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Abstract
Aim: Exercise has been increasingly recognized as a potential influencer of the gut microbiome. Nevertheless, 
findings remain incongruous, particularly in relation to sport-specific patterns.

Methods: In this study, we harness all publicly available data from athlete gut microbiome shotgun studies to 
explore how exercise may influence the gut microbiota through metagenomic assembly supplemented with short 
read-based taxonomic profiling. Through this analysis, we provide insights into exercise-associated taxa and genes, 
including the identification and annotation of putative novel species from the analysis of approximately 2,000 
metagenome-assembled genomes (MAGs), classified as high-quality (HQ) MAGs and assembled as part of this 
investigation.

Results: Our metagenomic analysis unveiled potential athlete-associated microbiome patterns at both the phylum 
and species levels, along with their associated microbial genes, across a diverse array of sports and individuals. 
Specifically, we identified 76 species linked to exercise, with a notable prevalence of the Firmicutes phylum. 
Furthermore, our analysis detected MAGs representing potential novel species across various phyla, including 
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Verrucomicrobiota.

Conclusion: In summary, this catalog of MAGs and their corresponding genes stands as the most extensive 
collection yet compiled from athletes. Our analysis has discerned patterns in genes associated with exercise. This 
underscores the value of employing shotgun metagenomics, specifically a MAG recovery strategy, for pinpointing 
sport-associated microbiome signatures. Furthermore, the identification of novel MAGs holds promise for 
developing probiotics and deepening our comprehension of the intricate interplay between fitness and the 
microbiome.

Keywords: Athlete, microbiome, MAGs, genes, novel species, in silico

INTRODUCTION
Gut microbes are significant drivers of human health and disease. They perform vital functions such as 
breaking down indigestible food components, synthesizing essential vitamins, safeguarding against 
pathogens, and modulating the immune system[1-5]. Factors such as birth mode, health conditions, dietary 
habits, and medication use can significantly shape the development and stability of the microbiome[6]. 
Several investigations have explored the relationship between fitness levels and microbial diversity, revealing 
that athletes tend to harbor a more diverse microbiome compared to non-athletes[7-9]. Regular physical 
activity has long been associated with numerous health benefits, including improved cardiovascular 
function[7], enhanced mental well-being[8], and reduced incidence of illness[9]. Recently, attention has turned 
to the potential impact of exercise, specifically physical fitness, on the gut microbiome[10-12]. For example, 
specific bacterial taxa, such as Akkermansia[10,11,13-15], Coprococcus[15], Faecalibacterium[15-17], Prevotella[14], 
Ruminococcus[14,15,17], Roseburia[15,16], and Veillonella[12], have been found to be more abundant in athlete 
populations. Moreover, emerging evidence suggests that this modulation of microbial diversity correlates 
with the production of microbial metabolites that can confer beneficial effects on human physical 
performance and overall health[18]. Additionally, O’Donovan et al. highlighted notable taxonomic 
distinctions among various sports disciplines, suggesting a unique microbiome signature for each sport[19]. 
Despite the absence of specific recommendations for microbiome-modifying interventions in athletes, the 
growing interest underscores the untapped potential of the gut microbiome in optimizing athletic 
performance. Moreover, while some studies suggest that exercise may correlate with an increase in certain 
beneficial bacteria, others indicate that intense exercise could potentially lead to a decrease in microbial 
diversity or alterations in specific taxa. For instance, high-intensity exercise has been associated with 
reduced abundance of certain taxa, such as Bacteroides, typically linked to a healthy gut microbiome. 
However, the extent and significance of these changes may vary based on factors such as exercise type, 
duration, and intensity, as well as individual differences in diet, genetics, and gut microbiome 
composition[20]. Therefore, while exercise may exert both positive and negative effects on specific taxa within 
the gut microbiome, further research is essential to fully comprehend the complexities of this relationship. 
Our work aims to further explore the intricate microbiome-fitness paradigm through an in silico approach 
of publicly available metagenomics datasets (n = 7)[11,12,14,19,21,22], obtained from fecal samples of Athletes 
(nMALE = 335, nFEMALE = 180) involved in 19 different sports types and Control populations of 
individuals deemed to adhere to a sedentary lifestyle (low physical activity) (nMALE = 106, nFEMALE = 
61). Specifically, we apply a metagenome-assembled genome (MAG) approach to enable an in-depth 
identification of functional features within athlete-associated microbial genomes, extending to putative new 
species[21]. Ultimately, our work highlights the potential of culture-independent techniques, namely a MAG 
recovery strategy, to expand our understanding of the specific roles that the microbes and their genes play 
in fitness.
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Metagenomic sample collection
For this study, we considered all publicly available metagenomic studies (N = 5) of different sport 
types[11,12,14,19,21] and one unpublished study PRJEB46398 (Runners) from our laboratory. The accession 
numbers for the studies used are PRJEB15388 (Rugby players)[11], PRJNA472785 (Boston marathon 
runners)[12], PRJNA305507 (Cyclists)[14], PRJEB32794 (The Irish Olympic team)[19], and PRJEB28338 
(Cricketers)[21] along with controls (non-athletes) that were included as control groups in some of the 
studies or derived from PRJEB20054[22].

