Systematic Review

Open Access

Applying artificial intelligence to big data in hepatopancreatic and biliary surgery: a scoping review

Kieran G. McGivern^{1,#}, Thomas M. Drake^{2,3,#}, Stephen R. Knight^{2,#}, James Lucocq⁴, Miguel O. Bernabeu^{2,5}, Neil Clark², Cameron Fairfield², Riinu Pius², Catherine A. Shaw², Sohan Seth⁶, Ewen M. Harrison^{2,3}

Correspondence to: Prof. Ewen M. Harrison, Centre for Medical Informatics, Usher Institute, University of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK. E-mail: ewen.harrison@ed.ac.uk

How to cite this article: McGivern KG, Drake TM, Knight SR, Lucocq J, Bernabeu MO, Clark N, Fairfield C, Pius R, Shaw CA, Seth S, Harrison EM. Applying artificial intelligence to big data in hepatopancreatic and biliary surgery: a scoping review. *Art Int Surg* 2023;3:27-47. https://dx.doi.org/10.20517/ais.2022.39

Received: 8 Dec 2022 First Decision: 14 Feb 2023 Revised: 10 Mar 2023 Accepted: 15 Mar 2023 Published: 27 Mar 2023

Academic Editors: Henry A. Pitt, Andrew A. Gumbs Copy Editor: Ke-Cui Yang Production Editor: Ke-Cui Yang

Abstract

Aim: Artificial Intelligence (AI) and its applications in healthcare are rapidly developing. The healthcare industry generates ever-increasing volumes of data that should be used to improve patient care. This review aims to examine the use of AI and its applications in hepatopancreatic and biliary (HPB) surgery, highlighting studies leveraging large datasets.

Methods: A PRISMA-ScR compliant scoping review using Medline and Google Scholar databases was performed (5th August 2022). Studies focusing on the development and application of AI to HPB surgery were eligible for inclusion. We undertook a conceptual mapping exercise to identify key areas where AI is under active development for use in HPB surgery. We considered studies and concepts in the context of patient pathways - before surgery (including diagnostics), around the time of surgery (supporting interventions) and after surgery (including prognostication).

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

¹NHS Greater Glasgow and Clyde, Royal Alexandra Hospital, Paisley PA2 9PN, UK.

²Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh EH16 4UX, UK.

³Department of Clinical Surgery, University of Edinburgh, Edinburgh EH16 4SA, UK.

⁴NHS Fife, Victoria Hospital, Kirkcaldy KY2 5AH, UK.

⁵The Bayes Centre, The University of Edinburgh, Edinburgh EH8 9BT, UK.

⁶Institute for Adaptive and Neural Computation, School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK.

[#]Authors contributed equally.

Results: 98 studies were included. Most studies were performed in China or the USA (n = 45). Liver surgery was the most common area studied (n = 51). Research into AI in HPB surgery has increased rapidly in recent years, with almost two-thirds published since 2019 (61/98). Of these studies, 11 have focused on using "big data" to develop and apply AI models. Nine of these studies came from the USA and nearly all focused on the application of Natural Language Processing. We identified several critical conceptual areas where AI is under active development, including improving preoperative optimization, image guidance and sensor fusion-assisted surgery, surgical planning and simulation, natural language processing of clinical reports for deep phenotyping and prediction, and image-based machine learning.

Conclusion: Applications of AI in HPB surgery primarily focus on image analysis and computer vision to address diagnostic and prognostic uncertainties. Virtual 3D and augmented reality models to support complex HPB interventions are also under active development and likely to be used in surgical planning and education. In addition, natural language processing may be helpful in the annotation and phenotyping of disease, leading to new scientific insights.

Keywords: Artificial Intelligence, big data, surgery, liver, pancreas, biliary

INTRODUCTION

Artificial Intelligence (AI) encompasses a range of computational approaches with the central aim of developing algorithms to process and interpret information. AI methods can be applied to various input data types ranging from tabular datasets and images to multimedia and text. Although termed "intelligence", these algorithms are in no sense conscious or able to employ "rational thought", but in most cases, reflect model parameters derived exclusively from input data. Within AI, there are three overlapping fields that arguably have the most potential for HPB surgery: machine learning (ML), computer vision (CV) and natural language processing (NLP). ML uses algorithms to learn, adapt, and draw inferences from patterns in training data. CV allows for supervised or unsupervised image analysis, allowing for features of interest in images to be identified and characterized. For text-based sources of data written as prose or in a "human-readable" format (e.g., radiology or pathology reports), NLP allows computers to interpret human text or spoken language communication^[1-5].

The specific areas and applications of AI most likely to deliver a positive impact on patient care currently need to be clarified, as are the barriers limiting the uptake of AI approaches into clinical practice. In 2021 Bari *et al.* described the applications of AI in hepatopancreatic and biliary (HPB) surgery, proposing the framework of preoperative, intraoperative, and postoperative AI applications. We have adopted this structure for this review^[6].

With the increased availability of structured and unstructured healthcare datasets, the opportunity for AI-based approaches widens. Policymakers, healthcare providers, and industry are exploring new AI approaches, seeking to utilize data across a range of applications, including improving outcomes, optimizing the patient experience, and providing cost-effectiveness in delivering care at the health system level^[7-9]. In this review, we aim to outline the fundamental AI approaches to pressing questions in HPB surgery, identifying where AI is most likely to have an impact in future patient care.

METHODS

This scoping review was performed in accordance with the PRISMA-ScR guidelines for scoping reviews^[10]. The Medline database was searched systematically using the following Medical Subject Headings (MeSH) search terms to ensure the identification of appropriate articles; "Algorithms.mp. or algorithm/" AND

"surgery/ or biliary tract surgery/ or liver surgery/ or pancreas surgery/". Articles were limited to English language and those published from 2012 onwards to provide contemporary studies that were likely reflective of current approaches in AI. Further supplementary searches were performed using citation lists and the Google Scholar database. The last search was conducted on 5th August 2022.

We defined "HPB surgery", as the surgical management of benign and malignant diseases of the liver, pancreas, gallbladder, and bile ducts. "Artificial intelligence" refers to the use of various algorithmic methods which could be applied to interpret or process information. We further assessed the identified papers for the element of AI primarily used i.e., machine/deep learning, computer vision or natural language processing^[1-5].

Following the literature search, article titles and abstracts were screened by three reviewers (KMcG, SRK, JL) and those meeting the inclusion criteria underwent full-text review. Any disagreements were resolved by consensus within the group. References from included articles were searched to identify any other relevant articles. Conference abstracts were screened to assist in identifying related full-text articles before inclusion. Where more than one article was published from a single data set, the article analyzing the largest cohort of patients was included.

Data were extracted independently using a standardized *pro forma*. This included the aim of the study, methodology, year of publication, countries represented, the primary organ of focus, AI methods employed, and the number of patients (where applicable). Identified publications were further interrogated to find a shared focus on diagnostics, prognostics, or intervention, allowing further subdivision of the presented research. We then undertook a conceptual mapping exercise to identify areas of crucial importance.

We used a pragmatic approach to further select studies with a sample size equal to or greater than five thousand that satisfied the "velocity, volume and variety" of data points needed to be considered as "big data". A similar approach used previously, albeit with smaller datasets, acted as a benchmark^[7-9,11]. Any disagreements on the selection of these papers were resolved by group consensus.

The Covidence online toolkit was used throughout the data collection and extraction stages of this scoping review^[12].

RESULTS

Scoping search results

The search identified 5,221 articles, of which 134 were fully assessed for eligibility. A further 63 articles were identified from article citation lists or by the supplementary search of the Google Scholar database [Figure 1]. Following assessment, 98 studies^[13-110] were included in this review, with most studies excluded due to being in conference abstract form only (n = 84).

Characteristics of included studies

Identified studies had a wide geographical distribution, coming from a total of 24 countries, with the majority from China or the USA (45/98). No papers identified originated from the African continent [Figure 2]. Studies on the use of AI in surgical conditions of the liver predominated (n = 51). Research on pancreatic and biliary conditions (n = 23) was included at a comparable frequency to one another. We noted a rapid increase in the number of studies published over the past three years, with almost two-thirds of the identified papers (n = 61) published since 2019 [Figure 3].

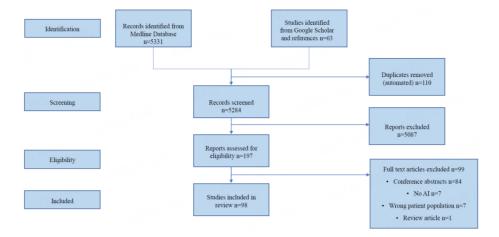


Figure 1. PRISMA flow chart detailing study selection and exclusion.

