senegalensis, whereas E. bacterium_2_2_44A, Clostridium 

(P = 7.7 × 10-5), whereas the NIS was enriched for PBRM1 mutations. Furthermore, the authors observed 
that Bap1-mutated mice were more infiltrated by CD4 and CD8 T cells, than Pbrm1-mutated mice, 
suggesting a causal relationship between BAP1 mutations and the TME-IS phenotype. It is interesting to 
note that individuals with tumors of the TME-IS subtype had higher rates of thrombocytosis and anemia, 
which are systemic symptoms of inflammation caused in TME[136].
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hathewayi, and Clostridium clostridioforme were more represented in non-responders, as observed for those 
patients using ATB. Due to the fact that the majority of patients had already received a VEGF-TKI, the 
authors examined the effects of TKI use in combination with ATB on microbiome composition and 
discovered that axitinib + ATB was the most effective treatment to induce a shift in fecal microbiota. 
Additionally, most notably with cabozantinib, TKIs promoted a transition to a preponderance of 
immunostimulatory commensals, such as A. senegalensis and A. muciniphila. This property could be one of 
the rational bases for combining VEGFR-TKI with ICIs[141].

ACQUIRED RESISTANCE TO IMMUNE CHECKPOINT INHIBITORS
Secondary resistance develops throughout therapy and may be driven by the stress that a particular therapy 
might have on TIME, as well as by temporal variability and plasticity. The same mechanisms that lead to 
initial resistance also cause secondary resistance to immune-checkpoint inhibitors. Some investigators 
observed that TILs (the immune response’s effectors) are present during relapse but remain restricted to the 
tumor margin, raising the possibility that these cells have lost the ability to identify antigens or to activate 
themselves. Utilizing ICIs, the IFN-induced expression of PD-L1 and its negative effects on CD8+ T cells are 
prevented. To reduce antigen presentation or enable escape from interferon-induced growth inhibition, 
cancer cells may, however, become insensitive to IFN signaling. JAK mutations have been investigated as a 
strategy by which cancers develop IFN unresponsiveness[142].

Numerous investigations conducted on humans have shown that tumor cells can develop resistance to T-
cell recognition by having defective HLA class I expression[142-145]. Loss-of-function in chromosome region 
15q21-(where β2m gene maps) induces a β2m gene mutation, leading to the absence of the MHC class I. 
These alterations can be reversible and the HLA expression can be recovered by using immunotherapy, as a 
result of transcriptional silencing of genes or irreversible. It has been suggested that resistance to 
immunotherapy may be caused by the preexistence of metastatic lesions with a β2m gene mutation and that 
selective pressure during T-cell-based immunotherapy could induce the growth of HLA class-I deficient 
clones in melanoma patients who have irreversible HLA alterations[146].

Chronically activated Treg cells showed strong suppressive potential. Tregs increase CD103 expression 
when activated, and CD103+ Treg exhibited greater levels of inhibitory receptors such as PD-1, TIM-3, and 
CTLA-4. Additionally, they upregulate functional molecules, granzyme B and IL-10, which are essential to 
their suppressive actions, such as the decrease in CD8+ T cells[147].

ALTERNATIVE INHIBITORY RECEPTORS UPREGULATION AS A MECHANISM OF 
ACQUIRED RESISTANCE
Exhausted CD8+ T cells lose their cytotoxic efficacy against presented antigens. PD-1 is only one of the 
inhibitory receptors highly expressed on exhausted CD8 T cells and its blockade may have a therapeutical 
effect. However, blocking this pathway does not completely restore T cell function. Numerous alternative 
inhibitory receptors, primarily identified in chronic infections, such as LAG-3, TIM-3, 2B4, CD160, or 
BTLA, are overexpressed in exhausted T cells and may be targeted to enhance immune response or reverse 
resistance[147,148].