Metagenomic data processing and taxonomic profiling
All metagenomic processing was conducted using the Teagasc high-performance computing cluster. 
Initially, all paired-end reads were obtained from NCBI and subjected to quality control (QC) procedures 
through a validated pipeline (available at https://github.com/SegataLab/preprocessing), consisting of three 
subsequent steps: (i) discarding of low-quality (quality < 20), short (L < 75 bp) and with too many 
ambiguous nucleotides (N > 2) reads using Trim Galore v0.6.6 (https://www.bioinformatics.babraham.ac.
uk/projects/trim_galore/); (ii) removal of human (HG19 human genome release) and bacteriophage 
phiX174 DNA (Illumina spike-in) contamination by mapping reads against their reference genomes 
through BowTie2 v2.2.9 (with parameter –sensitive-local)[23,24]; (iii) Reads passing the filters were then sorted 
and split reads into forward, reverse, and unpaired files. Cleaned-up reads were used for the subsequent de 
novo metagenome assembly and short read-based and taxonomic profiling. Taxonomic read mapping-
based profiles were generated using MetaPhlAn 4 v4.0.6 using the MetaPhlAn 4 database v0.6. The scripts 
for the bioinformatics tools described above were generated utilizing the resources available at the GitHub 
repository: https://github.com/SegataLab/MASTER-WP5-pipelines. These scripts were derived and adapted 
from the repository’s collection.

Extraction of MAGs and their taxonomic assignment
Metagenomic assemblies were generated using pipeline proposed and validated in[25] based on subsequent 
steps: (i) metagenomic assembly with MEGAHIT v1.1.3; (ii) removal of contigs shorter than 1,000 bp; (iii) 
alignment of the remaining contigs against original raw data with Bowtie2 v2.2.9121 to calculate coverage 
information; (iv) binning of the contigs through MetaBAT v2.12.1123; (v) QC of the resulting putative 
genomes with CheckM2 v0.1.3[26] and successive filtering of high-quality (HQ) (completeness > 90% and 
contamination < 5%) and medium-quality (MQ) (completeness ≥ 50% and contamination < 5%) MAGs as 
established by Bowers et al.[27]. All HQ MAGs were advanced for further analysis. The recovered MAGs for 
all control metagenomes derived from participants with a sedentary lifestyle were pooled into one group 
representing the sedentary control population. Prokka v.1.13[28] was used to functionally annotate HQ 
MAGs. Taxonomy of recovered HQ MAGs and identification of potentially novel species were determined 
using PhyloPhlan3 v.3.0.2[29], with the SGB Jun23 database and a default assignment threshold of 5%. The 
phylogenetic tree of life was constructed using PhyloPhlAn, incorporating 400 universal markers provided 
by PhyloPhlAn. Parameters were configured as follows: “--diversity high --fast --min_num_markers 50”. 
dRep v 3.2.0[30] was used to cluster MAGs representing putative new species into primary and secondary 
clusters based on their relative similarities, using the Average Nucleotide Identity (ANI) as a measure. The 
default threshold for forming primary (MASH) clusters was set at 0.9, while the default threshold for 
forming secondary clusters is set at 0.99. The relative abundance, expressed as Reads per Kilobase per 
Million Mapped Reads (RPKM) of MAGs, was computed by mapping metagenomic reads using CoverM 
v0.6.1 (https://github.com/wwood/CoverM).

Establishing a microbial gene catalog
A gene catalog was established using HQ MAGs. HQ MAGs were annotated using Prokka. The output (.gff 
format) was used to assess gene presence and absence using Roary[31]. The gene presence/absence file from 
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Roary was used to analyze the difference in accessory genes between sedentary control and athlete 
populations. To assess gene presence/absence and their associations with specific traits, the gene presence/
absence output from Roary, along with traits of interest file, was used as input to Scoary[32]. Scoary then 
scored the genes based on their associations with traits - in our case, exercise status. Associations were 
calculated using pairwise comparison algorithms, which calculate the maximum and minimum number of 
pairs that support an association. A Bonferonni adjusted P value of < 0.05 was considered significant. An 
odds ratio of < 1 indicated a negative association, while an odds ratio of > 1 indicated a positive association.

