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Abstract
Energy storage devices such as batteries hold great importance for society, owing to their high energy density, 
environmental benignity and low cost. However, critical issues related to their performance and safety still need to 
be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents 
a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an 
overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition 
metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and 
fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and 
graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future 
battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable 
energy storage devices.
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INTRODUCTION
Energy storage is critical to our everyday lives and is one of the most important solutions for addressing the 
current energy crisis. It was announced by the general assembly of the United Nations that 2019 would be 
the international year of the periodic table to highlight its importance as one of the most influential 
discoveries in modern science. The nature and periodic behavior of microscale matter was extensively 
investigated and confirmed throughout the 19th and early 20th centuries. This activity led to insights into 
the predictable periodic behavior of the quantified atomic building blocks, as well as their chemical 
combinations to produce many stoichiometric molecular structures with many new properties. These 
efforts proceeded to the acceptance of Mendeleev’s periodic table in 1867. Similar periodic behavior was 
observed at the subatomic level. An extension of this similar periodic paradigm to more complex 
hierarchical blocks beyond atoms (i.e., the nanoscale) has also been proposed[1].

The increase in atomic number leads to an increase in atomic radius compression and ionization potential 
across the periods of the periodic table. Therefore, p-block elements (e.g., B, C and N) play a crucial role in 
forming strong covalent bonds with most of the strongly electronegative atoms, like O and F. Electrons in 
the p subshell form conjugated π-bonds, in addition to σ-bonds, and this ability leads to a large number of 
inorganic polymers. Therefore, B, C and N can form a variety of one-dimensional (1D), two-dimensional 
(2D) and three-dimensional (3D) nanomaterials, including fullerenes, graphene and its BN analogs, 
nanodiamonds, MXenes and carbon nanotubes. This group is the largest and fastest-growing category of 
nanomaterials triggered by the nanotechnological revolution and the rapid rise of nanotechnological 
architecture. Oxygen is also one of the most active oxidants in the surrounding environment and plays a 
universal role in this group. Oxygen is pivotal to the synthesis of different transition metal oxides (TMOs) 
and their derived nanoparticles, which can be used as electrode materials in lithium-ion batteries (LIBs). 
Nanotechnological architectures are used to make supercapacitors, sensors, molecular electronics, fuel cells, 
batteries and advanced energy devices[2-7].

To achieve high energy density, batteries should be based on cathode and anode active materials with large 
potential differences, light atomic or molecular weights and the ability to generate high voltages that result 
in the transformation of a large number of electrons for each active molecule. The highest known 
theoretical voltage (6 V) is for Li/F2, which may be the limiting voltage that an electrochemical cell can 
reach. At present, the voltage of commercial LIBs has reached more than 4 V (i.e., Li-LiMn2O4

[8] and 
Li-LiCoO2 batteries[9]),  wh i l e  the  vo l t age  o f  some  LIBs  under  deve lopment  ( such  a s  
Li-LiNi0.5Mn1.5O4 batteries[10]) may exceed 5 V. Therefore, increasing the voltage of a battery can be one of 
the measures to increase its energy density. The energy density of a battery material can be determined as 
follows:

where ED represents the energy density, n is the number of electrons transferred, F is the Faraday constant, 
Eo is the electromotive force and ∑Mi represents the summation of the formula masses of the active 
substances.

In addition, most current battery systems are based on various transition metals and their oxides[11]; 
however, their energy density is very low due to their high mass. Therefore, electroactive materials 
composed of light elements and their derivatives, as well as hybrid materials, can be chosen to achieve 
greater energy density[12]. The properties of the coating materials may match the lithium energy in the 
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electrolyte by providing different energy ranges for different lithium sites. Thus, changing the potential of 
the Li surface can enhance the adsorption of Li from the electrolyte. The nanosized particles of a material 
undoubtedly contribute to its high discharge rate capability and its rate performance is significantly better 
than similar[13] or smaller-sized nanoparticles, as reported in the literature[14], which shows that the rate 
capability can be improved by coating[15-17].

