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Abstract
Aim: Artificial Intelligence (AI) and its applications in healthcare are rapidly developing. The healthcare industry 
generates ever-increasing volumes of data that should be used to improve patient care. This review aims to 
examine the use of AI and its applications in hepatopancreatic and biliary (HPB) surgery, highlighting studies 
leveraging large datasets.

Methods: A PRISMA-ScR compliant scoping review using Medline and Google Scholar databases was performed 
(5th August 2022). Studies focusing on the development and application of AI to HPB surgery were eligible for 
inclusion. We undertook a conceptual mapping exercise to identify key areas where AI is under active development 
for use in HPB surgery. We considered studies and concepts in the context of patient pathways - before surgery 
(including diagnostics), around the time of surgery (supporting interventions) and after surgery (including 
prognostication).
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Results: 98 studies were included. Most studies were performed in China or the USA (n = 45). Liver surgery was 
the most common area studied (n = 51). Research into AI in HPB surgery has increased rapidly in recent years, with 
almost two-thirds published since 2019 (61/98). Of these studies, 11 have focused on using “big data” to develop 
and apply AI models. Nine of these studies came from the USA and nearly all focused on the application of Natural 
Language Processing. We identified several critical conceptual areas where AI is under active development, 
including improving preoperative optimization, image guidance and sensor fusion-assisted surgery, surgical 
planning and simulation, natural language processing of clinical reports for deep phenotyping and prediction, and 
image-based machine learning.

Conclusion: Applications of AI in HPB surgery primarily focus on image analysis and computer vision to address 
diagnostic and prognostic uncertainties. Virtual 3D and augmented reality models to support complex HPB 
interventions are also under active development and likely to be used in surgical planning and education. In 
addition, natural language processing may be helpful in the annotation and phenotyping of disease, leading to new 
scientific insights.
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INTRODUCTION
Artificial Intelligence (AI) encompasses a range of computational approaches with the central aim of 
developing algorithms to process and interpret information. AI methods can be applied to various input 
data types ranging from tabular datasets and images to multimedia and text. Although termed 
“intelligence”, these algorithms are in no sense conscious or able to employ “rational thought”, but in most 
cases, reflect model parameters derived exclusively from input data. Within AI, there are three overlapping 
fields that arguably have the most potential for HPB surgery: machine learning (ML), computer vision (CV) 
and natural language processing (NLP). ML uses algorithms to learn, adapt, and draw inferences from 
patterns in training data. CV allows for supervised or unsupervised image analysis, allowing for features of 
interest in images to be identified and characterized. For text-based sources of data written as prose or in a 
“human-readable” format (e.g., radiology or pathology reports),  NLP allows computers to interpret human 
text or spoken language communication[1-5].

The specific areas and applications of AI most likely to deliver a positive impact on patient care currently 
need to be clarified, as are the barriers limiting the uptake of AI approaches into clinical practice. In 2021 
Bari et al. described the applications of AI in hepatopancreatic and biliary (HPB) surgery, proposing the 
framework of preoperative, intraoperative, and postoperative AI applications. We have adopted this 
structure for this review[6].

With the increased availability of structured and unstructured healthcare datasets, the opportunity for AI-
based approaches widens. Policymakers, healthcare providers, and industry are exploring new AI 
approaches, seeking to utilize data across a range of applications, including improving outcomes, optimizing 
the patient experience, and providing cost-effectiveness in delivering care at the health system level[7-9]. In 
this review, we aim to outline the fundamental AI approaches to pressing questions in HPB surgery, 
identifying where AI is most likely to have an impact in future patient care.

METHODS
This scoping review was performed in accordance with the PRISMA-ScR guidelines for scoping reviews[10]. 
The Medline database was searched systematically using the following Medical Subject Headings (MeSH) 
search terms to ensure the identification of appropriate articles; “Algorithms.mp. or algorithm/” AND 
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“surgery/ or biliary tract surgery/ or liver surgery/ or pancreas surgery/”. Articles were limited to English 
language and those published from 2012 onwards to provide contemporary studies that were likely 
reflective of current approaches in AI. Further supplementary searches were performed using citation lists 
and the Google Scholar database. The last search was conducted on 5th August 2022.

We defined “HPB surgery”, as the surgical management of benign and malignant diseases of the liver, 
pancreas, gallbladder, and bile ducts. “Artificial intelligence” refers to the use of various algorithmic 
methods which could be applied to interpret or process information. We further assessed the identified 
papers for the element of AI primarily used i.e., machine/deep learning, computer vision or natural 
language processing[1-5].

Following the literature search, article titles and abstracts were screened by three reviewers (KMcG, SRK, JL) 
and those meeting the inclusion criteria underwent full-text review. Any disagreements were resolved by 
consensus within the group. References from included articles were searched to identify any other relevant 
articles. Conference abstracts were screened to assist in identifying related full-text articles before inclusion. 
Where more than one article was published from a single data set, the article analyzing the largest cohort of 
patients was included.

Data were extracted independently using a standardized pro forma. This included the aim of the study, 
methodology, year of publication, countries represented, the primary organ of focus, AI methods employed, 
and the number of patients (where applicable). Identified publications were further interrogated to find a 
shared focus on diagnostics, prognostics, or intervention, allowing further subdivision of the presented 
research. We then undertook a conceptual mapping exercise to identify areas of crucial importance.

We used a pragmatic approach to further select studies with a sample size equal to or greater than five 
thousand that satisfied the “velocity, volume and variety” of data points needed to be considered as “big 
data”. A similar approach used previously, albeit with smaller datasets, acted as a benchmark[7-9,11]. Any 
disagreements on the selection of these papers were resolved by group consensus.