Statistical analysis and data visualization
All statistical analysis was performed in R (v4.1.2) implemented using R studio. Community-level 
microbiome analysis was carried out with hillR (v0.5.2)[33] to compute alpha and beta diversity values. The 
stats (v4.1.2) kruskal.test function was used to perform the Kruskal-Wallis rank sum test to identify 
significant differences in alpha diversity values. The adonis function in the vegan package[34] was used for the 
permutational analysis of variance (PERMANOVA)[35]. The pairwiseAdonis function in the pairwiseAdonis 
(v0.4)[36] package was used to perform pairwise comparisons of Adonis using Benjamini-Hochberg 
correction for multiple comparisons. The clustering of samples was visualized by non-metric 
multidimensional scaling (NMDS) using vegan’s metaMDS function, and the relationship between 
microbiome composition and sample metadata (gender, sport, etc.) was investigated using vegan’s 
(v2.6.2)[34]. The envfit function performs multiple regression of the metadata and covariates with the NMDS 
ordination axes and generates a P-value through permutation testing. The statistical package Microbiome 
Multivariable Associations with Linear Models (MaAsLin)2[37] was used to find associations between sample 
metadata and bacterial abundance. Data visualization of summary statistics generated from the above tests 
was performed using the ggplot2 package[38].

RESULTS
Exploration and meta-analysis of athlete-associated metagenomic data
To further investigate the potential link between physical activity and gut microbiota composition, we 
compiled a comprehensive dataset comprising 682 shotgun metagenomics datasets generated using 
Illumina sequencing technology and publically available in the NCBI repository [Supplementary Table 1]. 
Metagenomics datasets were derived from fecal samples provided by different athlete populations 
(nMALE = 335, nFEMALE = 180) [Figure 1A] or control populations of healthy adults with sedentary 
lifestyles (nMALE = 106, nFEMALE = 61) [Figure 1B]. Athlete populations represented moderate, 
recreation, and elite athletes from 19 different sports types, and included Runners[12] (nMALE = 183, 
nFEMALE = 108), Cyclists[14] (nMALE = 58, nFEMALE = 31), Rowers[12] (nMALE = 11, nFEMALE = 29), 
Rugby players[11] (nMALE = 40, nFEMALE = 0), and Cricket players[24] (nMALE = 23, nFEMALE = 1) 
[Figure 1]. Each sample was accompanied by categorical metadata detailing the participant’s gender and 
physical activity levels. Following QC and filtering steps. It is important to note the statistical differences in 
the number of reads between a number of the metagenomics datasets considered in this study (P ≤ 0.05) 
(Kruskal-Wallis multiple comparisons) [Figure 1C]. The average number of reads ranged from 4,485,237 
(PRJNA472785) to 42,779,960 (PRJEB15388) [Figure 1D].

Short-read taxonomic profiling reveals associations at the phylum and species level based on 
general exercise
Initially, we utilized short-read taxonomic profiling to offer a comprehensive view of microbial diversity, 
encompassing the distribution and abundance of microbial taxa across various athlete groups and the 
sedentary control cohort. We first identified prevalent species based on the following criteria: a relative 
abundance of ≥ 0.1% in ≥ 10% of samples, as defined for this study. In the athlete dataset, a total of 188 
prevalent species were detected, distributed across the phyla Actinobacteria (5), Bacteroidetes (30), 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr2069-Supplementary Tables.xlsx
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Figure 1. Cohort overview, including sample and metadata exploration. (A) Number of metagenomes (Y-axis) separated derived from 
athlete and sedentary control populations; bar charts are colored according to the variables “Female” (Red) and “Male” (Blue); (B) 
Number of metagenomes (Y-axis) separated according to exercise group (X-axis); bar charts are colored according to the variables 
“Female” (Red) and “Male” (Blue); (C) The 25th to 75th percentile distribution of reads (Y-axis) across the datasets considered in this 
study (X-axis); (D) Summary description of each metagenomics dataset considered in this study; details include ENA study accession 
number, metadata of the metagenomes, number of metagenomes, average number of reads per dataset, and sequencing platform used. 
ENA: European Nucleotide Archive.

Euryarchaeota (1), Firmicutes (146), Planctomycetes (1), Proteobacteria (4), and Verrucomicrobia (1). 
Similarly, in the control sedentary population, a total of 186 prevalent species were detected, encompassing 
the phyla Actinobacteria (5), Bacteroidetes (40), Candidatus Melainabacteria (1), Euryarchaeota (1), 
Firmicutes (126), Planctomycetes (1), Proteobacteria (11), and Verrucomicrobia (1).

Evaluation of within-sample diversity using both the Simpson Index and Shannon Index alpha diversity 
metrics revealed no significant differences between the athlete and sedentary populations (Kruskal-Wallis 
P > 0.005) [Figure 2A]. Further separation of the populations by sex revealed no significant differences for 
either index, but we noted consistently higher alpha diversity within female populations compared to male 
populations including Athletes - Female vs. Athletes - Male (Kruskal-Wallis P < 0.01), Athletes - Female vs. 
Controls - Male (Kruskal-Wallis P < 0.01), and Controls - Female vs. Controls - Male (Kruskal-Wallis P > 
0.01) [Figure 2A].