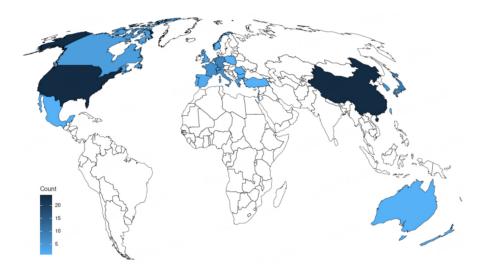


Figure 2. Global distribution of studies on the use of AI in HPB Surgery.

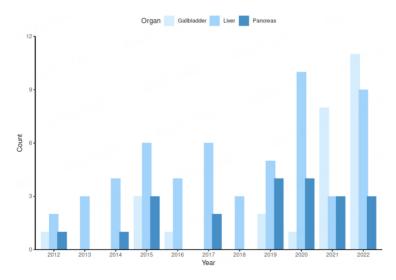


Figure 3. Primary organ of interest over time demonstrating the increase in frequency of publication.

Studies identified were subdivided into groups focusing on diagnostics, prognostics, and interventions. We assessed 23 papers^[13-35] reporting diagnostic uses of AI in HPB surgery. Of these, five focused on the gallbladder, 11 on the liver, and seven on the pancreas. Twenty-nine studies reported prognostication^[36-64] using AI, of which three focused on the gallbladder, 16 on the liver, one on the liver and pancreas, and nine on the pancreas alone. Almost half of the studies identified reported on the interventional use of AI^[65-110] in HPB surgery (n = 46), with 24 studies focusing on the liver, 19 on the gallbladder alone or in conjunction with another organ (n = 4), and three studies looking at the pancreas. A summary of the papers subdivided into the diagnostic, prognostic and intervention cohorts can be found in Tables 1, 2, and 3, respectively.

Regarding sample size, most studies (n = 13) reporting diagnostic applications of AI in HPB surgery utilized data from fewer than 1,000 patients. The smallest number of patients in a focused study of the ultrasound-based classification of liver lesions was $22^{[14]}$. Three studies included over 5,000 patients and were included in our big data cohort [16,30,35]. The largest number of included patients was 199,783 [30]. Most studies (n = 16) looking at prognostic uses of AI in HPB surgery had fewer than 500 patients. Two studies had fewer than 5,000 patients, but were included in our big data cohort due to the high number of images and image reports included [58,63]. Eleven studies looking at interventional uses of AI in HPB surgery did not use actual patient data, but used simulations-based approaches [69,70,75,76,81,82,84,85,91,92,104]. There was little mention or use of "explainable AI" concepts in any of the included studies.

Conceptual mapping of AI research in HPB surgery

Following data extraction and study classification, we undertook a conceptual mapping exercise to identify key areas and relationships in AI use [Figure 4]. Many of the identified concepts involved outcome prediction (such as the risk of complication, or personalized survival predictions). Others utilized AI to support clinicians in the identification of a condition before, during, or after surgery (such as identifying malignancy, identifying complications early, or even the prevention of these by using AI to alert clinicians to unseen structures intraoperatively). Preoperative planning and surgical simulation were particularly key areas within the intervention grouping. Finally, within the conceptual mapping exercise, we identified several areas where AI may be useful as either a risk stratification tool or as an intervention in future research (purple text, Figure 4).

Diagnostic applications of artificial intelligence

Diagnostic applications of AI primarily involved interpreting images using computer vision models [Table 1 and Figure 4]. AI was used across a range of imaging modalities, including transabdominal ultrasound, endoscopic ultrasound, MRI and CT, to identify lesions or classify lesions into different radiomic subgroups of disease. Although the majority of preoperative, diagnostic AI work focused on imaging, there were studies investigating perioperative risk prediction. However, there were no studies that proposed to use AI as an intervention in preoperative care pathways. Therefore, it should be considered that preoperative AI may also be undertaken with a broader surgical focus, rather than specifically targeted at HPB populations and hence are not discussed in this review.

Prognostic applications of artificial intelligence

The majority of prognostic applications for AI were in the prediction of cancer recurrence and survival [Table 2 and Figure 4]. This was achieved using a variety of input data, including imaging, genetics, and clinical characteristics. Prediction models were developed for a variety of time points, including the first 30 days following surgery and for longer-term survival.

Table 1. Summary of included studies focusing on diagnostic uses of AI in HPB surgery

Authors	Year of publication	Location	Organ	AI method	Aim	Method	Data
Saftoiu et al. ^[13]	2012	Romania	Р	DL/CV	Assessed accuracy of real-time EUS elastography in pancreatic lesions using artificial neural network analysis	Prospective, blinded, multicentric study	EUS images
Kaizhi et al. ^[14]	2014	Japan	L	DL/CV	Proposes automatic classification method based on deep learning in contrast-enhanced ultrasonography (CEUS) of focal liver lesions	Case series	CEUS images
Gatos et al. ^[15]	2015	Greece	L	ML/CV	Design and implementation of a computer-based image analysis system employing the support vector machine system for the classification of liver lesions	Retrospective study	MRI images
Roch et al ^[16]	2015	USA	Р	NLP	Implement an automated Natural Language Processing based pancreatic cyst identification system	Single institution prospective pilot study	Patient records
Sada et al. ^[17]	2016	USA	L	NLP	Evaluated whether natural language processing document classification improves HCC identification	Retrospective study	Pathology/radiology reports
Kondo et al. ^[18]	2017	Japan	L	ML/CV	Proposes automatic classification method based on machine learning in CEUS of focal liver lesions	Single institution pilot study	CEUS images
Yang et al. ^[19]	2017	China	L	NLP	Assess gene expression in HCC using combined data from The Cancer Genome Atlas and NLP identified genes	Description of experiment	Gene library/ published literature
Kuwahara et al. ^[20]	2019	Japan	Р	DL	Investigate whether a deep learning algorithm using EUS images of IPMN could predict the diagnosis of malignancy	Retrospective study	EUS images
Shen et al. ^[21]	2019	China	Р	ML	Establish and validate a radiomics diagnosis model for the classification of three subtypes of pancreatic lesion	Retrospective study	CT images
Lei Xu et al. ^[22]	2019	China/ USA	G	ML/CV	Develop and validate a prediction model for preoperative LN status evaluation in ICC patients	Retrospective study	MRI images
Brown et al. ^[23]	2019	Canada	L	NLP/ML	Explore natural language processing to predict downstream radiology resource utilization in patients undergoing surveillance for HCC	Retrospective study	Radiology reports
Watson et al. ^[24]	2020	USA	Р	DL	Use CT-guided deep learning techniques to predict malignancy of PCNs	Retrospective pilot study	CT images
Liu et al. ^[25]	2020	China	L	NLP/DL	Designed an NLP pipeline for the direct extraction of clinically relevant features of liver cancer from radiology reports	Retrospective study	Radiology reports
Mao et al. ^[26]	2021	China	L	ML	Investigate the performance of an ultrasound-based radiomics approach to differentiate primary liver cancer from metastatic liver cancer	Retrospective study	US images
Jang et al. ^[27]	2021	South Korea	G	DL/CV	Evaluate the diagnostic performance of AI in differentiating biliary lesions using EUS images	Retrospective study	EUS images
Dongyan et al. ^[28]	2021	China	G	DL/CV	Assessed duodenoscopy assisted	Pilot study	ERCP/

					by visual sensing technology based on convolutional neural network algorithm in the diagnosis and treatment of gallstones		surgery images
Kim et al. ^[29]	2021	South Korea	G	DL/CV	Aimed to differentiate gallbladder polyps in ultrasound images using deep learning		US images
Yamashita et al. ^[30]	2021	USA	Р	NLP	Identify patients with pancreatic cystic lesions and extract measurements from imaging reports using NLP	Retrospective study	Radiology reports
Chong et al. ^[31]	2022	China	L	CV/ML	Investigate the impact of MRI- based radiomics on predicting GPC3 expression and the relevant recurrence-free survival in liver cancer	Retrospective study	MRI images
Liu et al. ^[32]	2022	USA	L	ML	Machine learning-based methods to select clinical and morphologic features to differentiate hepatocellular adenoma subtypes		Pathology specimens/patient records
Schuessler et al. [33]	2022	Germany	L	ML	Differentiation of hemodynamically significant and non-significant coronary stenoses in patients undergoing evaluation for liver transplant	Retrospective study	CTA images
Chang et al. ^[34]	2022	China	G	DL	Explore the application value of the neural network and genetic algorithms in the detection and prognosis of tumor markers in patients with gallbladder cancer	Retrospective study	Tumor-markers
Kooragayala et al. ^[35]	2022	USA	P	NLP	Utilized an NLP algorithm to quantify the incidence of clinically relevant pancreatic lesions in CT imaging	Retrospective study	Radiology reports

CV: Computer vision; CTA: CT angiogram; CEUS: Contrast-enhanced ultrasonography; DL: deep learning; EUS: endoscopic ultrasound; GPC3: Glypican 3 (protein-coding gene); G: gallbladder; HCC: hepatocellular carcinoma; IPMN: Intraductal papillary mucinous neoplasm of the pancreas; ICC: intrahepatic cholangiocarcinoma; L: liver; ML: machine learning; LN: lymph node; NLP: natural language processing; PCN: pancreatic cystic neoplasms; P: pancreas.