The Covidence online toolkit was used throughout the data collection and extraction stages of this scoping 
review[12].

RESULTS
Scoping search results
The search identified 5,221 articles, of which 134 were fully assessed for eligibility. A further 63 articles were 
identified from article citation lists or by the supplementary search of the Google Scholar database 
[Figure 1]. Following assessment, 98 studies[13-110] were included in this review, with most studies excluded 
due to being in conference abstract form only (n = 84).

Characteristics of included studies
Identified studies had a wide geographical distribution, coming from a total of 24 countries, with the 
majority from China or the USA (45/98). No papers identified originated from the African continent 
[Figure 2]. Studies on the use of AI in surgical conditions of the liver predominated (n = 51). Research on 
pancreatic and biliary conditions (n = 23) was included at a comparable frequency to one another. We 
noted a rapid increase in the number of studies published over the past three years, with almost two-thirds 
of the identified papers (n = 61) published since 2019 [Figure 3].
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Figure 1. PRISMA flow chart detailing study selection and exclusion.

Figure 2. Global distribution of studies on the use of AI in HPB Surgery.

Figure 3. Primary organ of interest over time demonstrating the increase in frequency of publication.
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Studies identified were subdivided into groups focusing on diagnostics, prognostics, and interventions. We 
assessed 23 papers[13-35] reporting diagnostic uses of AI in HPB surgery. Of these, five focused on the 
gallbladder, 11 on the liver, and seven on the pancreas. Twenty-nine studies reported prognostication[36-64] 
using AI, of which three focused on the gallbladder, 16 on the liver, one on the liver and pancreas, and nine 
on the pancreas alone. Almost half of the studies identified reported on the interventional use of AI[65-110] in 
HPB surgery (n = 46), with 24 studies focusing on the liver, 19 on the gallbladder alone or in conjunction 
with another organ (n = 4), and three studies looking at the pancreas. A summary of the papers  subdivided 
into the diagnostic, prognostic and intervention cohorts can be found in Tables 1, 2, and 3, respectively.

Regarding sample size, most studies (n = 13) reporting diagnostic applications of AI in HPB surgery utilized 
data from fewer than 1,000 patients. The smallest number of patients in a focused study of the ultrasound-
based classification of liver lesions was 22[14]. Three studies included over 5,000 patients and were included 
in our big data cohort[16,30,35]. The largest number of included patients was 199,783[30]. Most studies (n = 16) 
looking at prognostic uses of AI in HPB surgery had fewer than 500 patients. Two studies had fewer than 
5,000 patients, but were included in our big data cohort due to the high number of images and image 
reports included[58,63]. Eleven studies looking at interventional uses of AI in HPB surgery did not use actual 
patient data, but used simulations-based approaches[69,70,75,76,81,82,84,85,91,92,104]. There was little mention or use of 
“explainable AI” concepts in any of the included studies.

Conceptual mapping of AI research in HPB surgery
Following data extraction and study classification, we undertook a conceptual mapping exercise to identify 
key areas and relationships in AI use [Figure 4]. Many of the identified concepts involved outcome 
prediction (such as the risk of complication, or personalized survival predictions). Others utilized AI to 
support clinicians in the identification of a condition before, during, or after surgery (such as identifying 
malignancy, identifying complications early, or even the prevention of these by using AI to alert clinicians 
to unseen structures intraoperatively). Preoperative planning and surgical simulation were particularly key 
areas within the intervention grouping. Finally, within the conceptual mapping exercise, we identified 
several areas where AI may be useful as either a risk stratification tool or as an intervention in future 
research (purple text, Figure 4).

Diagnostic applications of artificial intelligence
Diagnostic applications of AI primarily involved interpreting images using computer vision models [Table 1 
and Figure 4]. AI was used across a range of imaging modalities, including transabdominal ultrasound, 
endoscopic ultrasound, MRI and CT, to identify lesions or classify lesions into different radiomic subgroups 
of disease. Although the majority of preoperative, diagnostic AI work focused on imaging, there were 
studies investigating perioperative risk prediction. However, there were no studies that proposed to use AI 
as an intervention in preoperative care pathways. Therefore, it should be considered that preoperative AI 
may also be undertaken with a broader surgical focus, rather than specifically targeted at HPB populations 
and hence are not discussed in this review.

Prognostic applications of artificial intelligence
The majority of prognostic applications for AI were in the prediction of cancer recurrence and survival 
[Table 2 and Figure 4]. This was achieved using a variety of input data, including imaging, genetics, and 
clinical characteristics. Prediction models were developed for a variety of time points, including the first 30 
days following surgery and for longer-term survival.
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Table 1. Summary of included studies focusing on diagnostic uses of AI in HPB surgery

Authors Year of 
publication Location Organ AI 

method Aim Method Data

Saftoiu et al.[13] 2012 Romania P DL/CV Assessed accuracy of real-time 
EUS elastography in pancreatic 
lesions using artificial neural 
network analysis

Prospective, 
blinded, 
multicentric 
study

EUS images

Kaizhi et al.[14] 2014 Japan L DL/CV Proposes automatic classification 
method based on deep learning in 
contrast-enhanced 
ultrasonography (CEUS) of focal 
liver lesions

Case series CEUS images

Gatos et al.[15] 2015 Greece L ML/CV Design and implementation of a 
computer-based image analysis 
system employing the support 
vector machine system for the 
classification of liver lesions