Furthermore, Stevens et al.[18] recently discovered that hard carbon intercalated with Na has a higher 
reactivity with non-aqueous electrolytes than LixC6, which has sparked new interest in the stability of 
electrolytes. The rate capacity can be masked by the limited electron transport across electrodes[19,20]. A large 
amount of carbon decreases the volumetric energy density of the electrode and therefore the highest rates 
(e.g., 200 and 400 C) can only be tested with a high amount of carbon to enhance the electronic conductivity 
of the active material. It should be noted that the volumetric energy density is more significant than the 
gravimetric energy density for many applications, particularly for portable electronic devices and vehicles. 
In this case, a similar procedure should be applied to balance the performance of the electrodes in 
asymmetric batteries. Volume capacitance and electrode volume can be used instead of weight capacitance 
and mass. Volumetric and gravimetric performances are linked by the density of the electrode and are 
mostly defined by the electrode design and porosity[21,22]. It is possible to specify structural characteristics, 
such as a fine distribution of pore straightness, pore connectivity, availability of redox-active sites and 
excellent balancing of ion and pore sizes, which are needed for optimum efficiency. A comparison of the 
energy density for various battery prototypes is presented in Figure 1a. LIBs have higher volumetric energy 
density than potassium ion batteries, sodium ion batteries, Ni-MH, Ni-Cd and lead-acid batteries, as shown 
in Figure 1b[21].

2D materials, like MXenes[11], graphene[23,24], carbides[25], sulfides (e.g., MoS2)[26] and other dichalcogenides[27], 
are promising for energy storage applications. The theoretical capacities of Li, Na, Ca and K calculated for 
Ti3C2Tx MXenes are 447.8, 351.8, 319.8 and 191.8 mAh g-1, respectively, which are far beyond that of 
graphite[28]. Therefore, 2D materials are potentially excellent electrode materials for battery applications. An 
important factor for battery charge and discharge is the diffusion barrier, which allows the battery to 
discharge and charge at a specific rate. Researchers have calculated the diffusion barriers of Li, Na, K and Ca 
in Ti3C2 monolayers using the nudged elastic band method applied in the Vienna Ab initio Simulation 
Package to evaluate 2D Ti3C2 as a promising high rate performance electrode material[29,30].

In this review, we briefly discuss the types of LIBs, their mechanisms and the electrochemical properties of 
their electrode materials, such as specific capacity, rate performance, cycling performance and energy 
density, from the perspective of chemical elements. The mechanisms and long-term cycling stability of LIBs 
for s-, p-, d- and f-block elements, different transition metals and their oxides are studied in detail to 
provide appropriate treatment methods and creative remedial measures for energy storage devices with 
enhanced performance. We also discuss hybrid 2D materials (e.g., MXenes and graphene) and alloys for 
battery applications. Finally, this review provides insights into the challenges and future prospects of next-
generation LIBs.

TYPES OF LI-ION BATTERIES
Li-sulfur batteries
Sulfur is a potential cathode material for future battery technologies, with an order of magnitude higher 
theoretical capacity (1675 mA h g-1) than existing transition metal oxides. It has a larger abundance in the 
Earth’s crust than nickel and cobalt and is also low cost[31,32]. Figure 2 depicts the working principle diagram 
of a lithium-sulfur battery[33]. Despite these considerable benefits, sulfur cathodes face a number of 
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Figure 1. (a) Comparison of energy density for various battery prototypes. Average values are calculated using the available data, where 
(A) represents cathode, (B) represents both electrodes and (C) represents full cells (LIB normalized). (b) Volumetric and gravimetric 
energy densities of commercial batteries (LIBs, KIBs, SIBs, Ni-MH, Ni-Cd and lead-acid). Reproduced with permission from Ref.[21] 
(Copyright 2020, Journal of Alloys and Compounds, Elsevier). LIBs: Lithium-ion batteries; KIBs: potassium ion batteries; SIBs: sodium 
ion batteries.

Figure 2. Schematic of the working principles of a Li-S battery. Reproduced with permission from Ref.[33] (Copyright 2020, ACS Energy 
Letters).

technological challenges that limit their usage. They have a lower conductivity and electrochemical potential 
vs. Li/Li+. The volume expansion rate of sulfur, like many other conversion electrodes, can reach up to 80%, 
causing a drop off in the electrode conductivity, pulverization and cracking[34]. Furthermore, the evaporation 
temperature of sulfur-based cathodes is low, resulting in the loss of pure sulfur during vacuum electrode 
drying[35]. Moreover, the intermediate reaction product produced during the charging/discharging process 



Page 5 of Bashir et al. Energy Mater 2021;1:100019 https://dx.doi.org/10.20517/energymater.2021.20 59