Interventional applications of artificial intelligence

We identified several key concepts around supporting interventions with AI assistance [Table 3 and Figure 4]. Intraoperative vision was a major area, with multiple studies focusing on improving the visualization of unseen structures, which may cause significant patient harm if inadvertently injured (e.g., major blood vessels or the bile duct). This was achieved through virtual or augmented reality, where inputs from other data sources such as CT and MRI are combined (sensor fusion) and overlain on real-time images (e.g., through laparoscopic/robot-assisted surgery video source) to produce an augmented view of the surgical field.

Preoperative surgical planning and simulation were also identified as key concepts. There were numerous studies that aimed to develop virtual reality models or other digital interventions which permitted surgeons to plan complex operations with the aim of minimizing complications. This was proposed to be achieved through pre-surgery operative simulation/rehearsal (advantages when unusual anatomy identified) or by using AI methods to predict severe complications such as post-hepatectomy liver failure (PHLF).

Artificial intelligence tasks

We identified several common AI tasks being applied in HPB surgery. Classification is where data can be assigned to groups based on a defined shared characteristic. Classification algorithms were frequently

Table 2. Summary of included studies focusing on prognostic uses of AI in HPB surgery

Authors	Year of publication	Location	Organ	AI method	Aim	Design	Data
Singal et al. ^[36]	2013	USA	L	ML	Develop and compare predictive models for HCC development among cirrhotic patients using conventional regression analysis and machine-learning algorithms	Prospective study	Patient factors
Banerjee et al. ^[37]	2015	USA	L	ML/CV	RVI was assessed for its ability to predict MVI and outcomes in patients with HCC who underwent surgical resection or liver transplant	Prospective evaluation of a retrospective cohort	CT images
Walczak et al. ^[38]	2017	USA	Р	ML	Assess the accuracy of artificial neural networks in predicting survival in patients with pancreatic cancer using both clinical and patient-centered data	Retrospective study	Patient factors
Ying Zhou et al. ^[39]	2017	China	L	ML/CV	Develop a CT-based radiomics signature and assess its ability to preoperatively predict the early recurrence (≤1 year) of hepatocellular carcinoma (HCC)	Retrospective study	CT images
Zheng et al. ^[40]	2018	China	L	ML/CV	Developed a CT-based radiomic nomogram to predict recurrence- free survival rates for HCC after resection, ablation, and transplant	Retrospective study	CT images
Ivanics et al. ^[41]	2019	Canada	L	ML	Leverage machine learning to develop an accurate post- transplantation HCC recurrence prediction calculator	Retrospective study	Patient factors
Sala Elarre et al. ^[42]	2019	Spain	P	ML	Evaluated the 2-year relapse risk for pancreatic cancer patients based on a machine-learning algorithm	Retrospective study	Patient factors
Marinelli et al. ^[43]	2019	USA	L	NLP/DL	Determine if weakly supervised learning/active transfer learning can hasten clinical deployment of deep learning models for liver segmentation	Retrospective study	Radiology reports/CT images
Naseif et al. ^[44]	2019	USA	Р	ML/CV	Develop a delta-radiomic process based on machine learning to predict the treatment response of pancreatic cancer	Retrospective study	CT images
Shan et al. ^[45]	2019	China	L	ML/CV	A Prediction model based on peritumoral radiomics signatures from CT - investigate its efficiency in predicting early recurrence of HCC after curative treatment	Retrospective study	CT images
Chen et al. ^[46]	2020	China	L	CV/ML	Establish a radiomics-based clinical model for preoperative prediction of PHLF in HCC	Retrospective study	MRI images
Han et al. ^[47]	2020	South Korea	Р	ML	Risk prediction model for POPF using Al	Retrospective study	Patient factors
Kambakamba et al. ^[48]	2020	Switzerland	Р	ML	The potential of machine learning- based approaches to describe the pancreatic texture and to predict POPF	Retrospective study	CT images
Merath et al. ^[49]	2020	USA	L/P	ML	Assess ML algorithm to predict the patient risk of developing complications following liver, pancreatic or colorectal surgery	Retrospective study	Patient factors
Saillard et al. ^[50]	2020	France	L	DL	Evaluate the effectiveness of AI algorithms to predict survival following HCC resection	Development and testing of AI models	Histology images
Cesaretti et al. ^[51]	2020	France	L	ML/DL/CV	Automatizing liver-graft	Prospective	Surgery images

		Italy			segmentation from smartphone images and validating the robustness of this approach	study	
Mai et <i>al</i> . ^[52]	2020	China	L	DL	Establish and validate an artificial neural network model to predict severe post-hepatectomy liver failure in patients with hepatocellular carcinoma who underwent hemi-hepatectomy	Retrospective study	Patient factors
Liu et al. ^[53]	2020	Taiwan	L	ML	Devise a predictive model to predict postoperative survival within 30 days based on the patient's preoperative physiological measurement values	Retrospective study	Patient factors
Schoenberg et al. ^[54]		Germany	L	ML	Developing and validating a machine-learning algorithm to predict which patients are sufficiently treated by LR	Retrospective study	Patient factors
Szpakowski et al. ^[55]	2020	USA	G	NLP	Determine the growth pattern of GPs and their association with GBC	Retrospective study	Radiology reports
Capretti et al. ^[56]	2021	Italy Portugal	Р	CV/ML	Develop a reliable and reproducible machine learning-based multimodal risk model capable of predicting CR-POPF by combining radiomic features and morphologic features	Retrospective study	CT images/patient factors
Sun <i>et al.</i> ^[57]	2021	China	L	DL	Develop a model to predict HCC recurrence	Retrospective study	Patient factors
Xie et al. ^[58]	2021	USA	Р	NLP	Develop and apply a natural language processing algorithm for the characterization of patients diagnosed with chronic pancreatitis	Retrospective study	Radiology reports
Hayashi et al. ^[59]	2022	Japan	Р	ML	Predict recurrence and metastatic sites in pancreatic cancer following curative surgery	Retrospective study	Histology images
Li et al. ^[60]	2022	China	Р	ML	Develop and validate clinical- radiomics models that preoperatively predict 1 and 2-year recurrence of PDAC	Retrospective study	CT images/patient factors
Noh et al. ^[61]	2022	South Korea	L	ML	Machine learning-based survival rate prediction of hepatocellular carcinoma patients	Retrospective study	Patient factors
Morris-Stiff et al. ^[62]	2022	USA	G	NLP	Develop a clinical prediction model for asymptomatic gallstones	Retrospective study	Radiology reports
Narayan et al. ^[63]	2022	USA	L	ML/CV	Developed an objective, computer vision artificial intelligence (CVAI) platform to score donor liver steatosis and compared its capability for predicting EAD against pathologist steatosis scores		Histology images
Cotter et al. [64]	2022	USA	G	ML	Machine-based learning approach to stratify patients with gallbladder cancer into distinct prognostic groups using preoperative variables		Patient factors

CV: Computer vision; CR-POPF: clinically relevant postoperative pancreatic fistula; EAD: early allograft dysfunction; G: gallbladder; GPs: gallbladder polyps; GBC: gallbladder cancer; L: liver; LR: liver resection; ML: machine learning; MVI: microvascular invasion; P: pancreas; PHLF: post-hepatectomy liver failure; POPF: postoperative pancreatic fistula; PDAC: pancreatic ductal adenocarcinoma; RVI: radiogenomic venous invasion.