Evaluation of microbial diversity between different metagenomes using the Bray-Curtis dissimilarity index 
(Adonis analysis, r2 = 0.05, P < 0.01), modeling with envfit (envfit analysis, r2 = 0.1281, P < 0.01) and MDS 
[Figure 2B] all revealed a perceivable shift in the composition of the microbiome according to population 
group. While Firmicutes and Bacteroidota were the most abundant and prevalent phyla among all 
metagenomes considered in this study [Figure 2A], we observed statistically significant increases in the 
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Figure 2. Influence of exercise on microbiome diversity. (A) Differences in alpha diversity between the variables “Athletes - Female” 
(Green), “Athletes - Male” (Orange), “Controls - Female” (Purple), and “Controls - Male” (Pink) values calculated using the Shannon 
and Simpson diversity metrics; (B) PCoA of beta diversity by intervention, measured by Bray-Curtis dissimilarity and calculated for 
species-level composition. Points are colored according to the variables “Athletes” (Green) and “Controls” (Orange); (C) Significant 
changes in the relative abundance of certain phylum across the population groups “Athletes” (Green) and “Controls” (Orange). The 
bounds, whiskers, and percentile of each box plot represented maximum, 75th percentile, median, 25th percentile, and minimum from 
the top to the bottom, respectively. PCoA: Principal coordinate analysis.

relative abundance of Actinobacteria (Rank biserial = 0.13, P = 0.02) and Firmicutes (Rank biserial = 0.53, 
P < 0.01) within the athletes population compared to the control population [Figure 2C]. In contrast, when 
considering the control populations, we observed statistically significant increases in the relative abundance 
of Ascomycota (Rank biserial = 0.00735, P < 0.01), Bacteria unclassified (Rank biserial = 0.02, P < 0.01), 
Bacteroidetes (Rank biserial = 0.57, P < 0.01), Candidatus Melainabacteria (Rank biserial = 0.16, P < 0.05), 
Candidatus Thermoplasmatota (Rank biserial = 0.02, P < 0.01), Elusimicrobia (Rank biserial = 0.01, P < 0.01), 
Fusobacteria (Rank biserial = 0.04, P < 0.05), Kiritimatiellaeota (Rank biserial = 0.01, P < 0.01), Lentisphaerae 
(Rank biserial = 0.33, P < 0.01) and Proteobacteria (Rank biserial = 0.69, P < 0.01) [Figure 2C].

Previous research has identified several genera that are often elevated in athletes, including Akkermansia 
(10), Alistipes (19), Eubacterium (19), Faecalibacterium (15), Prevotella (14), Ruminococcus (15), Roseburia 
(15), and Collinsella[39]. To corroborate these findings, we analyzed the relative abundance of these genera 
across sedentary control populations and athletes. Our analysis revealed statistically significant increases in 
the relative abundance of Alistipes (Rank biserial = 0.51, P < 0.01), Faecalibacterium (Rank biserial = 0.22, 
P < 0.01), Roseburia (Rank biserial = 0.13, P = 0.01), and Ruminococcus (Rank biserial = 0.26, P < 0.01) 
within the athletes population compared to the control population [Supplementary Figure 1].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr2069-Supplementary Figure.pdf
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In our analysis, we further identified 76 species associated with athletes, primarily from the phylum 
Firmicutes (72), with additional representation from Actinobacteria (2) and Bacteroidetes (2) 
[Supplementary Table 2] using the statistical package MaAsLin2. To ensure robustness, only genera with a q 
value < 0.2 were considered for this analysis. We further observed differential abundances of species within 
athletes across the genera often elevated in athletes, except Prevotella. Of these species, it was further noted 
that large majorities of these differentially abundant species belong to the following genera: Clostridia 
unclassified (14), Alistipes (11), and Bacteroides (11).