PD-1
PD-1 is an inhibitor of both adaptive and innate immune responses, and it is expressed on activated T, 
natural killer (NK) and B lymphocytes, dendritic cells (DCs), macrophages, and monocytes[149]. In a cohort 
of patients with NSCLC, gastric cancer (GC) and melanoma treated with Nivolumab, CD8+ T cells of the 
TIMEs from responders expressed higher levels of PD-1 than those from non-responders. Furthermore, 
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PD-1 was highly expressed in eTreg (CD45RA−CD25hiFoxp3hiCD4+) of the TIME of patients with NSCLC 
and GC which not responded to nivolumab. In this context, the use of aPD-1 mAb could have 
immunosuppressive effects, enhancing the expression of PD-1 among eTreg, and thus stimulating Treg 
functions[150].

PD-1 expression balance between CD8+ T cells and Treg cells is crucial for the efficacy of monoclonal 
antibodies to PD-1.

The prognostic value of PD-L1 expression in RCC is controversial. A meta-analysis of four trials assessed 
the predictive value of PD-L1 among patients treated with nivolumab + ipilimumab, atezolizumab + 
bevacizumab, pembrolizumab + axitinib or avelumab + axitinib vs. sunitinib. Patients with PD-L1-positive 
tumors showed significantly improved ORRs, complete response rates (CRRs) and PFS, and lower 
progression disease responses (PDRs) compared with those with PD-L1-negative tumors when treated with 
ICIs vs. sunitinib. Nivolumab plus ipilimumab had the highest likelihood of providing the maximal PFS (p 
score: 0.90) and the highest ORR (p score: 0.95)[151].

Overall, even though the findings of this study show that PD-L1 has a predictive value, there are several 
limitations, such as the fact that PD-L1 is expressed differently in primary tumors compared to metastatic 
sites, as well as the lack of a standard detection method and the different types of anti-PD-L1 antibody used. 
Examining the variable pattern of PD-L1 expression on different immune cells in TIME might be more 
fascinating than examining its expression just on tumor cells. As reported, it appears that the effectiveness 
of ICIs depends on the balance between PD-1 expression on CD8+ T-cells and Treg.

LAG3
Lymphocyte Activation Gene-3 (LAG3; CD223) is expressed on activated human NK and T cell lines and is 
able to bind MHC class II. A soluble monomeric form of LAG3 (sLAG3) can be released by IFN-producing 
CD4+ T cells. The major ligand of LAG3 is MHC class II. Melanoma cells that express MHC class II attract 
tumor-specific CD4+ T cells through their interaction with LAG3, resulting in impairing CD8+ T cell 
responses. Other putative ligands are Galectin-3, which mediates suppression of CD8+ T-cell-secreted IFN 
in vitro and LSECtin (liver sinusoidal endothelial cell lectin). It was found that the association between 
LAG3 and the LSECtin ligand inhibits the generation of IFN by effector T cells that are antigen-specific in 
melanoma cells. Dendritic cell inhibition is one of the ways whereby LAG3-expressing Tregs interact with 
MHC class II to cause immunological suppression. In fact, when exposed to LAG-3, MHC class II-
expressing melanoma cells, but not MHC class II-negative ones, were resistant to Fas-mediated 
apoptosis[152-155].

In a study examining the key inhibitory receptors (iR) expression on TILs and PBMCs of 35 patients with 
RCC, CD8+ T cells and non-Treg CD4+ cells highly expressed the inhibitory receptors PD-1, followed by 
LAG-3 and BTLA, whereas Tim-3 and CTLA-4 were less highly expressed. However, the expression profile 
of the five iR on tumor-infiltrating Tregs was different. Indeed, Tregs upregulated PD-1, LAG-3, Tim-3, and 
CTLA-4, but not BTLA. Interestingly, as previously reported, the most frequent iR combination was PD-1 
and LAG-3, whereas about 10% of CD8+ T cells expressed PD-1, LAG-3 and Tim-3 simultaneously. 
Experimental in vitro demonstrated that blockade of PD-1 plus LAG-3 resulted in a statistically significant 
higher percentage of CD8+ IFN+ T cells, than blockade of PD-1 alone.