Table 3. Summary of included studies focusing on interventional uses of AI in HPB surgery

Author	Year of publication	Location	Organ	AI method	Aim	Design	Data
Spinczyk et al. ^[65]	2012	Poland	L	ML	Measurement of liver motion during surgery	Single center feasibility study	Surgery videos
Okamato et al. [66]	2012	Japan	L/G	CV	Evaluate the utility of an image display system for augmented reality in hepatobiliary surgery under laparotomy	Case series	CT images
Fang et al. ^[67]	2013	China	L	CV	Assess the use of 3d planning for hepatectomy for hepatolithiasis	Retrospective study	CT images
Zein et al. ^[68]	2013	USA	L	CV	Establish anatomical precision and volumetric accuracy in 3D- printed models for donors and recipients undergoing LDLT	Prospective paired case series	CT/MRI images
Shahin et al. ^[69]	2014	Germany	L	ML	Develop a navigation approach to quickly compensate for tumor movements due to surgical manipulation	Description of experiment	US images
Yang et al. ^[70]	2014	South Korea	L	ML	Develop a user-centered 3D virtual liver surgery planning system algorithm	Pilot study	CT images
Fang et al. ^[71]	2014	China	P	CV	Investigate the clinical significance of 3-dimensional reconstruction of peripancreatic vessels for patients with suspected pancreatic cancer	Randomized parallel single- blind study	CT images
Begin et al. ^[72]	2014	Canada	L	CV	Evaluate an alternative automatic technique of liver volumetry based on a novel 3D virtual planning software and compare it to the manual technique	Prospective study	CT images
Bliznakova et al. ^[73]	2015	Bulgaria	L	CV/ML	Develop and test a software application for evaluation of the residual function of the liver prior to the intervention of the surgeons	Case series	CT images
Katic et al. ^[74]	2015	Germany	P/G	DL	Demonstrate the usefulness of deep learning model to identify surgical steps during laparoscopic cholecystectomy and pancreatic resections	Case series	Surgery videos
Song et al. ^[75]	2015	UK	L	ML	Describe a freehand laparoscopic ultrasound-based system that registers liver vessels in ultrasound with MR/CT data	Description of experiment and case series	US/CT/MRI images
Wang et al. ^[76]	2015	China USA	L	ML	Demonstrate the potential of homotopy-based SSC for shape- prior modeling in the liver surgical planning system	Description of experiment	CT images
Fang <i>et al.</i> ^[77]	2015	China	L	CV	Compare outcomes of surgery on centrally located HCC with and without 3D planning	Retrospective study	CT/MRI images
Zhang et al. ^[78]	2015	China	G	CV	Assess the use of 3d planning in surgery on bile duct cancer	Case series	CT images
Okuda et al. ^[79]	2015	Japan	G	CV	Evaluate the impact of 3D CT cholangiography on operative planning and outcomes of biliary malignancies	Retrospective study	CT images
Okamato et al. ^[80]	2015	Japan	P	CV	Evaluate the utility of navigation surgery using augmented reality technology for pancreatectomy	Case series	CT images
Fortmeier et al. ^[81]	2016	Germany	G/L	CV	Creation of a visuo-haptic simulation framework for the training and planning of the first steps of PTCD	Description of experiment	X-ray/US/CT images

[82]	2016	6 11 1		C) /	D	5 (
Fusaglia et al. ^[82]	2016	Switzerland	L	CV	Present a novel LRS-based IGS system for laparoscopic liver procedures	Description of experiment	Laparoscopic surgery images
Ntourakis <i>et al.</i> ^[83]	2016	France	L	CV	Investigate the potential of AR- based navigation to help locate and resect colorectal liver metastases	Prospective pilot study	CT/MRI images
Mastmeyer et al. ^[84]	2017	Germany	L	ML	Compare axial force errors of simulated needle insertion for liver biopsy	Description of experiment	US/CT images
Sauer et al. ^[85]	2017	Germany	L	CV	Evaluates the application of a mixed reality head-mounted display for the visualization of anatomical structures during liver surgery	Case study	CT images
Cai et al. ^[86]	2017	China	L	CV	Report experience of using a 3d visualization system during hepatic resection	Case series	CT images
Miyamoto <i>et al.</i> ^[87]	2017	Japan	Р	CV	3d planning - compared the pancreatic duct diameter and location with the intraoperative findings	Retrospective study	CT images
Hu et al.[88]	2018	China	L	CV	Assess the use of 3d planning for specific hepatectomy	Retrospective study	CT images
Mise et al. ^[89]	2018	Japan	L	CV	Assess how virtual hepatectomy conducted using surgical planning software influences the outcomes of liver surgery	Retrospective study	CT images
Mascagani et al. ^[90]	2019	Italy France	G	DL	Develop and test a method for consistent critical view of safety evaluation and reporting in videos which could be developed into the deep learning model	Pilot study	Laparoscopic surgery images
Teatini et al. ^[91]	2019	Norway	L	ML	Test if intraoperative imaging is necessary for accurate surgical navigation for laparoscopic liver resection	Description of experiment	CT images
Ho et al. ^[92]	2020	New Zealand	L	CV	Describe the computational pipeline that integrates into silico liver models and algorithms to aid surgical planning for liver resection	Description of experiment	CT/US/MRI images
Prevost et al. ^[93]	2020	Switzerland	L	CV	Evaluate the technical feasibility and the clinical impact of a new augmented reality system for laparoscopic liver surgery	Pilot study	CT/MRI images
Sandal et al. ^[94]	2021	Turkey	G	ML	Determine the usefulness of fuzzy logic algorithm to evaluate risk in patients undergoing laparoscopic cholecystectomy	Case series	Patient factors
Cervantes-Sanchez et al. ^[95]	2021	Mexico Germany	L/G	ML/DL	Machine/deep learning methods are combined with HSI-goal is the automatic discrimination using HSI of the bile duct from the gallbladder and liver	Description of experiment and case series	Hyperspectral images
Tokuyasu et al. ^[96]	2021	Japan	G	DL/CV	Develop a system that outlines laparoscopic cholecystectomy landmarks on endoscopic images in real time	Description of experiment and case report	Laparoscopic surgery images
Guzman-Garcia et al. ^[97]	2021	Spain	G	NLP/DL	Assess if analysis of surgeons' speech using natural language processing provide deeper insight into the surgical decision-making processes during laparoscopic cholecystectomy	Description of experiment	Audio transcripts of surgical videos
Imler et al. ^[98]	2021	USA	G	NLP/ML	Demonstrate the feasibility of using NLP to measure adherence	Retrospective study	ERCP procedure reports

					to ERCP quality indicators across individual providers		
Ruzzenente <i>et al.</i> ^[99]	2022	Italy	L	ML	Evaluate four difficulty scoring systems in liver surgery and determine the most important characteristics using random forest models	Case series	Patient factors
Mascagani et al. ^[100]	2022	France Italy	G	DL/CV	Creation of an assessment tool for CVS	Multicentre retrospective validation	Annotated surgery videos
Mascagani et al. ^[101]	2022	France Italy	G	DL/CV	Develop a deep learning model to automatically segment hepatocystic anatomy and assess the criteria defining the critical view of safety (CVS)	Case series	Annotated surgery images
Tranter-Entwistle et al. [102]	2022	New Zealand Australia	G	ML/CV	Use a commercially available ML-driven platform to evaluate a subjective grading of operative difficulty in laparoscopic cholecystectomy	Case series	Surgery videos
Liu et al. ^[103]	2022	China	G	ML/CV	Develop model and preliminarily verify its potential surgical guidance ability by comparing its performance with surgeons during laparoscopic cholecystectomy	Pilot study	Annotated surgery images
Ugail et al. ^[104]	2022	UK	L	ML/DL/CV	Present the use of deep learning for the non-invasive evaluation of donor liver organs	Pilot study	Surgical images
Mojtahed et al. ^[105]	2022	USA Netherlands Portugal	L	DL/CV	Demonstrate the accuracy and precision of liver segment volume measurements	Retrospective study	MRI images
Han et al. ^[106]	2022	China	L	DL/CV	Develop and validate a three- dimensional convolutional neural network model for automatic liver segment segmentation	Retrospective study	MRI images
Ward et al. ^[107]	2022	USA	G	DL/CV	Trained model to identify PGS	Development and testing of AI models	Annotated surgery images
Madani et al. ^[108]	2022	Canada USA UK	G	DL/CV	Develop and evaluate the performance of models that can identify safe and dangerous zones of dissection during laparoscopic cholecystectomy	Development and testing of AI models	Annotated surgery images
Loukas et al. ^[109]	2022	Greece	G	DL/CV	Framework for vascularity classification of the gallbladder wall from intraoperative images of laparoscopic cholecystectomy	Development and testing of AI models	Surgery images
Golany et al. ^[110]	2022	Israel	G	DL/CV	Developed algorithm and evaluated its performance in recognizing surgical phases of laparoscopic cholecystectomy	Development and testing of AI models	Annotated surgery videos