Short-read taxonomic profiling reveals few sports-specific associations at the species level
We examined microbial diversity across the various athlete types (Rowing, Rugby, Running, etc.) and the 
sedentary control population. Within-sample diversity using both the Simpson Index and Shannon Index 
alpha diversity metrics revealed significant differences in alpha diversity across the various sub-populations, 
with cyclists having consistently lower alpha diversity compared to all other groups including the sedentary 
control population (Dunn test, P < 0.05) [Figure 3A]. No specific sports population displayed consistently 
higher alpha diversity compared to all other groups (Dunn test, P > 0.05) [Figure 3A]. While significant 
differences were observed across certain athlete and sedentary populations (Dunn test, P < 0.05 and envfit 
analysis, r2 = 0.3611, P < 0.01), no distinct clustering was observed for any of the sub-populations based on 
MDS analysis [Figure 3B] and statistical testing using pairwise Dunn tests. However, significant associations 
between the relative abundance of species and specific sports were identified between the q-value range of 
< 0.01 and < 0.25. Statistically significant positive associations were found in Cyclists (n = 2), Hockey (n = 
134), Rower (n = 33), Rugby (n = 152), and Running (n = 193). Statistically significant negative associations 
were found in Cyclists (n = 152), Hockey (n = 34), Rower (n = 105), Rugby (n = 38), and Running (n = 58). 
As expected, given the abundance and prevalence of the Firmicutes, Bacteroidota and Actinobacteria phyla 
among all metagenomes considered in this study, most of the associations were observed within these phyla. 
Of the associations reported, only 21 were sport-specific [Figure 3C]. Diversity was further assessed using a 
hierarchical clustering analysis (HCL) with bootstrap resampling to assess the stability of the clustering 
solution across multiple iterations. The optimal number of clusters was determined based on the stability of 
cluster assignments. HCL revealed four taxonomic clusters, distinctly separated (Dunn test, P < 0.05), with 
no exclusivity to exercise or sport. Proportional analysis of athletes and controls within clusters indicated 
significant differences in Clusters 1 and 3 (Pearson’s Chi-squared test P < 0.001). Notably, Cluster 1 
comprised 50% of athlete metagenomes but only 8% of control sedentary metagenomes, while Cluster 3 
consisted of 36% of control sedentary metagenomes compared to 16% of athlete metagenomes.

MAGs and taxonomy assignment
In total, the assembly of the associated metagenomics reads analyzed in this study yielded 8,679 MAGs of 
various quality (High, Medium and Low). MAG quality was assigned in this work using a previously 
established threshold by Bowers et al.[27]. Of the total number of MAGs detected, 2,003 were considered HQ 
MAGs (≥ 90% Complete and ≤ 5% Contaminated). Of the HQ MAGs, 676 MAGs were recovered from 
sedentary controls and 1,327 were recovered from athlete populations. Only HQ MAGs were brought 
forward for further analysis and underwent taxonomy assignment using PhyloPhlan3 [Figure 4].

MAGs classification and recovery provide further evidence into associations at the phylum and 
species level based on general exercise
Distinct differences were observed between athletes and controls at the species level regarding MAG 
recovery [Figure 4]. Initially, dRep was employed to assess the similarity or dissimilarity in MAG recovery 
between the metagenomic datasets of athletes and controls, focusing on the differences in the presence or 
absence of secondary clusters. These secondary clusters were determined based on a MAG grouping using a 
99% ANI threshold. Disparities in the presence or absence of secondary clusters were noted between both 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr2069-Supplementary Tables.xlsx
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Figure 3. Influence of sport types on microbiome diversity. (A) Differences in alpha diversity calculated using the Shannon and Simpson 
diversity metrics across sports groups and sedentary controls; (B) PCoA of beta diversity by intervention, measured by Bray-Curtis 
dissimilarity and calculated for species-level composition. Points are colored according to sports and sedentary control populations; (C) 
Unique association scores as measured by MaAsLin2 between microbial species (Y-axis) and the population groups (X-axis). q values 
indicated as *q < 0.2; **q < 0.05; ***q < 0.001. PCoA: Principal coordinate analysis.

population groups. Specifically, the athlete metagenomics dataset contained 791 secondary clusters, while 
the control sedentary population had 506 secondary clusters. Despite the substantial number of secondary 
clusters in both populations, only 96 secondary clusters were identified concurrently in both metagenomics 
datasets.