Retrospective 
study

MRI images

Roch et al[16] 2015 USA P NLP Implement an automated Natural 
Language Processing based 
pancreatic cyst identification 
system

Single institution 
prospective pilot 
study

Patient records

Sada et al.[17] 2016 USA L NLP Evaluated whether natural 
language processing document 
classification improves HCC 
identification

Retrospective 
study

Pathology/radiology 
reports

Kondo et al.[18] 2017 Japan L ML/CV Proposes automatic classification 
method based on machine 
learning in CEUS of focal liver 
lesions

Single institution 
pilot study

CEUS images

Yang et al.[19] 2017 China L NLP Assess gene expression in HCC 
using combined data from The 
Cancer Genome Atlas and NLP 
identified genes

Description of 
experiment

Gene library/ 
published literature

Kuwahara et al.[20] 2019 Japan P DL Investigate whether a deep 
learning algorithm using EUS 
images of IPMN could predict the 
diagnosis of malignancy

Retrospective 
study

EUS images

Shen et al.[21] 2019 China P ML Establish and validate a radiomics 
diagnosis model for the 
classification of three subtypes of 
pancreatic lesion

Retrospective 
study

CT images

Lei Xu et al.[22] 2019 China/ 
USA

G ML/CV Develop and validate a prediction 
model for preoperative LN status 
evaluation in ICC patients

Retrospective 
study

MRI images

Brown et al.[23] 2019 Canada L NLP/ML Explore natural language 
processing to predict downstream 
radiology resource utilization in 
patients undergoing surveillance 
for HCC

Retrospective 
study

Radiology reports

Watson et al.[24] 2020 USA P DL Use CT-guided deep learning 
techniques to predict malignancy 
of PCNs

Retrospective 
pilot study

CT images

Liu et al.[25] 2020 China L NLP/DL Designed an NLP pipeline for the 
direct extraction of clinically 
relevant features of liver cancer 
from radiology reports

Retrospective 
study

Radiology reports

Mao et al.[26] 2021 China L ML Investigate the performance of an 
ultrasound-based radiomics 
approach to differentiate primary 
liver cancer from metastatic liver 
cancer

Retrospective 
study

US images

Jang et al.[27] 2021 South 
Korea

G DL/CV Evaluate the diagnostic 
performance of AI in 
differentiating biliary lesions using 
EUS images

Retrospective 
study

EUS images

Assessed duodenoscopy assisted ERCP/ Dongyan et al.[28] 2021 China G DL/CV Pilot study
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by visual sensing technology 
based on convolutional neural 
network algorithm in the 
diagnosis and treatment of 
gallstones

surgery images

Kim et al.[29] 2021 South 
Korea

G DL/CV Aimed to differentiate gallbladder 
polyps in ultrasound images using 
deep learning

Retrospective 
study

US images

Yamashita et al.[30] 2021 USA P NLP Identify patients with pancreatic 
cystic lesions and extract 
measurements from imaging 
reports using NLP

Retrospective 
study

Radiology reports

Chong et al.[31] 2022 China L CV/ML Investigate the impact of MRI-
based radiomics on predicting 
GPC3 expression and the relevant 
recurrence-free survival in liver 
cancer

Retrospective 
study

MRI images

Liu et al.[32] 2022 USA L ML Machine learning-based methods 
to select clinical and morphologic 
features to differentiate 
hepatocellular adenoma subtypes

Retrospective 
study

Pathology 
specimens/patient 
records

Schuessler et al.[33] 2022 Germany L ML Differentiation of 
hemodynamically significant and 
non-significant coronary stenoses 
in patients undergoing evaluation 
for liver transplant

Retrospective 
study

CTA images

Chang et al.[34] 2022 China G DL Explore the application value of 
the neural network and genetic 
algorithms in the detection and 
prognosis of tumor markers in 
patients with gallbladder cancer

Retrospective 
study

Tumor-markers

Kooragayala 
et al.[35]

2022 USA P NLP Utilized an NLP algorithm to 
quantify the incidence of clinically 
relevant pancreatic lesions in CT 
imaging

Retrospective 
study

Radiology reports

CV: Computer vision; CTA: CT angiogram; CEUS: Contrast-enhanced ultrasonography; DL: deep learning; EUS: endoscopic ultrasound; GPC3: 
Glypican 3 (protein-coding gene); G: gallbladder; HCC: hepatocellular carcinoma; IPMN: Intraductal papillary mucinous neoplasm of the pancreas; 
ICC: intrahepatic cholangiocarcinoma; L: liver; ML: machine learning; LN: lymph node; NLP: natural language processing; PCN: pancreatic cystic 
neoplasms; P: pancreas.

Interventional applications of artificial intelligence
We identified several key concepts around supporting interventions with AI assistance [Table 3 and 
Figure 4]. Intraoperative vision was a major area, with multiple studies focusing on improving the 
visualization of unseen structures, which may cause significant patient harm if inadvertently injured (e.g., 
major blood vessels or the bile duct). This was achieved through virtual or augmented reality, where inputs 
from other data sources such as CT and MRI are combined (sensor fusion) and overlain on real-time 
images (e.g., through laparoscopic/robot-assisted surgery video source) to produce an augmented view of 
the surgical field.

Preoperative surgical planning and simulation were also identified as key concepts. There were numerous 
studies that aimed to develop virtual reality models or other digital interventions which permitted surgeons 
to plan complex operations with the aim of minimizing complications. This was proposed to be achieved 
through pre-surgery operative simulation/rehearsal (advantages when unusual anatomy identified) or by 
using AI methods to predict severe complications such as post-hepatectomy liver failure (PHLF).