AR: Augmented reality; CVS: Critical view of safety; G: gallbladder; HSI: hyperspectral images; IGS: image guided surgery; L: liver; LDLT: living donor liver transplant; LC: laparoscopic cholecystectomy; LRS: laser range scanners; PTCD: percutaneous transhepatic biliary drain; PGS: parkland grading scale for cholecystitis; P: pancreas; SSC: sparse shape composition.

derived from imaging to group lesions into disease subgroups^[15,18,21]. In another example, decision tree models were used to predict the occurrence of any complication and of specific complications in patients undergoing liver, pancreatic and colorectal surgery^[49]. These algorithms were superior to the American Society of Anaesthesiologists (ASA) classification at predicting the chance of any complication. They performed well for specific complications, with c-statistics ranging from 0.76 to 0.98. As described in our conceptual mapping exercise, the augmentation of surgical fields to highlight relevant anatomy is a key area

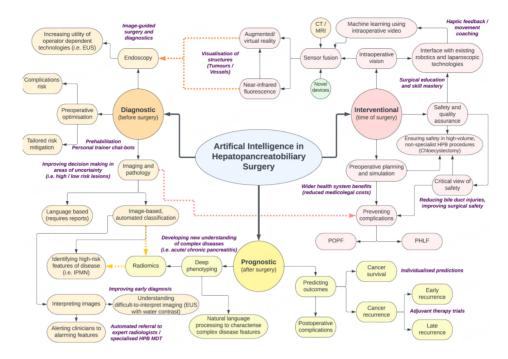


Figure 4. Conceptual mapping of areas of AI research in HPB surgery, stratified by treatment timing. This exercise identified several areas of overlap (dashed arrows) across different divisions, in addition to several areas where AI would be useful for future research (purple free text). CT: Computed tomography; IPMN: intraductal papillary mucinous neoplasm; MRI: magnetic resonance imaging; PHLF: post hepatectomy liver failure; POPF: postoperative pancreatic fistula.

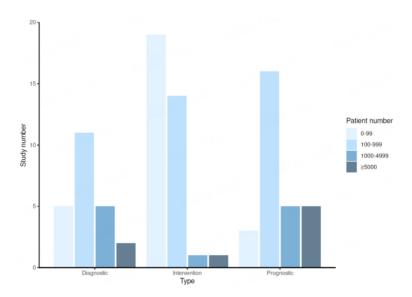


Figure 5. Number of studies utilizing large datasets stratified by Al approach.

of research. This is an example of object detection and is a task well suited to laparoscopic cholecystectomy. Madani *et al.* describe a deep learning algorithm that intraoperatively recognizes "go," or "no-go" areas of dissection to minimize the risk of adverse events such as bile duct injury^[108].

The intersection of Al and big data in HPB surgery

We identified eleven studies utilizing large datasets in HPB surgery applications [Table 4]. Nine have been published since 2020. Eight of the 11 identified papers utilized NLP to extract data from large numbers of reports, mainly with the aim of identifying patients with a specific condition, either for phenotyping or to identify patient cohorts. The majority originated from the USA (n = 9; 82%), with one study from China and one from South Korea [Figure 5].

An example of the use of an NLP algorithm to identify patient cohorts and devise a means of following-up incidental scan results was by Kooragayala *et al.*^[35]. This study used a keyword search associated with suspicious pancreatic lesions in over 18,000 patients who underwent a CT scan following trauma over a 10-year period. The approach identified pancreatic lesions in the reports of 232 patients, of which 48 were intraductal papillary mucinous neoplasms (IPMNs). In addition, this paper proposed a management flowchart for incidentally found pancreatic lesions. A further example of the use of NLP in high-volume data was demonstrated by Morris-Stiff *et al.*^[62], who used NLP to identify asymptomatic gallstones from a cohort of 49,414 patients. They were then able to identify risk factors for progression to symptomatic gallstone disease in this asymptomatic cohort and showed an approximately 2% risk of symptomatic progression per year.

DISCUSSION

This review has identified a rapid increase in the quantity of AI research conducted within HPB surgery. Much of this is focused on intraoperative applications of AI, such as the use of image analysis and computer vision to address diagnostic and prognostic uncertainties. In addition, the use of 3D reconstruction and augmented reality models coupled with data-driven prediction algorithms has emerged as an important area, particularly in preoperative planning and intraoperative decision-making in liver surgery. Artificial intelligence methods have the most to offer in the distillation of multi-dimensional information to tractable knowledge that can be applied to individual treatment decisions. HPB surgery represents a good target for these technologies, given the frequently complex disease patterns and diverse treatment pathways employed.

Most artificial intelligence approaches rely on large volumes of data for training purposes. Of the commonly described features of big data, the included studies reflect "volume" and "variety" with fewer utilizing real-time rapidly changing data ("velocity"). Data sources included large pre-existing databases, collated images and imaging reports. Two notable databases used were the Cancer Genome Atlas and the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database, which were widely used across a range of studies. Natural language processing was frequently employed to extract information from imaging reports and other healthcare text sources. In one study, NLP was used to identify concerning pancreatic lesions in historical imaging reports^[35]. This demonstrates the depth and flexibility in AI techniques to adapt to changes in patient management over time - the malignant potential of particular pancreatic cysts has only been appreciated in recent years. Moreover, these approaches may be adapted to help non-specialists managing HPB conditions, particularly in low-resource settings with limited access to tertiary HPB services. As computer vision approaches improve, the supplementation of local imaging and pathology reporting with AI-derived diagnostic support may leapfrog the requirement for massive and often unaffordable training of humans to perform these tasks.

There are, however, genuine risks of bias arising with the development of these techniques. We found significant geographical variation in current research, with no studies incorporating data from low- and middle-income countries (LMICs). If the benefits of AI are to be shared equitably across contexts, then investigators must consider how solutions can broadly generalize between populations and avoid

Table 4. Summary of studies leveraging large datasets for AI use in HPB surgery

Author	Year of publication	Study description
Roch et al.[16]	2015	566,233 CT reports from 50,669 patients analysed for keywords associated with Pancreatic Cysts using NLP
Yang et al. ^[19]	2017	The Cancer Genome Atlas catalogs genes associated with 33 cancers. Genes associated with HCC were extracted from database and checked for overlap with genes identified in 35 years of published literature using NLP
Merath et al. ^[49]	2020	15,657 patients undergoing liver, pancreatic or colorectal surgery (685 liver and 6,012 pancreatic) retrospectively were identified from the American College of Surgeons National Surgical Quality Improvement Program database. Risk-prediction Machine Learning model created from pre-op characteristics
Szpakowski et al. ^[55]	2020	365 Gallbladder Cancer and 35,970 Gallbladder Polyp patients were identified from 622,227 patients in a Californian health system. NLP was used to identify Polyps from Ultrasound reports
Xie et al. [58]	2021	58,085 imaging reports from $6,346$ Chronic Pancreatitis patients were used to develop an NLP algorithm that could characterize features of Chronic Pancreatitis
Yamashita et al. ^[30]	2021	430,426 imaging reports from 199,783 patients were used to create an NLP algorithm to identify the presence and size of Pancreatic Cysts
Imler et al. ^[98]	2021	23,674 ERCP reports were analyzed for quality measures using NLP
Noh et al. ^[61]	2022	Machine learning-based prediction models for survival applied to 10,742 HCC patients
Morris-Stiff et al. ^[62]	2022	Ultrasound reports identified 49,414 patients with gallstones. NLP algorithm trained to identify asymptomatic patients (22,257)
Narayan et al. ^[63]	2022	25,494 images from 90 liver biopsies were used to develop Machine Learning Computer Vision models to score liver steatosis
Kooragayala et al. ^[35]	2022	NLP was used to identify pancreatic lesions from 18,769 adult trauma CT reports

CT: Computed tomography; ERCP: endoscopic retrograde cholangiopancreatography; HCC: hepatocellular carcinoma; NLP: natural language processing.

exacerbating pre-existing healthcare disparities. This is a widely discussed and controversial topic in the broader AI field. Inherent systematic biases in datasets clearly exist, with some of the most obvious reflecting racial, socioeconomic and gender-based prejudices. Addressing these complex issues is crucial across all AI work, including in HPB surgery. The majority of HPB disease occurs LMICs^[111], so it is essential that these populations are better represented in current HPB research more broadly and AI research specifically.

In addition to geographical disparities, concerns around the transparency of AI algorithms and lack of explainability are likely to hamper uptake and trust in clinical practice^[112]. The need for explainability is rooted in evidence-based medicine, which relies on transparency and reproducibility in decision-making^[113]. Without explainable AI, patient trust in healthcare will erode. Others have argued that true explainability represents a false hope, and that explainability methods cannot deliver meaningful patient-level interpretability^[114]. The focus should be on robust internal and external validation. In this review, we found little reference to concepts of explainability in included studies. It is important that these issues are explored and addressed, particularly when developing algorithms orientated toward patient-facing prognostication. As AI systems transition from research to clinical practice, transparency and reliability are paramount if trust is to be built and maintained^[115,116].