Consistent with our short-read taxonomic profiling findings, a majority of HQ MAG recoveries fell under 
the Firmicutes and Bacteroidota phyla [Figure 4]. Notably, we observed elevated recovery rates for the 
Actinobacteria (nATHLETE = 43, nSEDENTARY = 10) and Firmicutes (nATHLETE = 838, 
nSEDENTARY = 322) phyla within the athlete population compared to the control sedentary group 
[Figure 4]. Proportional analysis of MAG recoveries across athletes and control sedentary populations 
further indicated significant differences in the recovery of Firmicutes within the athlete population 
compared to the control sedentary group (Pearson’s Chi-squared test P < 0.001) [Figure 4]. Conversely, in 
the control sedentary population, we noted increased recovery rates for the Proteobacteria (nATHLETE = 
38, nSEDENTARY = 53) and Bacteroidota (nATHLETE = 366, nSEDENTARY = 271) phyla compared to 
athletes, despite the smaller sample size representing the control sedentary group [Figure 4]. Proportional 
analysis of MAG recoveries further indicated significant differences in the recovery of Proteobacteria and 
Bacteroidota within the control sedentary group compared to the athlete population (Pearson’s Chi-squared 
test P < 0.001).
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Figure 4. Phylogenetic Tree of HQ MAGs assembled in this study. This phylogenetic tree illustrates the differences in microbiome 
composition between athletes and controls, as well as among different sport types. The colored tips of the phylogram correspond to the 
phylum classification of the MAGs, as assessed using PhyloPhlan3. The first and second outer bands, colored blue and green, represent 
the % completion and contamination, respectively, as assessed using CheckM. The third outer band, colored red, represents the relative 
abundance (expressed in RPKM) of the MAG within the metagenome as assessed using CoverM. The fourth outer band represents the 
population group classification of the metagenome in which the MAG was recovered. Population group classifications include “Athletes” 
(Blue) and “Controls” (Yellow). The fifth outer band represents the specific sport group classification of the metagenome in which the 
MAG was recovered. The sixth outer band indicates which MAGs are deemed as “Known species classification” (Yellow) or “Putative 
novel species” (Green) as assessed using PhyloPhlan3. HQ: High-quality; MAGs: metagenome-assembled genomes.

When analyzing the recovery rates of the seven bacterial genera often found to be increased in athlete 
populations, we noted heightened recovery rates for the following genera: Akkermansia (nATHLETE = 29, 
nSEDENTARY = 7), Alistipes (nATHLETE = 94, nSEDENTARY = 67), Collinsella (nATHLETE = 14, 
nSEDENTARY = 2), Prevotella (nATHLETE = 62, nSEDENTARY = 20), Ruminococcus (nATHLETE = 118, 
nSEDENTARY = 21), and Roseburia (nATHLETE = 34, nSEDENTARY = 23). However, proportional 
analysis of MAG recoveries only revealed significant differences in the recovery of Alistipes and 
Ruminococcus within the athlete population compared to the control sedentary group (Pearson’s Chi-
squared test P < 0.001).

The athlete gut as a storehouse for potential novel species
Further analysis was performed, leveraging both the short read and MAG results to identify potentially 
novel species associated with exercise. It is important to note that both athlete and control sedentary 
populations contain potentially novel species [Figure 4], with sedentary populations exhibiting statistically 
significant increases in the relative abundance of Bacteria unclassified (Rank biserial = 0.02, P < 0.01) 
compared to the athlete population [Figure 2C]. Overall, 984 species-level detections were observed using 
MetaPhlAn 4; of these detections, 474 were unclassified at the species level or higher. Most of the 
associations were observed within the Firmicutes and Bacteroidota phylum [Figure 5A]. Similarly, using a 
metagenomics assembly-based approach, we recovered 500 HQ MAGs that were unclassified at the species 
level or higher, belonging to the following phylum: Bacteroidota (75), Candidatus Melainabacteria (10), 
Elusimicrobia (1), Firmicutes (360), Lentisphaerae (1), Proteobacteria (38), Tenericutes (7) and 
Verrucomicrobiota (3) [Figure 5A].
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Figure 5. Number of detections classified as potentially novel species detected within this study. (A) Log10 representation of the number 
of unclassified detections (Y-axis) categorized by their respective phyla (X-axis). The bars are colored according to the variables 
“Absent” (Red) and “Present” (Blue), denoting whether a MAG was recovered with the same classification. White text labels indicate 
the frequency of detections and are arranged based on the variables “Absent” and “Present”. B Relative abundance of unclassified 
detections associated with the athlete population at the genus levels across “Athletes” (Green) and “Controls” (Orange) populations. 
The bounds, whiskers, and percentile of each box plot represented maximum, 75th percentile, median, 25th percentile, and minimum 
from the top to the bottom, respectively. MAG: Metagenome-assembled genome.

Of the total unclassified detections accumulated, we further considered detections of the genera previously 
indicated to be increased in athletes according to the literature [e.g., Akkermansia (10), Alistipes (19), 
Eubacterium (19), Faecalibacterium (15), Prevotella (14), Ruminococcus (15), Roseburia (15), and 
Collinsella][39]. In addition, we utilized MaAsLin2 for a more targeted search. Of the 76 differential abundant 
detections associated with the athlete population, 27 were unclassified at the species level or higher, 
including Clostridia unclassified (9), Clostridiales unclassified (1), Eubacteriaceae unclassified (2), 
Lachnospiraceae unclassified (13) and Ruminococcaceae unclassified (2) [Figure 5B and Supplementary 
Table 2]. Notably, all the differential abundant unclassified detections fell within the phylum Firmicutes and 
the class Clostridia. Within the athlete metagenomics dataset, we recovered HQ MAGs corresponding to 9 
out of 27 unclassified differentially abundant detections linked to the athlete population. We further 
identified 9 novel MAGs within the family Clostridiaceae and a further 10 novel MAGs from the following 
genera of interest: Alistipes (5), Faecalibacterium (1), Prevotella (1), Ruminococcus (3). We have encountered 
repeated MAG recovery for many of the novel species recovered, including those potentially belonging to 
the Clostridiaceae family, as well as the Ruminococcus and Alistipes genera.