Artificial intelligence tasks
We identified several common AI tasks being applied in HPB surgery. Classification is where data can be 
assigned to groups based on a defined shared characteristic. Classification algorithms were frequently 
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Table 2. Summary of included studies focusing on prognostic uses of AI in HPB surgery

Authors Year of 
publication Location Organ AI 

method Aim Design Data

Singal et al.[36] 2013 USA L ML Develop and compare predictive 
models for HCC development 
among cirrhotic patients using 
conventional regression analysis 
and machine-learning algorithms

Prospective 
study

Patient factors

Banerjee et al.[37] 2015 USA L ML/CV RVI was assessed for its ability to 
predict MVI and outcomes in 
patients with HCC who underwent 
surgical resection or liver 
transplant

Prospective 
evaluation of a 
retrospective 
cohort

CT images

Walczak et al.[38] 2017 USA P ML Assess the accuracy of artificial 
neural networks in predicting 
survival in patients with pancreatic 
cancer using both clinical and 
patient-centered data

Retrospective 
study

Patient factors

Ying Zhou et al.[39] 2017 China L ML/CV Develop a CT-based radiomics 
signature and assess its ability to 
preoperatively predict the early 
recurrence (≤ 1 year) of 
hepatocellular carcinoma (HCC)

Retrospective 
study

CT images

Zheng et al.[40] 2018 China L ML/CV Developed a CT–based radiomic 
nomogram to predict recurrence-
free survival rates for HCC after 
resection, ablation, and transplant

Retrospective 
study

CT images

Ivanics et al.[41] 2019 Canada L ML Leverage machine learning to 
develop an accurate post-
transplantation HCC recurrence 
prediction calculator

Retrospective 
study

Patient factors

Sala Elarre et al.[42] 2019 Spain P ML Evaluated the 2-year relapse risk 
for pancreatic cancer patients 
based on a machine-learning 
algorithm

Retrospective 
study

Patient factors

Marinelli et al.[43] 2019 USA L NLP/DL Determine if weakly supervised 
learning/active transfer learning 
can hasten clinical deployment of 
deep learning models for liver 
segmentation

Retrospective 
study

Radiology 
reports/CT 
images

Naseif et al.[44] 2019 USA P ML/CV Develop a delta-radiomic process 
based on machine learning to 
predict the treatment response of 
pancreatic cancer

Retrospective 
study

CT images

Shan et al.[45] 2019 China L ML/CV A Prediction model based on 
peritumoral radiomics signatures 
from CT - investigate its efficiency 
in predicting early recurrence of 
HCC after curative treatment

Retrospective 
study

CT images

Chen et al.[46] 2020 China L CV/ML Establish a radiomics-based 
clinical model for preoperative 
prediction of PHLF in HCC

Retrospective 
study

MRI images

Han et al.[47] 2020 South 
Korea

P ML Risk prediction model for POPF 
using AI

Retrospective 
study

Patient factors

Kambakamba 
et al.[48]

2020 Switzerland P ML The potential of machine learning-
based approaches to describe the 
pancreatic texture and to predict 
POPF

Retrospective 
study

CT images

Merath et al.[49] 2020 USA L/P ML Assess ML algorithm to predict the 
patient risk of developing 
complications following liver, 
pancreatic or colorectal surgery

Retrospective 
study

Patient factors

Saillard et al.[50] 2020 France L DL Evaluate the effectiveness of AI 
algorithms to predict survival 
following HCC resection

Development 
and testing of AI 
models

Histology 
images

France Automatizing liver-graft Prospective Cesaretti et al.[51] 2020 L ML/DL/CV Surgery images
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Italy segmentation from smartphone 
images and validating the 
robustness of this approach

study

Mai et al.[52] 2020 China L DL Establish and validate an artificial 
neural network model to predict 
severe post-hepatectomy liver 
failure in patients with 
hepatocellular carcinoma who 
underwent hemi-hepatectomy

Retrospective 
study

Patient factors

Liu et al.[53] 2020 Taiwan L ML Devise a predictive model to 
predict postoperative survival 
within 30 days based on the 
patient’s preoperative 
physiological measurement values

Retrospective 
study

Patient factors

Schoenberg et al.[54] 2020 Germany L ML Developing and validating a 
machine-learning algorithm to 
predict which patients are 
sufficiently treated by LR

Retrospective 
study

Patient factors

Szpakowski et al.[55] 2020 USA G NLP Determine the growth pattern of 
GPs and their association with 
GBC

Retrospective 
study

Radiology 
reports

Capretti et al.[56] 2021 Italy 
Portugal

P CV/ML Develop a reliable and 
reproducible machine learning-
based multimodal risk model 
capable of predicting CR-POPF by 
combining radiomic features and 
morphologic features

Retrospective 
study

CT 
images/patient 
factors

Sun et al.[57] 2021 China L DL Develop a model to predict HCC 
recurrence

Retrospective 
study

Patient factors

Xie et al.[58] 2021 USA P NLP Develop and apply a natural 
language processing algorithm for 
the characterization of patients 
diagnosed with chronic 
pancreatitis

Retrospective 
study

Radiology 
reports

Hayashi et al.[59] 2022 Japan P ML Predict recurrence and metastatic 
sites in pancreatic cancer following 
curative surgery 

Retrospective 
study

Histology 
images

Li et al.[60] 2022 China P ML Develop and validate clinical-
radiomics models that 
preoperatively predict 1 and 2-year 
recurrence of PDAC