The ability to understand and reproduce scientific findings is imperative, yet reporting the quality of included studies was variable. A number of useful reporting guidelines now exist, specifically orientated toward AI. In 2019, a rigorous process of literature review, expert consultation, Delphi survey, and consensus meeting resulted in the SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) and CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence) standards^[117]. In addition, two additional tools are currently under

development: Transparent Reporting of a multivariable prediction model of Individual Prognosis Or Diagnosis AI extension (TRIPOD-AI) and the Prediction model Risk Of Bias Assessment Tool (PROBAST-AI)^[118]. These promise to provide standardization and assessment tools that will greatly increase the quality of clinically-orientated AI study reporting.

Where should AI research in HPB be focussed? Most studies in this review concentrated on image analysis. While this is an important area, there are many other challenges in HPB which could benefit from the application of AI. Research prioritization in AI must be determined by broad stakeholder groups, led primarily by the patient and public representatives, accounting for a range of viewpoints and actively engaging non-technical individuals in the design and delivery of research studies. We found little mention of engagement with stakeholder groups in included studies (e.g., patients, clinicians and the wider HPB community), which is crucial if these complex interventions are to move into clinical practice successfully. Moreover, included studies focused on the development of AI models rather than on the implementation of AI systems. While this is understandable given the current stage of development, future work should focus on how broader AI-driven systems can be implemented safely into clinical pathways and be clear about the function they serve.

Our study has several limitations. First, there is significant heterogeneity in the content and outcomes of the various studies included. While meaningful comparisons are challenging, a useful overview of common issues and themes affecting AI research in HPB is provided. Second, as is the nature of a scoping review, it is possible that studies meeting the inclusion criteria have been omitted, leading to an incomplete presentation of the current literature. For example, papers focusing on NLP and the gallbladder were relatively poorly represented in exploratory literature searches, possibly reflecting poor search descriptors and study labeling. Finally, as AI and associated concepts are undergoing rapid development, study inclusion criteria are in flux. Improving formal definitions in these emerging fields will help study classification and ease of literature identification.

The use of AI and big data in HPB surgery and medicine, more generally, is rapidly expanding. AI promises benefits in the delivery of clinical care and may result in future improvement of healthcare outcomes. This review identifies crucial interlinking conceptual areas of AI as applied to HPB surgery. Future research must address issues of bias, transparency, and explainability and ensure that innovation is representative of HPB patient populations across the world.

DECLARATIONS

Authors' contributions

Participated in the design of the study, data collection, screening, interpretation and presentation, writing of the manuscript and submitted the manuscript: McGivern KG

Participated in the design of the study, data collection, screening, interpretation and presentation, and critical evaluation of the manuscript: Knight SR

Participated in the writing and critical evaluation of the manuscript: Drake TM

Participated in data screening and presentation: Lucocq J

Participated in the critical evaluation of the manuscript: Bernabeu MO, Clark N, Fairfield C, Pius R, Shaw C, Seth S

Participated in the design of the study and critical evaluation of the manuscript: Harrison EM All authors approved the final version of the manuscript

Availability of data and materials

Not applicable.

Financial support and sponsorship

None.

Conflicts of interest

All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Copyright

© The Author(s) 2023.

REFERENCES

- McCarthy J. What is artificial intelligence? Available from: https://www.diochnos.com/about/McCarthyWhatisAI.pdf [Last accessed on 23 Mar 2023].
- Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Available from: https://journals.lww.com/annalsofsurgery/Abstract/2018/07000/Artificial_Intelligence_in_Surgery_Promises_and.13.aspx [Last accessed on 23 Mar 2023].
- 3. Gumbs AA, Alexander F, Karcz K, et al. White paper: definitions of artificial intelligence and autonomous actions in clinical surgery.

 Art Int Surg 2022;2:93-100. DOI
- 4. Gumbs AA, Perretta S, d'Allemagne B, Chouillard E. What is Artificial Intelligence Surgery? Art Int Surg 2021;1:1-10. DOI
- 5. Elyan E, Vuttipittayamongkol P, Johnston P, et al. Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. *Art Int Surg* ;2022:2. DOI
- Bari H, Wadhwani S, Dasari BVM. Role of artificial intelligence in hepatobiliary and pancreatic surgery. World J Gastrointest Surg 2021;13:7-18. DOI PubMed PMC
- 7. Mauro A, Greco M, Grimaldi M. What is big data? Am J Phys 2015;1644:97-104. DOI
- 8. Vedula SS, Hager GD. Surgical data science: The new knowledge domain. *Innov Surg Sci* 2017;2:109-21. DOI PubMed PMC
- NHS England. 2022/23 priorities and operational planning guidance. Available from: https://www.england.nhs.uk/wp-content/ uploads/2022/02/20211223-B1160-2022-23-priorities-and-operational-planning-guidance-v3.2.pdf [Last accessed on 23 Mar 2023].
- Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467-73. DOI PubMed
- 11. Knight SR, Ots R, Maimbo M, Drake TM, Fairfield CJ, Harrison EM. Systematic review of the use of big data to improve surgery in low- and middle-income countries. *Br J Surg* 2019;106:e62-72. DOI PubMed PMC
- Covidence. Veritas health innovation, Melbourne, Australia. Available from: https://www.covidence.org/ [Last accessed on 23 Mar 2023].
- 13. Săftoiu A, Vilmann P, Gorunescu F, et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. *Clin Gastroenterol Hepatol* 2012;10:84-90.e1. DOI PubMed
- 14. Wu K, Chen X, Ding M. Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. *Optik* 2014;125:4057-63. DOI
- Gatos I, Tsantis S, Karamesini M, Skouroliakou A, Kagadis G. Development of a support vector machine based image analysis system for focal liver lesions classification in magnetic resonance images. J Phys Conf Ser 2015;633:012116. DOI
- Roch AM, Mehrabi S, Krishnan A, et al. Automated pancreatic cyst screening using natural language processing: a new tool in the early detection of pancreatic cancer. HPB 2015;17:447-53. DOI PubMed PMC
- Sada Y, Hou J, Richardson P, El-Serag H, Davila J. Validation of case finding algorithms for hepatocellular cancer from administrative data and electronic health records using natural language processing. Med Care 2016;54:e9-14. DOI PubMed PMC
- 18. Kondo S, Takagi K, Nishida M, et al. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles. *IEEE Trans Med Imaging* 2017;36:1427-37. DOI PubMed
- 19. Yang H, Zhang X, Cai XY, et al. From big data to diagnosis and prognosis: gene expression signatures in liver hepatocellular carcinoma. *PeerJ* 2017;5:e3089. DOI PubMed PMC