(Li2Sn polysulfides) can dissolve in the electrolyte, leading to capacity loss due to the shuttle effect[36,37]. The 
polysulfides dissolved in the electrolyte move back to the anode where they are converted to low-order 
polysulfides, which then migrate back to the cathode, causing reoxidation. Insoluble compounds, like Li2S 
and Li2S2, are produced via the shuttle effect[38]. Cañas et al.[39] investigated this mechanism using ex-situ 
spectroscopic techniques and high-performance liquid chromatography and proposed complex steps for the 
discharge in a bis(trifluoromethanesulfonyl)imide and tetraethylene glycol dimethyl ether electrolyte 
system, as described in the below Equations (2-8):

(30% initially dissolves)

(70% of S8 is consumed as the concentration in the solution decreases)

(at a 60% depth of discharge, solid Li2S is observed)

The lithium anode is corroded by this polysulfide shuttle, which leads to self-discharge and low Coulombic 
efficiency[38]. Many studies have been conducted in an attempt to overcome these challenges facing Li-S 
batteries[40]. According to Luo et al.[41], oxygen stabilized sulfur in a carbon matrix of Li-S batteries has 
excellent reversible capacity and long cycling stability. The suppression of polysulfide intermediates caused 
by sulfur interception in the carbon matrix explains the increase in Li-S battery performance. Another study 
found that carbonized mesoporous wood fiber may be utilized as the primary material for intercalated 
sulfur, resulting in a Li-S battery with better cycling stability[41].

Li-air batteries
The operating concept of a Li-O2 battery can be explained by the redox reaction between oxygen and Li 
metal. Abraham et al.[42] used an organic electrolyte for the first time in 1996 for a lithium-air battery. The 
lithium-air battery has received significant interest as an alternative to LIBs because of its high theoretical 
energy density (3500 Wh kg-1)[43,44]. In Li-O2 batteries, the cathode is usually a carbon matrix containing a 
catalyst, while the anode is generally Li metal. Their energy density can be as high as 1700 Wh kg-1. These 
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batteries can be classified into four distinct types based on the type of electrolyte used: (1) Li-O2 water 
batteries; (2) Li-O2 aprotic batteries; (3) Li-O2 all-solid-state batteries; and (4) Li-O2 hybrid batteries. The 
aprotic structure of Li-O2 batteries has received particular attention, since it forms a barrier between the 
anode and the electrolyte, protecting the lithium metal from the redox interaction with the electrolyte 
during the charge/discharge process. The Li-O2 battery has the following redox reactions:

Li is converted into Li2O2 during discharge. The electromotive force of the battery when configured with a 
lithium metal anode is 2.9 V with a high theoretical specific energy density of 3500 Wh kg-1[45,46]. In terms of 
formal capacity per mass and volume, Li2O2 is an excellent charge storage medium; however, it is a poor 
medium for the basic charge storage process. Unlike other Li+ storage materials, Li+ and e- do not need 
insertion and extraction through the bulk of Li2O2 because dissolution and growth occurs on the surface of 
Li2O2. This distinct property of Li2O2 results in significant cycling stability and rate capability. The slow 
charge transport in these batteries is due to the several orders of magnitude slower ion diffusivity compared 
to liquids, which results in extremely fast charging transfer[47].

It is possible to synthesize high-power Li-O2 batteries by bypassing Li2O2 for the transmission of ions and 
electrons across the phase, both of which are simple to execute, where only Li2O2 stores charge, while liquid 
electrolytes provide facile ion transportation. In contrast, electron transport through liquids is difficult. The 
second electron transfer can be carried out by the second electron disproportionation or reduction, whether 
the solution or surface pathway is dominant [Figure 3A]. O2/Li2O2 has a standard potential of 2.96 V, O2/O2

- 
has a standard potential of ~2.65 V and O2

-/Li2O2 has a standard potential of ~3.3 V[48]. The other is a redox 
mediator, which is reduced or oxidized and then goes through the electrolyte to oxidize Li2O2 or reduce O2 
in order to restore itself, as shown in Figure 3B. Furthermore, the cost of lithium-oxygen batteries is reduced 
compared to LIBs due to the simplicity of the active material composites. Aqueous or non-aqueous 
electrolytes can be used in lithium-air batteries.