Microbial gene catalog
A microbial gene catalog comprising 970,149 gene clusters was established using Roary[31] software, as 
described in the materials and methods. Scoary[32] was employed to establish associations between the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr2069-Supplementary Tables.xlsx
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr2069-Supplementary Tables.xlsx
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presence or absence of gene clusters and general exercise. Overall, we identified 9,296 gene clusters, with 
19,743 showing positive associations and 9,296 showing negative associations with exercise status. Among 
these gene clusters, the majority of annotations were attributed to hypothetical proteins, with 4,525 and 
9,111 showing negative and positive associations with exercise status, respectively. Notably, athletes 
exhibited a prevalence of genes associated with stress adaptation, muscle recovery, and amino acid synthesis 
compared to the control sedentary control. Of the positively associated gene clusters with athletes, the most 
numerous annotations following hypothetical proteins included Adaptive-response sensory-kinase SasA 
(n = 71), Multidrug export protein MepA (n = 70), Vitamin B12 import ATP-binding protein BtuD (n = 66), 
putative ABC transporter ATP-binding protein (n = 61), putative protein (n = 56), and HTH-type 
transcriptional activator RhaR (n = 51). Of the positively associated gene clusters with sedentary controls, 
the most numerous annotations following hypothetical proteins included Sensor histidine kinase RcsC (n = 
71), TonB-dependent receptor P3 (n = 66), Tyrosine recombinase XerC (n = 30), TonB-dependent receptor 
SusC (n = 27), and Vitamin B12 transporter BtuB (n = 27).

DISCUSSION
In this study, we identify potentially exercise-associated features through bioinformatic analysis of all 
publicly available athlete gut metagenomic studies on rugby[11], cyclists[14], the Irish Olympic team[21], 
cricketers[21] and Boston Marathon runners[12], and one currently unpublished study from our laboratory, 
(Irish runners). To establish a comparative framework, we used a sedentary control population as a 
reference [Figure 1].

Initially, we employed short-read taxonomic profiling to gain insights into microbial diversity, examining 
the distribution and abundance of microbial taxa among various athlete groups and the sedentary control 
population [Figures 2 and 3]. Following this, we complemented these findings with a MAG-based approach, 
which serves as the primary focus of this article. This integrated approach aimed to mitigate inconsistencies 
in results, which are attributed to methodological challenges inherent to metagenomic assembly pipelines. 
These challenges include higher coverage requirements and limitations stemming from sequence repeats 
and strain-level diversity, which are more pronounced in metagenomic assembly pipelines compared to 
short-read approaches[24].

Our analysis unveiled discernible exercise-associated effects on microbial diversity, with perceivable 
differences within microbiome profiles of athletes compared to the sedentary control population 
[Figure 2B]. Such differences included statistically higher relative abundances of the phyla Firmicutes and 
Actinobacteria [Figure 2C], predominantly contributing to the observed differentially abundant features 
associated with the athlete population. These features were further evaluated using a MAG-based pipeline, 
where the corresponding MAG-encoded genes were systematically cataloged. Following the taxonomic 
assignment of MAGs [Figure 4], we found most unclassified detections (at the genus level or above) to be 
within the phylum Firmicutes [Figure 2C]. Our subsequent analysis revealed that several novel species of 
MAGs were recovered more than once based on pairwise calculations of two novel MAGs with the ANI 
score of ≥ 95%. The repeated identification of the same MAG taxon at the species level provides confidence 
in the MAG recovery pipeline and the novel isolate sequence. Future analysis should explore these novel 
MAGs further and assess their possible functions and safety within the gut microbiome.

Further analysis focused on several genera commonly elevated in athletes. Variations in species abundance 
among athlete populations were observed across the genera of interest, except for Prevotella. Notably, 
Alistipes accounted for a sizable proportion of differentially abundant features. We further observed 
significant increases in the relative abundance of Alistipes, Faecalibacterium, Roseburia, and Ruminococcus 
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within the athlete population compared to the control sedentary population [Supplementary Figure 1]. 
These trends were consistent in the genera Alistipes and Ruminococcus when examining differences in MAG 
recovery within the athlete population compared to the control group [Supplementary Figure 1]. Lastly, we 
also recovered novel MAGs for the following genera: Alistipes, Faecalibacterium, Prevotella, and 
Ruminococcus.