- 20. Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary mucinous neoplasms of the pancreas. *Clin Transl Gastroenterol* 2019;10:1-8. DOI PubMed PMC
- 21. Shen X, Yang F, Yang P, et al. Non-invasive diagnosis model for pancreatic cystic tumors based on machine learning-radiomics using contrast-enhanced CT. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3294088 [Last accessed on 27 Mar 2023].
- 22. Xu L, Yang P, Liang W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. *Theranostics* 2019;9:5374-85. DOI PubMed PMC
- 23. Brown AD, Kachura JR. Natural language processing of radiology reports in patients with hepatocellular carcinoma to predict radiology resource utilization. *J Am Coll Radiol* 2019;16:840-4. DOI PubMed
- 24. Watson MD, Lyman WB, Passeri MJ, et al. Use of artificial intelligence deep learning to determine the malignant potential of pancreatic cystic neoplasms with preoperative computed tomography imaging. *Am Surg* 2021;87:602-7. DOI PubMed
- 25. Liu H, Xu Y, Zhang Z, et al. A natural language processing pipeline of chinese free-text radiology reports for liver cancer diagnosis. *IEEE Access* 2020;8:159110-9. DOI
- 26. Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. *Eur Radiol* 2021;31:4576-86. DOI
- Jang SI, Kim YJ, Kim EJ, et al. Diagnostic performance of endoscopic ultrasound-artificial intelligence using deep learning analysis
 of gallbladder polypoid lesions. J Gastroenterol Hepatol 2021;36:3548-55. DOI PubMed
- Li D, Du B, Shen Y, Ge L, Lv H. Artificial intelligence-assisted visual sensing technology under duodenoscopy of gallbladder stones. *J Sensors* 2021;2021:1-13. DOI
- 29. Kim T, Choi YH, Choi JH, Lee SH, Lee S, Lee IS. Gallbladder polyp classification in ultrasound images using an ensemble convolutional neural network model. *J Clin Med* 2021;10:3585. DOI PubMed PMC
- Yamashita R, Bird K, Cheung PY, et al. Automated identification and measurement extraction of pancreatic cystic lesions from freetext radiology reports using natural language processing. *Radiol Artif Intell* 2022;4:e210092. DOI PubMed PMC
- 31. Chong H, Gong Y, Zhang Y, Dai Y, Sheng R, Zeng M. Radiomics on gadoxetate disodium-enhanced mri: non-invasively identifying glypican 3-positive hepatocellular carcinoma and postoperative recurrence. *Acad Radiol* 2023;30:49-63. DOI PubMed
- 32. Liu Y, Liu YZ, Sun L, Zen Y, Inomoto C, Yeh MM. Subtyping of hepatocellular adenoma: a machine learning-based approach. Virchows Arch 2022;481:49-61. DOI PubMed
- 33. Schuessler M, Saner F, Al-Rashid F, Schlosser T. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm. *Eur Radiol* 2022;32:8761-8. DOI PubMed PMC
- 34. Chang Y, Wu Q, Chi L, Huo H, Li Q. Adoption of combined detection technology of tumor markers via deep learning algorithm in diagnosis and prognosis of gallbladder carcinoma. *J Supercomput* 2022;78:3955-75. DOI
- 35. Kooragayala K, Crudeli C, Kalola A, et al. Utilization of natural language processing software to identify worrisome pancreatic lesions. *Ann Surg Oncol* 2022;29:8513-9. DOI
- 36. Singal AG, Mukherjee A, Elmunzer BJ, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. *Am J Gastroenterol* 2013;108:1723-30. DOI PubMed PMC
- 37. Banerjee S, Wang DS, Kim HJ, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. *Hepatology* 2015;62:792-800. DOI PubMed PMC
- Walczak S, Velanovich V. An evaluation of artificial neural networks in predicting pancreatic cancer survival. J Gastrointest Surg 2017;21:1606-12. DOI PubMed
- 39. Zhou Y, He L, Huang Y, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. *Abdom Radiol* 2017;42:1695-704. DOI PubMed
- 40. Zheng BH, Liu LZ, Zhang ZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients. *BMC Cancer* 2018;18:1148. DOI PubMed PMC
- 41. Ivanics T, Nelson W, Patel MS, et al. The toronto postliver transplantation hepatocellular carcinoma recurrence calculator: a machine learning approach. *Liver Transpl* 2022;28:593-602. DOI PubMed
- 42. Sala Elarre P, Oyaga-Iriarte E, Yu KH, et al. Use of machine-learning algorithms in intensified preoperative therapy of pancreatic cancer to predict individual risk of relapse. *Cancers* 2019;11:606. DOI PubMed PMC
- 43. Marinelli B, Kang M, Martini M, et al. Combination of active transfer learning and natural language processing to improve liver volumetry using surrogate metrics with deep learning. *Radiol Artif Intell* 2019;1:e180019. DOI PubMed PMC
- 44. Nasief H, Zheng C, Schott D, et al. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. *NPJ Precis Oncol* 2019;3:25. DOI PubMed PMC
- 45. Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. *Cancer Imaging* 2019;19:11. DOI
- 46. Chen Y, Liu Z, Mo Y, et al. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics using Gd-EOB-DTPA-enhanced MRI: the liver failure model. *Front Oncol* 2021;11:605296. DOI PubMed PMC
- 47. Han IW, Cho K, Ryu Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence. *World J Gastroenterol* 2020;26:4453-64. DOI PubMed PMC
- 48. Kambakamba P, Mannil M, Herrera P, et al. Machine learning based texture analysis predicts postoperative pancreatic fistula in

- preoperative non-contrast enhanced computed tomography. HPB 2020;22:S384. DOI
- 49. Merath K, Hyer JM, Mehta R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery. *J Gastrointest Surg* 2020;24:1843-51. DOI PubMed
- 50. Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. *Hepatology* 2020;72:2000-13. DOI
- 51. Cesaretti M, Brustia R, Goumard C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis assessment. *Liver Transpl* 2020;26:1224-32. DOI PubMed
- 52. Mai RY, Lu HZ, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma. *Surgery* 2020;168:643-52. DOI
- 53. Liu CL, Soong RS, Lee WC, Jiang GW, Lin YC. Predicting short-term survival after liver transplantation using machine learning. *Sci Rep* 2020;10:5654. DOI PubMed PMC
- 54. Schoenberg MB, Bucher JN, Koch D, et al. A novel machine learning algorithm to predict disease free survival after resection of hepatocellular carcinoma. *Ann Transl Med* 2020;8:434. DOI PubMed PMC
- Szpakowski JL, Tucker LY. Outcomes of gallbladder polyps and their association with gallbladder cancer in a 20-year cohort. JAMA Netw Open 2020;3:e205143. DOI PubMed PMC
- 56. Capretti G, Bonifacio C, De Palma C, et al. A machine learning risk model based on preoperative computed tomography scan to predict postoperative outcomes after pancreatoduodenectomy. *Updates Surg* 2022;74:235-43. DOI PubMed
- 57. Sun LY, Ouyang Q, Cen WJ, Wang F, Tang WT, Shao JY. A model based on artificial intelligence algorithm for monitoring recurrence of HCC after hepatectomy. *Am Surg* 2021;11:31348211063549. DOI PubMed
- 58. Xie F, Chen Q, Zhou Y, et al. Characterization of patients with advanced chronic pancreatitis using natural language processing of radiology reports. *PLoS One* 2020;15:e0236817. DOI PubMed PMC
- 59. Hayashi K, Ono Y, Takamatsu M, et al. Prediction of recurrence pattern of pancreatic cancer post-pancreatic surgery using histology-based supervised machine learning algorithms: a single-center retrospective study. *Ann Surg Oncol* ;2022;4624-34. DOI PubMed
- 60. Li X, Wan Y, Lou J, et al. Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using radiomics of diagnostic computed tomography. *EClinicalMedicine* 2022;43:101215. DOI PubMed PMC
- 61. Noh B, Park YM, Kwon Y, et al. Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using multi-center data. *BMC Gastroenterol* 2022;22:85. DOI PubMed PMC
- 62. Morris-Stiff G, Sarvepalli S, Hu B, et al. The natural history of asymptomatic gallstones: a longitudinal study and prediction model. Clin Gastroenterol Hepatol 2023;21:319-327.e4. DOI PubMed
- 63. Narayan RR, Abadilla N, Yang L, et al. Artificial intelligence for prediction of donor liver allograft steatosis and early post-transplantation graft failure. *HPB* 2022;24:764-71. DOI PubMed
- 64. Cotter G, Beal EW, Poultsides GA, et al. Using machine learning to preoperatively stratify prognosis among patients with gallbladder cancer: a multi-institutional analysis. HPB 2022;24:1980-8. DOI PubMed
- Spinczyk D, Karwan A, Rudnicki J, Wróblewski T. Stereoscopic liver surface reconstruction. Wideochir Inne Tech Maloinwazyjne 2012;7:181-7. DOI PubMed PMC
- 66. Okamoto T, Onda S, Matsumoto M, et al. Utility of augmented reality system in hepatobiliary surgery. *J Hepatobiliary Pancreat Sci* 2013;20:249-53. DOI PubMed
- 67. Fang CH, Liu J, Fan YF, Yang J, Xiang N, Zeng N. Outcomes of hepatectomy for hepatolithiasis based on 3-dimensional reconstruction technique. *J Am Coll Surg* 2013;217:280-8. DOI PubMed
- 68. Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. *Liver Transpl* 2013;19:1304-10. DOI PubMed
- Shahin O, Beširević A, Kleemann M, Schlaefer A. Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions. Surg Endosc 2014;28:1734-41. DOI PubMed
- Yang X, Yu HC, Choi Y, et al. Development and usability testing of Dr. LiverTM: a user-centered 3D virtual liver surgery planning system. HFES 2014;58:698-702. DOI
- 71. Fang CH, Kong D, Wang X, et al. Three-dimensional reconstruction of the peripancreatic vascular system based on computed tomographic angiography images and its clinical application in the surgical management of pancreatic tumors. *Pancreas* 2014;43:389-95. DOI PubMed
- 72. Bégin A, Martel G, Lapointe R, et al. Accuracy of preoperative automatic measurement of the liver volume by CT-scan combined to a 3D virtual surgical planning software (3DVSP). Surg Endosc 2014;28:3408-12. DOI PubMed
- 73. Bliznakova K, Kolev N, Buliev I, et al. Computer aided preoperative evaluation of the residual liver volume using computed tomography images. *J Digit Imaging* 2015;28:231-9. DOI PubMed PMC
- 74. Katić D, Julliard C, Wekerle AL, et al. LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition. *Int J Comput Assist Radiol Surg* 2015;10:1427-34. DOI
- Song Y, Totz J, Thompson S, et al. Locally rigid, vessel-based registration for laparoscopic liver surgery. Int J Comput Assist Radiol Surg 2015;10:1951-61. DOI PubMed PMC
- Wang G, Zhang S, Xie H, Metaxas DN, Gu L. A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning. Med Image Anal 2015;19:176-86. DOI PubMed
- 77. Fang CH, Tao HS, Yang J, et al. Impact of three-dimensional reconstruction technique in the operation planning of centrally located