Additionally, when CD4+ and CD8+ T cells were co-cultured with anti-PD-1, LAG3 upregulated but not 
PD-1. These findings suggested that blocking LAG-3 in combination with PD-1 might be an effective 
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treatment for advanced RCC[156].

TIM-3
T cell immunoglobulin and mucin-domain containing-3 (Tim-3) is a type I trans membrane protein 
expressed in IFN-γ-producing Th1 and Tc1 cells. The expression of cytokines such as TNF and INF-γ and 
Th1 responses are significantly suppressed by Tim-3. Tim-3 is linked to T cell exhaustion and its expression 
on CD8+ T cells is directly related to PD-1. Indeed, CD8+ T cells co-expressing Tim-3 and PD-1 are 
“deeply” exhausted T cells. Tim-3 could be expressed on tumor-infiltrating DCs, playing a role as a 
mediator of the innate immune response. The Tim-3 ligand with the highest affinity is galectin-9, and its 
interaction with Tim-3 causes the death of effector Th1 cells and CD8+ T cells. Furthermore, galectin-9 
increases Tim-3-mediated IFN production in NK cells, activates PI3K-mTOR signaling in myeloid cells, and 
alters cytokine production by monocytes/macrophages, affecting Th1 and Th17 responses.

Other theorized ligands are being researched. Galectin-9 and Ceacam1 collaborate, both having a 
comparable effect. Activated DCs release the damage-associated molecular pattern known as HMGB1 
(high-mobility group box 1), which stimulates T and B cell responses while inhibiting innate immune 
responses to tumor-derived nucleic acids. Tim-3 signaling’s impact is influenced by the ligands involved, 
the cellular environment, and the biological state, particularly whether the stimulation is acute or persistent. 
Tim-3 can have adjuvant effects inducing the expression of co-stimulatory receptors. In contrast, chronic 
stimulation could enhance the inhibitory functions of Tim-3 signaling, especially as concerns HLA-B 
associated transcript 3 (Bat3) deficient Th1 and CD8+ T cells, driving these cells to an exhaustion 
stage[157-164].

Expression of Tim-3 on T cells also plays a critical role in the generation of MDSCs and is even present in 
FoxP3+ T regs, contributing to promoting T cell dysfunction and immune suppression[165,166].

In isolated CD8+ T cells, Tim-3+PD-1+ TILs were identified as an exhausted phenotype of T cells, having a 
reduced production of IL-2, TNF, and IFN-γ. Combining anti-Tim-3 and anti-PD-L1 therapy reduced the 
tumor growth in mouse models, and those who underwent a complete regression continued to be tumor-
free even after rechallenging[167].

Tim-3 expression in RCC has been associated with outcomes resulting in contradictory results. Patients 
receiving nivolumab were assessed in the CheckMate-010 research study conducted by Pignon et al. in 
anattempt to identify the mechanisms causing different responses. Longer median immune-related response 
progression-free survival (irPFS) and higher ORR were associated with the presence of CD8+ tumor-
infiltrating cells that express PD-1 but lack LAG3 and TIM3 and are more likely to be T cell activated. This 
is in contrast to Zelba et al.’s findings, which showed that blocking both PD-1 and Tim-3 simultaneously 
had no effect on the average cytokine production by TILs, resulting in a lack of the immune response’s 
restoration. Therefore, additional research is required to confirm the usefulness of Tim-3 as a possible target 
to enhance immune responses driven by the inhibition of checkpoint inhibitors[168,156] [Table 4].

CONCLUSIONS
Metastatic renal cell carcinoma management has undergone a paradigm shift as a result of the development 
of combination therapy using ICIs. The choice of first-line treatment and its correct application continues 
to be crucial factors in tumor evolution and have the potential to cause initial resistance, which may have an 
impact on overall survival. Because of this, it is now crucial to understand how the combination of ICIs or 
the addition of a VEGF-TKI to immunotherapy may alter the tumor microenvironment and affect the 
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Table 4. Major determinants of primary and acquired resistance to ICIs

Primary resistance to ICIs

Antigen availability mRCC has a low mutation load

Antigen presentation defects Beta-2 microglobulin loss might result in a deficiency of MHC class I expression.