Retrospective 
study

CT 
images/patient 
factors

Noh et al.[61] 2022 South 
Korea

L ML Machine learning-based survival 
rate prediction of hepatocellular 
carcinoma patients

Retrospective 
study

Patient factors

Morris-Stiff et al.[62] 2022 USA G NLP Develop a clinical prediction model 
for asymptomatic gallstones

Retrospective 
study

Radiology 
reports

Narayan et al.[63] 2022 USA L ML/CV Developed an objective, computer 
vision artificial intelligence (CVAI) 
platform to score donor liver 
steatosis and compared its 
capability for predicting EAD 
against pathologist steatosis 
scores

Retrospective 
study

Histology 
images

Cotter et al.[64] 2022 USA G ML Machine-based learning approach 
to stratify patients with gallbladder 
cancer into distinct prognostic 
groups using preoperative 
variables

Retrospective 
study

Patient factors

CV: Computer vision; CR-POPF: clinically relevant postoperative pancreatic fistula; EAD: early allograft dysfunction; G: gallbladder; GPs: 
gallbladder polyps; GBC: gallbladder cancer; L: liver; LR: liver resection; ML: machine learning; MVI: microvascular invasion; P: pancreas; PHLF: 
post-hepatectomy liver failure; POPF: postoperative pancreatic fistula; PDAC: pancreatic ductal adenocarcinoma; RVI: radiogenomic venous 
invasion.
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Table 3. Summary of included studies focusing on interventional uses of AI in HPB surgery

Author Year of 
publication Location Organ AI 

method Aim Design Data

Spinczyk et al.[65] 2012 Poland L ML Measurement of liver motion 
during surgery

Single center 
feasibility study

Surgery videos

Okamato et al.[66] 2012 Japan L/G CV Evaluate the utility of an image 
display system for augmented 
reality in hepatobiliary surgery 
under laparotomy

Case series CT images

Fang et al.[67] 2013 China L CV Assess the use of 3d planning for 
hepatectomy for hepatolithiasis

Retrospective 
study

CT images

Zein et al.[68] 2013 USA L CV Establish anatomical precision 
and volumetric accuracy in 3D-
printed models for donors and 
recipients undergoing LDLT

Prospective 
paired case 
series

CT/MRI images

Shahin et al.[69] 2014 Germany L ML Develop a navigation approach to 
quickly compensate for tumor 
movements due to surgical 
manipulation

Description of 
experiment

US images

Yang et al.[70] 2014 South Korea L ML Develop a user-centered 3D 
virtual liver surgery planning 
system algorithm

Pilot study CT images

Fang et al.[71] 2014 China P CV Investigate the clinical 
significance of 3-dimensional 
reconstruction of peripancreatic 
vessels for patients with 
suspected pancreatic cancer

Randomized 
parallel single-
blind study

CT images

Begin et al.[72] 2014 Canada L CV Evaluate an alternative automatic 
technique of liver volumetry 
based on a novel 3D virtual 
planning software and compare it 
to the manual technique

Prospective 
study

CT images

Bliznakova et al.[73] 2015 Bulgaria L CV/ML Develop and test a software 
application for evaluation of the 
residual function of the liver prior 
to the intervention of the 
surgeons

Case series CT images

Katic et al.[74] 2015 Germany P/G DL Demonstrate the usefulness of 
deep learning model to identify 
surgical steps during 
laparoscopic cholecystectomy 
and pancreatic resections

Case series Surgery videos

Song et al.[75] 2015 UK L ML Describe a freehand laparoscopic 
ultrasound-based system that 
registers liver vessels in 
ultrasound with MR/CT data

Description of 
experiment and 
case series

US/CT/MRI 
images

Wang et al.[76] 2015 China 
USA

L ML Demonstrate the potential of 
homotopy-based SSC for shape-
prior modeling in the liver 
surgical planning system

Description of 
experiment

CT images

Fang et al.[77] 2015 China L CV Compare outcomes of surgery on 
centrally located HCC with and 
without 3D planning

Retrospective 
study

CT/MRI images

Zhang et al.[78] 2015 China G CV Assess the use of 3d planning in 
surgery on bile duct cancer

Case series CT images

Okuda et al.[79] 2015 Japan G CV Evaluate the impact of 3D CT 
cholangiography on operative 
planning and outcomes of biliary 
malignancies

Retrospective 
study

CT images

Okamato et al.[80] 2015 Japan P CV Evaluate the utility of navigation 
surgery using augmented reality 
technology for pancreatectomy

Case series CT images

Fortmeier et al.[81] 2016 Germany G/L CV Creation of a visuo-haptic 
simulation framework for the 
training and planning of the first 
steps of PTCD

Description of 
experiment

X-ray/US/CT 
images
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Fusaglia et al.[82] 2016 Switzerland L CV Present a novel LRS-based IGS 
system for laparoscopic liver 
procedures

Description of 
experiment

Laparoscopic 
surgery images

Ntourakis et al.[83] 2016 France L CV Investigate the potential of AR-
based navigation to help locate 
and resect colorectal liver 
metastases

Prospective pilot 
study

CT/MRI images

Mastmeyer et al.[84] 2017 Germany L ML Compare axial force errors of 
simulated needle insertion for 
liver biopsy

Description of 
experiment

US/CT images

Sauer et al.[85] 2017 Germany L CV Evaluates the application of a 
mixed reality head-mounted 
display for the visualization of 
anatomical structures during liver 
surgery

Case study CT images

Cai et al.[86] 2017 China L CV Report experience of using a 3d 
visualization system during 
hepatic resection