These findings align with previous research associating these taxa with athlete populations[10,11,13-17,19]. 
Prevotella spp. have been previously correlated with muscle recovery due to their ability to synthesize 
branched-chain amino acids (BCAA)[10]; species of the genera Bacteroides, Eubacterium, Roseburia, and 
Rumiococcus[40-42] have been shown to produce short chain fatty acids (SCFAs), and although the role of 
Alistipes in the gut remains largely unknown, it has been hypothesized that some species within the genus 
produce SCFAs[43]. Understanding the current controversial status of Alistipes spp. is crucial due to their 
implicated roles in various health conditions such as cancer[44] and depression[45], as well as their protective 
effects against colitis[46] and cardiovascular issues[47]. These conflicting findings make it challenging to 
definitively ascertain their role in the athlete microbiome, as reviewed in[43]. With that being said, there is 
likely a strain/species difference that determines whether a particular Alistipes isolate is “good” or “bad”, and 
this dataset can possibly aid in answering that question by providing potential reference genomes, including 
those previously unclassified. Recent studies have highlighted the potential metabolic benefits of certain 
members of the Collinsella genus, which produce the SCFA butyrate[48], an important metabolite involved in 
energy harvest, which is particularly relevant for athletes. Faecalibacterium spp., known for their 
immunomodulatory properties and SCFA production, may also play a vital role[49,50].

In contrast, when considering the control sedentary populations, we observed statistically significant 
increases in the relative abundance and MAG recovery of Proteobacteria and Bacteroidota phyla 
[Figure 2C]. A higher relative abundance of Bacteroides spp. has also been previously noted in the original 
study by Barton et al.[11]. The results are also consistent with King et al.[51], who estimated that Bacteroidetes 
typically represent 19.7% of the adult microbiome on average. Of course, it has to be noted that there were 
differences in sequencing depth [Figure 1C] influencing downstream analysis, such as MAG recovery, 
which could influence the reported differences observed between the different types of sport; however, the 
results of this paper are comparable to the shotgun analysis found in the original studies.

Overall, the species identified are not only in agreement with the original studies but also provide an 
expansion of our current knowledge of the sport-specific signatures present. Perhaps more studies should 
aim to expand our understanding of the relationship between shotgun and MAG analysis and whether those 
could be compared with accuracy. Additionally, the identified species have been associated with having a 
positive net impact on gut health and may play an important role in athlete health and performance. The 
results presented here warrant further investigation into these species and their potential role as next-
generation probiotics.

Scoary facilitated studying the association of genes and their presence or absence with specific traits, 
revealing insights into the genetic underpinnings of athletic performance. Athletes exhibited gene clusters 
featuring Adaptive-response sensory-kinase SasA and Multidrug export protein MepA. SasA plays a pivotal 
role in sensing environmental cues and orchestrating cellular responses accordingly[52]. Given the rigorous 
training and stressors encountered by athletes, genes linked to adaptive responses like SasA could enhance 
their ability to cope with the physiological demands of intense physical activity and competition. MepA’s 
involvement in exporting various compounds from bacterial cells[53] suggests its potential role in efficiently 
eliminating metabolic by-products or toxins generated during exercise, thereby promoting metabolic health 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr2069-Supplementary Figure.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr2069-Supplementary Figure.pdf
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and recovery. Moreover, the analysis uncovered additional gene clusters, albeit less prevalent, that could 
contribute to athletic performance. Notably, the enzyme fructose-bisphosphate aldolase (fba)[54], which is 
involved in glycolysis and energy production, emerged as significant. Additionally, ilvC responsible for 
BCAA synthesis crucial for muscle development[55] and pckA, implicated in glycogen metabolism and 
glucose synthesis[56,57], were identified.

In conclusion, this catalog of MAGs and their subsequent genes is the most comprehensive to date in 
athletes. This MAG catalog has further enhanced our current understanding regarding the athlete gut 
microbiome and especially the phenomenon of sport-specific microbiome signatures. Our analysis also 
reveals differences in sport-associated gene clusters, offering new avenues for investigating the relationship 
between athletic performance and the gut microbiome. However, it is important to acknowledge the 
challenges inherent in shotgun metagenomic sequencing, including biases in sequencing chemistry[58] that 
may result in incomplete representation of certain genomes, particularly those with cytosine (C) or guanine 
(G) rich regions (GC)-rich regions[59,60].

Overall, the utility of applying shotgun metagenomics approaches to such data, in particular MAG recovery, 
by identifying sport-specific microbiome signatures, as well as recovering novel MAGs with potential 
applications as next-generation probiotics, could lead to a better understanding of the complex fitness-
microbiome paradigm. The findings contained within this work can serve as a resource for future analysis 
to gain further insight into the field, as well as the possible role of these identified novel MAGs in the 
microbiome and their potential as next-generation probiotics.
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