Absence of dendritic cells (DCs) Due to defects in chemotactic signals, active -catenin signaling causes the depletion of DCs.

Antigen epigenetic modification hHERVs may influence both innate and adaptative immune responses.

Cells trafficking and recruitment alterations ·WNT/-catenin pathway activation reduces DCs recruitment. 
·PTEN loss reduces CD8+T cell infiltration.

T-cell activity inhibition JAK1/2 loss of function mutations inhibit T cell killing efficacy and IFN-mediated PD-L1 
expression.

Tumor microenvironment composition TAMs 
·M2-like TAMs correlate with worse prognosis in mRCC 
Tregs 
·Anti-CTLA-4 mAbs are not effective in depleting Tregs expressing B7x immune checkpoint. 
MDSCs 
·Low MDSCs infiltration correlates with better outcomes with ICIs 
DCs 
·A specific subtype of DCs (NTLS-DCs) with immunosuppressive functions is dominant in 
ccRCC.

Genomic and single-gene mutations PBRM1 
·Regardless of the type of treatment utilized, PBRM1 mutations are correlated with better 
results. 
·Combining VEGFR-TKI with ICI is more effective in PBRM1 non-mutant tumors. 
·PBRM1 mutations are more frequent in non-inflamed, angiogenic subtypes. 
SETD2 
·SETD2 mutations are enriched in inflamed immune infiltrated subtypes.

Gut microbiome composition Antibiotic use induces resistance to aPD-L1 mAb 
Different bacterial species are represented in responders vs. non-responders 

Same mechanisms involved in primary 
resistance

·IFN unresponsiveness via JAK mutations 
·HLA I defects. 
·Loss-of-function of Beta-2 microglobulin mutations.

Alternative inhibitory receptors ·LAG3 
·TIM-3

DCs: Dendritic cells; hHERVs: human endogenous retroviruses; HLA: human leukocyte antigen; IFN, interferon; JAK: janus kinases; LAG3: 
lymphocyte activation gene-3; MDSCs: myeloid-derived suppressor cells; mRCC: metastatic renal cell carcinoma; PD-L1: programmed death-
ligand 1; TAMs: tumor-associated macrophages; TIM-3: T-cell immunoglobulin and mucin-domain containing-3; Tregs: T regulator.

tumor’s response to treatment. Targeting hypoxia with specific drugs may be a possibility to enhance 
outcomes in RCC since hypoxia is a defining feature of RCC pathogenesis and is associated with both 
angiogenesis and the alteration of the tumor microenvironment. HIF-2 inhibitor belzutifan is being tested 
in patients with previously treated mRCC as a single treatment versus everolimus (NCT04195750) or in 
combination with lenvatinib versus cabozantinib (NCT04586231). Different inhibitory receptors or 
metabolic pathways may be the focus of alternative approaches. The phase II trial FRACTION-RCC is 
studying an anti-LAG3 mAb (relatlimab), in combination with nivolumab (NCT02996110). XmAb®22,841, a 
bispecific antibody targeting CTLA-4 and LAG-3, is under study in the phase I trial DUET-4 
(NCT03849469). A randomized phase II trial is investigating the efficacy of axitinib combined with an 
antibody against OX40, a receptor expressed on memory T cells (NCT03092856). In a phase 1b/2 trial, 
patients with previously treated mRCC are being treated with cabozantinib in conjunction with the anti-
AXL fusion protein AVB-S6-500, which controls the GAS6/AXL signaling pathway (NCT04300140).

Despite the previously mentioned advancements, there is still a significant research gap in the individual 
biology of tumors. Furthermore, there is no trustworthy biomarker to direct patient selection. The dynamic 
genomic and immunomodulatory alterations that systemic treatment causes in the TIME in advanced 
ccRCC may help to partially explain this paucity of biomarkers.