Case series CT images

Miyamoto et al.[87] 2017 Japan P CV 3d planning - compared the 
pancreatic duct diameter and 
location with the intraoperative 
findings

Retrospective 
study

CT images

Hu et al.[88] 2018 China L CV Assess the use of 3d planning for 
specific hepatectomy

Retrospective 
study

CT images

Mise et al.[89] 2018 Japan L CV Assess how virtual hepatectomy 
conducted using surgical 
planning software influences the 
outcomes of liver surgery

Retrospective 
study

CT images

Mascagani et al.[90] 2019 Italy 
France

G DL Develop and test a method for 
consistent critical view of safety 
evaluation and reporting in 
videos which could be developed 
into the deep learning model

Pilot study Laparoscopic 
surgery images

Teatini et al.[91] 2019 Norway L ML Test if intraoperative imaging is 
necessary for accurate surgical 
navigation for laparoscopic liver 
resection

Description of 
experiment

CT images

Ho et al.[92] 2020 New 
Zealand

L CV Describe the computational 
pipeline that integrates into silico 
liver models and algorithms to 
aid surgical planning for liver 
resection

Description of 
experiment

CT/US/MRI 
images

Prevost et al.[93] 2020 Switzerland L CV Evaluate the technical feasibility 
and the clinical impact of a new 
augmented reality system for 
laparoscopic liver surgery

Pilot study CT/MRI images

Sandal et al.[94] 2021 Turkey G ML Determine the usefulness of 
fuzzy logic algorithm to evaluate 
risk in patients undergoing 
laparoscopic cholecystectomy

Case series Patient factors

Cervantes-Sanchez 
et al.[95]

2021 Mexico 
Germany

L/G ML/DL Machine/deep learning methods 
are combined with HSI-goal is 
the automatic discrimination 
using HSI of the bile duct from 
the gallbladder and liver

Description of 
experiment and 
case series

Hyperspectral 
images

Tokuyasu et al.[96] 2021 Japan G DL/CV Develop a system that outlines 
laparoscopic cholecystectomy 
landmarks on endoscopic images 
in real time

Description of 
experiment and 
case report

Laparoscopic 
surgery images

Guzman-Garcia 
et al.[97]

2021 Spain G NLP/DL Assess if analysis of surgeons’ 
speech using natural language 
processing provide deeper insight 
into the surgical decision-making 
processes during laparoscopic 
cholecystectomy

Description of 
experiment

Audio 
transcripts of 
surgical videos

Demonstrate the feasibility of 
using NLP to measure adherence 

Imler et al.[98] 2021 USA G NLP/ML Retrospective 
study

ERCP procedure 
reports
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to ERCP quality indicators across 
individual providers

Ruzzenente et al.[99] 2022 Italy L ML Evaluate four difficulty scoring 
systems in liver surgery and 
determine the most important 
characteristics using random 
forest models

Case series Patient factors

Mascagani et al.[100] 2022 France 
Italy

G DL/CV Creation of an assessment tool 
for CVS

Multicentre 
retrospective 
validation

Annotated 
surgery videos

Mascagani et al.[101] 2022 France 
Italy

G DL/CV Develop a deep learning model to 
automatically segment 
hepatocystic anatomy and assess 
the criteria defining the critical 
view of safety (CVS)

Case series Annotated 
surgery images

Tranter-Entwistle 
et al.[102]

2022 New 
Zealand 
Australia

G ML/CV Use a commercially available 
ML-driven platform to evaluate a 
subjective grading of operative 
difficulty in laparoscopic 
cholecystectomy

Case series Surgery videos

Liu et al.[103] 2022 China G ML/CV Develop model and preliminarily 
verify its potential surgical 
guidance ability by comparing its 
performance with surgeons 
during laparoscopic 
cholecystectomy

Pilot study Annotated 
surgery images

Ugail et al.[104] 2022 UK L ML/DL/CV Present the use of deep learning 
for the non-invasive evaluation of 
donor liver organs

Pilot study Surgical images

Mojtahed et al.[105] 2022 USA 
Netherlands 
Portugal

L DL/CV Demonstrate the accuracy and 
precision of liver segment volume 
measurements

Retrospective 
study

MRI images

Han et al.[106] 2022 China L DL/CV Develop and validate a three-
dimensional convolutional neural 
network model for automatic 
liver segment segmentation

Retrospective 
study

MRI images

Ward et al.[107] 2022 USA G DL/CV Trained model to identify PGS Development 
and testing of AI 
models

Annotated 
surgery images

Madani et al.[108] 2022 Canada 
USA 
UK

G DL/CV Develop and evaluate the 
performance of models that can 
identify safe and dangerous 
zones of dissection during 
laparoscopic cholecystectomy

Development 
and testing of AI 
models

Annotated 
surgery images

Loukas et al.[109] 2022 Greece G DL/CV Framework for vascularity 
classification of the gallbladder 
wall from intraoperative images 
of laparoscopic cholecystectomy

Development 
and testing of AI 
models

Surgery images

Golany et al.[110] 2022 Israel G DL/CV Developed algorithm and 
evaluated its performance in 
recognizing surgical phases of 
laparoscopic cholecystectomy

Development 
and testing of AI 
models

Annotated 
surgery videos

AR: Augmented reality; CVS: Critical view of safety; G: gallbladder; HSI: hyperspectral images; IGS: image guided surgery; L: liver; LDLT: living 
donor liver transplant; LC: laparoscopic cholecystectomy; LRS: laser range scanners; PTCD: percutaneous transhepatic biliary drain; PGS: parkland 
grading scale for cholecystitis; P: pancreas; SSC: sparse shape composition.