- hepatocellular carcinoma. J Am Coll Surg 2015;220:28-37. DOI PubMed
- 78. Zhang J, Qiao QL, Guo XC, Zhao JX. Application of three-dimensional visualization technique in preoperative planning of progressive hilar cholangiocarcinoma. *Am J Transl Res* 2018;10:1730-5. PubMed PMC
- 79. Okuda Y, Taura K, Seo S, et al. Usefulness of operative planning based on 3-dimensional CT cholangiography for biliary malignancies. *Surgery* 2015;158:1261-71. DOI PubMed
- Okamoto T, Onda S, Yasuda J, Yanaga K, Suzuki N, Hattori A. Navigation surgery using an augmented reality for pancreatectomy. *Dig Surg* 2015;32:117-23. DOI PubMed
- 81. Fortmeier D, Mastmeyer A, Schröder J, Handels H. A virtual reality system for PTCD simulation using direct visuo-haptic rendering of partially segmented image data. *IEEE J Biomed Health Inform* 2016;20:355-66. DOI PubMed
- 82. Fusaglia M, Hess H, Schwalbe M, et al. A clinically applicable laser-based image-guided system for laparoscopic liver procedures.

 Int J Comput Assist Radiol Surg 2016;11:1499-513. DOI PubMed
- 83. Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World J Surg 2016;40:419-26. DOI PubMed
- 84. Mastmeyer A, Fortmeier D, Handels H. Evaluation of direct haptic 4D volume rendering of partially segmented data for liver puncture simulation. *Sci Rep* 2017;7:671. DOI PubMed PMC
- 85. Sauer IM, Queisner M, Tang P, et al. Mixed reality in visceral surgery: development of a suitable workflow and evaluation of intraoperative use-cases. *Ann Surg* 2017;266:706-12. DOI PubMed
- 86. Cai W, Fan Y, Hu H, Xiang N, Fang C, Jia F. Postoperative liver volume was accurately predicted by a medical image three dimensional visualization system in hepatectomy for liver cancer. *Surg Oncol* 2017;26:188-94. DOI PubMed
- 87. Miyamoto R, Oshiro Y, Nakayama K, et al. Three-dimensional simulation of pancreatic surgery showing the size and location of the main pancreatic duct. *Surg Today* 2017;47:357-64. DOI PubMed
- 88. Hu M, Hu H, Cai W, et al. The safety and feasibility of three-dimensional visualization technology assisted right posterior lobe allied with part of V and VIII sectionectomy for right hepatic malignancy therapy. *J Laparoendosc Adv Surg Tech A* 2018;28:586-94. DOI PubMed
- 89. Mise Y, Hasegawa K, Satou S, et al. How has virtual hepatectomy changed the practice of liver surgery? *Ann Surg* 2018;268:127-33. DOI
- Mascagni P, Fiorillo C, Urade T, et al. Formalizing video documentation of the critical view of safety in laparoscopic cholecystectomy: a step towards artificial intelligence assistance to improve surgical safety. Surg Endosc 2020;34:2709-14. DOI PubMed
- 91. Teatini A, Pelanis E, Aghayan DL, et al. The effect of intraoperative imaging on surgical navigation for laparoscopic liver resection surgery. *Sci Rep* 2019;9:18687. DOI PubMed PMC
- 92. Ho H, Yu HB, Bartlett A, Hunter P. An in silico pipeline for subject-specific hemodynamics analysis in liver surgery planning. Comput Methods Biomech Biomed Engin 2020;23:138-42. DOI PubMed
- 93. Prevost GA, Eigl B, Paolucci I, et al. Efficiency, accuracy and clinical applicability of a new image-guided surgery system in 3D laparoscopic liver surgery. *J Gastrointest Surg* 2020;24:2251-8. DOI PubMed
- Sandal B, Hacioglu Y, Salihoglu Z, Yagiz N. Fuzzy logic preanesthetic risk evaluation of laparoscopic cholecystectomy operations. *Am Surg* 2023;89:414-23. DOI PubMed
- 95. Cervantes-sanchez F, Maktabi M, Köhler H, et al. Automatic tissue segmentation of hyperspectral images in liver and head neck surgeries using machine learning. *Art Int Surg* 2021;1:22-37. DOI
- 96. Tokuyasu T, Iwashita Y, Matsunobu Y, et al. Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy. Surg Endosc 2021;35:1651-8. DOI PubMed PMC
- Guzmán-García C, Gómez-Tome M, Sánchez-González P, Oropesa I, Gómez EJ. Speech-based surgical phase recognition for nonintrusive surgical skills' assessment in educational contexts. Sensors 2021;21:1330. DOI PubMed PMC
- 98. Imler TD, Sherman S, Imperiale TF, et al. Provider-specific quality measurement for ERCP using natural language processing. Gastrointest Endosc 2018;87:164-173.e2. DOI PubMed PMC
- Ruzzenente A, Bagante F, Poletto E, et al. A machine learning analysis of difficulty scoring systems for laparoscopic liver surgery. Surg Endosc 2022;36:8869-80. DOI PubMed PMC
- 100. Mascagni P, Alapatt D, Laracca GG, et al. Multicentric validation of EndoDigest: a computer vision platform for video documentation of the critical view of safety in laparoscopic cholecystectomy. Surg Endosc 2022;36:8379-86. DOI PubMed
- 101. Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2022;275:955-61. DOI PubMed
- Tranter-entwistle I, Eglinton T, Connor S, Hugh TJ. Operative difficulty in laparoscopic cholecystectomy: considering the role of machine learning platforms in clinical practice. Art Int Surg 2022;2:46-56. DOI
- 103. Liu R, An J, Wang Z, et al. Artificial intelligence in laparoscopic cholecystectomy: does computer vision outperform human vision? Art Int Surg 2022;2:80-92. DOI
- 104. Ugail H, Abubakar A, Elmahmudi A, Wilson C, Thomson B. The use of pre-trained deep learning models for the photographic assessment of donor livers for transplantation. *Art Int Surg* 2022;2:101-19. DOI
- 105. Mojtahed A, Núñez L, Connell J, et al. Repeatability and reproducibility of deep-learning-based liver volume and Couinaud segment volume measurement tool. Abdom Radiol 2022;47:143-51. DOI PubMed PMC

- 106. Han X, Wu X, Wang S, et al. Automated segmentation of liver segment on portal venous phase MR images using a 3D convolutional neural network. *Insights Imaging* 2022;13:26. DOI PubMed PMC
- 107. Ward TM, Hashimoto DA, Ban Y, Rosman G, Meireles OR. Artificial intelligence prediction of cholecystectomy operative course from automated identification of gallbladder inflammation. Surg Endosc 2022;36:6832-40. DOI PubMed
- 108. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9. DOI PubMed PMC
- 109. Loukas C, Gazis A, Schizas D. Multiple instance convolutional neural network for gallbladder assessment from laparoscopic images. Int J Med Robot 2022;18:e2445. DOI PubMed
- Golany T, Aides A, Freedman D, et al. Artificial intelligence for phase recognition in complex laparoscopic cholecystectomy. Surg Endosc 2022;36:9215-23. DOI PubMed PMC
- 111. 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:1204-22. DOI PubMed PMC
- 112. Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med 2022;28:31-8. DOI PubMed
- 113. Reddy S. Explainability and artificial intelligence in medicine. Lancet Digit Health 2022;4:e214-5. DOI PubMed
- Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health 2021;3:e745-50. DOI PubMed
- 115. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44-56. DOI PubMed
- He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019;25:30-6. DOI PubMed PMC
- Rivera SC, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health 2020;2:e549-60. DOI
- 118. Collins GS, Dhiman P, Navarro CLA, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021;11:e048008. DOI PubMed PMC