Secondary resistance to ICIs
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It may be possible to predict therapy response by combining tumor genomic and immune signatures, but 
much more accurate research is needed to link biological understanding with clinical findings in RCC.

We must change how we approach treating ccRCC due to the advent of clinical resistance to the currently 
available systemic treatments. Cancer cells are constantly changing as a result of therapy pressure, plasticity, 
and heterogeneity. We may be able to comprehend, avoid, and overcome resistance mechanisms by 
estimating the trajectory of ccRCC evolution. In the prospective cohort study TRACERx, the authors 
conducted a whole genome sequencing of RCC tumor samples to generate information on the timing of 
driver mutations, level of intratumoral heterogeneity, and presence of parallel evolution in each patient. 
They found that the loss of heterozygosis of chromosome 3p was the first critical driving event. The most 
frequent alteration was rearrangement between 3p and 5q (one copy of 3p lost and one copy of 5q earned), 
defined t (3:5) chromothripsis. Using t (3:5) as the cut-off, they calculated the chronological age at which 
each mutation occurred. They found that the duplication that caused t (3:5) chromothripsis was an early 
event (35-50 years before tumor diagnosis), causing a modest initial clonal expansion, and that the mutation 
rate throughout life remained constant. Due to the latency between the triggering mutational event and 
subsequent progression, there may be a window for early intervention to prevent RCC. Indeed, the 
incidence of sporadic RCC could be decreased by reducing the 3p-LOH clone size by 50%. This is 
reasonable given that this chromosome contains four tumor-suppressor genes (VHL, PBRM1, BAP1, and 
SETD2) that are crucial for cellular survival[169].

Based on seven evolutionary subgroups that coincide with clinical characteristics, ccRCCs have been 
divided into four groups[169,170]. These groups are distinguished by four features-variations in chromosomal 
complexity, intra-tumor heterogeneity (ITH), model of tumor evolution, and metastatic potential.

In a review by Kowalewski et al., the authors investigate single group characteristics and describe possible 
evolution-target strategies according to the evolutionary trajectories. Group 1 tumors are those that have a 
single VHL mutation and a low genome instability index (wGII), as well as low ITH. Given the positive 
predictive significance of a low wGII as a measure of response to ICIs, this group may benefit from 
immunotherapy. Furthermore, a stable tumor burden could be reinforced by adaptative therapy, upfront 
cytoreductive nephrectomy (CN), and treatment targeting trunk group before the loss of 9p or 14q, which 
marks the acquisition of metastatic competence. Group 2 tumors are those with an early PBRM1 mutation 
and a subsequent SETD2 mutation, PI3K pathway mutation, or high wGII, and were distinguished by a 
“branched” evolutionary pattern. In this group, modulating genomic instability could be useless, whereas 
targeting immune evasion could be an option. In contrast, Group 3 and 4 tumors are those with multiple 
driver mutations (VHL plus ≥ 2 BAP1, PBRM1, SETD2, or PTEN) resulting in “punctuated” evolution and 
characterized by high wGII. ITH is low in group 3 tumors but higher in group 4 tumors, giving that group a 
rapid dissemination pattern. Due to high wGII and a punctuated evolution pattern in Groups 3 and 4, it 
may be effective to address genomic instability by enhancing it. The goal of evolutionary herding is to 
reduce ITH and manage any potential distinct clones that may result from a prior treatment by utilizing a 
combination of drugs in a specific order. Hence, it should be considered in Groups 1 and 3[171].

We might be able to transpose this perspective into the real world with the aid of new technologies. For 
instance, the repeated evolution in cancer (REVOLVER) machine-learning algorithm was created to achieve 
repeatable disease prognosis based on next-generation sequencing (NGS) count data, thereby classifying 
patients based on the evolution of their tumors over time[172]. Trials including biomarkers and evolutionary 
paths as drivers of chosen treatment will be the new challenge in the future, in order to predict earlier the 
correct strategy and to prevent a manipulation that could be harmful when applied in the incorrect 
evolutionary trajectory.
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