derived from imaging to group lesions into disease subgroups[15,18,21]. In another example, decision tree 
models were used to predict the occurrence of any complication and of specific complications in patients 
undergoing liver, pancreatic and colorectal surgery[49]. These algorithms were superior to the American 
Society of Anaesthesiologists (ASA) classification at predicting the chance of any complication. They 
performed well for specific complications, with c-statistics ranging from 0.76 to 0.98. As described in our 
conceptual mapping exercise, the augmentation of surgical fields to highlight relevant anatomy is a key area 
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Figure 4. Conceptual mapping of areas of AI research in HPB surgery, stratified by treatment timing. This exercise identified several 
areas of overlap (dashed arrows) across different divisions, in addition to several areas where AI would be useful for future research 
(purple free text). CT: Computed tomography; IPMN: intraductal papillary mucinous neoplasm; MRI: magnetic resonance imaging; 
PHLF: post hepatectomy liver failure; POPF: postoperative pancreatic fistula.

Figure 5. Number of studies utilizing large datasets stratified by AI approach.

of research. This is an example of object detection and is a task well suited to laparoscopic cholecystectomy. 
Madani et al. describe a deep learning algorithm that intraoperatively recognizes “go,” or “no-go” areas of 
dissection to minimize the risk of adverse events such as bile duct injury[108].
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The intersection of AI and big data in HPB surgery
We identified eleven studies utilizing large datasets in HPB surgery applications [Table 4]. Nine have been 
published since 2020. Eight of the 11 identified papers utilized NLP to extract data from large numbers of 
reports, mainly with the aim of identifying patients with a specific condition, either for phenotyping or to 
identify patient cohorts. The majority originated from the USA (n = 9; 82%), with one study from China and 
one from South Korea [Figure 5].

An example of the use of an NLP algorithm to identify patient cohorts and devise a means of following-up 
incidental scan results was by Kooragayala et al.[35]. This study used a keyword search associated with 
suspicious pancreatic lesions in over 18,000 patients who underwent a CT scan following trauma over a 10-
year period. The approach identified pancreatic lesions in the reports of 232 patients, of which 48 were 
intraductal papillary mucinous neoplasms (IPMNs). In addition, this paper proposed a management 
flowchart for incidentally found pancreatic lesions. A further example of the use of NLP in high-volume 
data was demonstrated by Morris-Stiff et al.[62], who used NLP to identify asymptomatic gallstones from a 
cohort of 49,414 patients. They were then able to identify risk factors for progression to symptomatic 
gallstone disease in this asymptomatic cohort and showed an approximately 2% risk of symptomatic 
progression per year.

DISCUSSION
This review has identified a rapid increase in the quantity of AI research conducted within HPB surgery. 
Much of this is focused on intraoperative applications of AI, such as the use of image analysis and computer 
vision to address diagnostic and prognostic uncertainties. In addition, the use of 3D reconstruction and 
augmented reality models coupled with data-driven prediction algorithms has emerged as an important 
area, particularly in preoperative planning and intraoperative decision-making in liver surgery. Artificial 
intelligence methods have the most to offer in the distillation of multi-dimensional information to tractable 
knowledge that can be applied to individual treatment decisions. HPB surgery represents a good target for 
these technologies, given the frequently complex disease patterns and diverse treatment pathways employed.

Most artificial intelligence approaches rely on large volumes of data for training purposes. Of the commonly 
described features of big data, the included studies reflect “volume” and “variety” with fewer utilizing real-
time rapidly changing data (“velocity”). Data sources included large pre-existing databases, collated images 
and imaging reports. Two notable databases used were the Cancer Genome Atlas and the American College 
of Surgeons National Surgical Quality Improvement Program (NSQIP) database, which were widely used 
across a range of studies. Natural language processing was frequently employed to extract information from 
imaging reports and other healthcare text sources. In one study, NLP was used to identify concerning 
pancreatic lesions in historical imaging reports[35]. This demonstrates  the depth and flexibility in AI 
techniques to adapt to changes in patient management over time - the malignant potential of particular 
pancreatic cysts has only been appreciated in recent years. Moreover, these approaches may be adapted to 
help non-specialists managing HPB conditions, particularly in low-resource settings with limited access to 
tertiary HPB services. As computer vision approaches improve, the supplementation of local imaging and 
pathology reporting with AI-derived diagnostic support may leapfrog the requirement for massive and 
often unaffordable training of humans to perform these tasks.

There are, however, genuine risks of bias arising with the development of these techniques. We found 
significant geographical variation in current research, with no studies incorporating data from low- and 
middle-income countries (LMICs). If the benefits of AI are to be shared equitably across contexts, then 
investigators must consider how solutions can broadly generalize between populations and avoid 



McGivern et al. Art Int Surg 2023;3:27-47 https://dx.doi.org/10.20517/ais.2022.39 Page 41

Table 4. Summary of studies leveraging large datasets for AI use in HPB surgery

Author Year of 
publication Study description

Roch et al.[16] 2015 566,233 CT reports from 50,669 patients analysed for keywords associated with Pancreatic Cysts using NLP

Yang et al.[19] 2017 The Cancer Genome Atlas catalogs genes associated with 33 cancers. Genes associated with HCC were 
extracted from database and checked for overlap with genes identified in 35 years of published literature using 
NLP

Merath 
et al.[49]

2020 15,657 patients undergoing liver, pancreatic or colorectal surgery (685 liver and 6,012 pancreatic) 
retrospectively were identified from the American College of Surgeons National Surgical Quality Improvement 
Program database. Risk-prediction Machine Learning model created from pre-op characteristics

Szpakowski 
et al.[55]

2020 365 Gallbladder Cancer and 35,970 Gallbladder Polyp patients were identified from 622,227 patients in a 
Californian health system. NLP was used to identify Polyps from Ultrasound reports

Xie et al.[58] 2021 58,085 imaging reports from 6,346 Chronic Pancreatitis patients were used to develop an NLP algorithm that 
could characterize features of Chronic Pancreatitis

Yamashita 
et al.[30]

2021 430,426 imaging reports from 199,783 patients were used to create an NLP algorithm to identify the presence 
and size of Pancreatic Cysts

Imler et al.[98] 2021 23,674 ERCP reports were analyzed for quality measures using NLP

Noh et al.[61] 2022 Machine learning-based prediction models for survival applied to 10,742 HCC patients

Morris-Stiff 
et al.[62]

2022 Ultrasound reports identified 49,414 patients with gallstones. NLP algorithm trained to identify asymptomatic 
patients (22,257)

Narayan 
et al.[63]

2022 25,494 images from 90 liver biopsies were used to develop Machine Learning Computer Vision models to 
score liver steatosis

Kooragayala 
et al.[35]

2022 NLP was used to identify pancreatic lesions from 18,769 adult trauma CT reports

CT: Computed tomography; ERCP: endoscopic retrograde cholangiopancreatography; HCC: hepatocellular carcinoma; NLP: natural language 
processing.

exacerbating pre-existing healthcare disparities. This is a widely discussed and controversial topic in the 
broader AI field. Inherent systematic biases in datasets clearly exist, with some of the most obvious 
reflecting racial, socioeconomic and gender-based prejudices. Addressing these complex issues is crucial 
across all AI work, including in HPB surgery. The majority of HPB disease occurs LMICs[111], so it is 
essential that these populations are better represented in current HPB research more broadly and AI 
research specifically.

In addition to geographical disparities, concerns around the transparency of AI algorithms and lack of 
explainability are likely to hamper uptake and trust in clinical practice[112]. The need for explainability is 
rooted in evidence-based medicine, which relies on transparency and reproducibility in decision-
making[113]. Without explainable AI, patient trust in healthcare will erode. Others have argued that true 
explainability represents a false hope, and that explainability methods cannot deliver meaningful patient-
level interpretability[114]. The focus should be on robust internal and external validation. In this review, we 
found little reference to concepts of explainability in included studies. It is important that these issues are 
explored and addressed, particularly when developing algorithms orientated toward patient-facing 
prognostication. As AI systems transition from research to clinical practice, transparency and reliability are 
paramount if trust is to be built and maintained[115,116].

The ability to understand and reproduce scientific findings is imperative, yet reporting the quality of 
included studies was variable. A number of useful reporting guidelines now exist, specifically orientated 
toward AI. In 2019, a rigorous process of literature review, expert consultation, Delphi survey, and 
consensus meeting resulted in the SPIRIT-AI (Standard Protocol Items: Recommendations for 
Interventional Trials - Artificial Intelligence) and CONSORT-AI (Consolidated Standards of Reporting 
Trials - Artificial Intelligence) standards[117]. In addition, two additional tools are currently under 
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development: Transparent Reporting of a multivariable prediction model of Individual Prognosis Or 
Diagnosis AI extension (TRIPOD-AI) and the Prediction model Risk Of Bias Assessment Tool (PROBAST-
AI)[118]. These promise to provide standardization and assessment tools that will greatly increase the quality 
of clinically-orientated AI study reporting.

Where should AI research in HPB be focussed? Most studies in this review concentrated on image analysis. 
While this is an important area, there are many other challenges in HPB which could benefit from the 
application of AI. Research prioritization in AI must be determined by broad stakeholder groups, led 
primarily by the patient and public representatives, accounting for a range of viewpoints and actively 
engaging non-technical individuals in the design and delivery of research studies. We found little mention 
of engagement with stakeholder groups in included studies (e.g., patients, clinicians and the wider HPB 
community), which is crucial if these complex interventions are to move into clinical practice successfully. 
Moreover, included studies focused on the development of AI models rather than on the implementation of 
AI systems. While this is understandable given the current stage of development, future work should focus 
on how broader AI-driven systems can be implemented safely into clinical pathways and be clear about the 
function they serve.

Our study has several limitations. First, there is significant heterogeneity in the content and outcomes of the 
various studies included. While meaningful comparisons are challenging, a useful overview of common 
issues and themes affecting AI research in HPB is provided. Second, as is the nature of a scoping review, it is 
possible that studies meeting the inclusion criteria have been omitted, leading to an incomplete presentation 
of the current literature. For example, papers focusing on NLP and the gallbladder were relatively poorly 
represented in exploratory literature searches, possibly reflecting poor search descriptors and study labeling. 
Finally, as AI and associated concepts are undergoing rapid development, study inclusion criteria are in 
flux. Improving formal definitions in these emerging fields will help study classification and ease of 
literature identification.

The use of AI and big data in HPB surgery and medicine, more generally, is rapidly expanding. AI promises 
benefits in the delivery of clinical care and may result in future improvement of healthcare outcomes. This 
review identifies crucial interlinking conceptual areas of AI as applied to HPB surgery. Future research must 
address issues of bias, transparency, and explainability and ensure that innovation is representative of HPB 
patient populations across the world.
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