The production of LiOH in aqueous conditions can help avoid air cathode obstruction and protect it from 
over voltage during discharge. However, because LiOH cannot be entirely dissolved during charging, it 
precipitates, resulting in inefficient cycling and lower energy density[32,45]. To avoid direct contact between 
H2O and the surface of lithium metal, aqueous batteries require a surface protective barrier or a Li 
superionic conductive layer (LISICON glass with the composition Li(1+x+y)AlxTi2-xSiyP(3-y)O12)[32]. However, the 
duration of these surface coating treatments is inadequate for preventing lithium dendrite formation[45]. To 
overcome this problem, not only must the breakdown rate of Li2O2 be enhanced, but also the side reactions 
of lithium metal must be reduced. Furthermore, using ambient air in the presence of H2O vapor, N2 and 
CO2 may result in a variety of side reactions, as well as poor cycling[32]. Although organic electrolyte research 
has been conducted for several years on current LIB technology, the electrolytes of LIBs cannot be utilized 
directly in lithium-oxygen batteries due to electrode stability issues. The aprotic electrolyte of a lithium-
oxygen battery must be able to stably withstand the active redox process, resulting in reducing oxygen 
species. To increase the rate of mass transfer towards the cathode, high O2 diffusivity and solubility are 
required, as well as a high boiling point and low volatility to reduce cathode solvent evaporation[49]. Initially, 
carbonate-based liquid electrolytes, including dimethyl carbonate, vinyl carbonate (EC) and propylene 
carbonate, were commonly employed in Li-O2 batteries, although the cycling performance was clearly 
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Figure 3. (A) Schematic diagram of reactions in a Li-O2 cathode (O2 + 2Li+ + 2e- ↔ Li2O2) during charge/discharge process in a typical 
electrolyte. Li2O 2, an insulating and insoluble discharge product, develops on the surface of the conducting porous substrate and 
suppresses the electron transport. (B) The mediators M and M' mediate electron/hole transport. In an inner sphere process, the 
reduction mediator M can transfer electrons to O2 via an O2-binding transition state or in an outer sphere process via an O2-binding 
transition state. Reproduced with permission from Ref.[48] (Copyright 2017, Royal Society of Chemistry).

inadequate[50,51]. In Li-O2 batteries, sulfur-based solvents, such as ether-based electrolytes, sulfolane and 
dimethyl sulfoxide (DMSO), are also commonly employed. DMSO has low acidity, a high boiling point 
(189 °C) and a high oxidation potential (4.8 V)[52]. Lithium-air batteries with ether electrolytes and DMSO 
are thought to be extremely reversible in performance.

Organic electrode batteries
Organic materials have been proposed as electrodes for LIBs in recent decades, although they have received 
less attention than metal-based electrodes[53]. Organic electrode batteries benefit from good sustainability, 
eco-friendly features, flexibility in materials design, lightweight elements (e.g., C, H, N and O) and abundant 
resources[53,54]. In the last two decades, many studies have been carried out for various types of organic 
materials, carbonyl compounds and organic free radicals (or free radical polymers), particularly organic 
sulfur and imino groups (C=N)[55]. Because of their strong redox potential and activity and abundance, 
carbonyl compounds have received significant interest. When carbonyl group conjugation is added, the 
redox activity with reversible electron transfer can be expanded to a multiple electron reaction, resulting in 
the synthesis of multivalent anions. Liang et al.[54] described the use of quinone compounds as battery 
cathodes for secondary batteries in 1972. Another organic material, chloroaniline, showed a capacity 
retention rate of 95% at 0.5 C over 50 cycles[56].

Nevertheless, organic electrode batteries have a number of drawbacks, including solubility in the electrolyte, 
low energy density, poor conductivity and slow reaction kinetics[53,54,57]. Adjusting the electrode level, adding 
conductive materials (such as carbon) and modifying the structure with conductive materials (such as 
graphene, carbon nanotubes and nanofibers and super-P) are all typical strategies for overcoming these 
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issues. Luo et al.[55] demonstrated that azo (N=N) functional groups can be used as alternate organic 
electrode materials (OEMs) for addressing these issues. More than two functional groups are required for 
imino or carbonyl groups, whereas azo electrodes only require one functional group, thereby simplifying 
the chemical structure. Azo-based batteries offer high rate performance and strong cycling stability[55]. 
Another approach that can potentially overcome the fundamental issues of organic electrodes in LIBs is 
utilizing self-assembled organic nanowires using C5Na2O5 (croconic acid disodium salt)[57,58]. Two benzo-
dipteridine derivatives, BF-H2 and BF-Me2, were reported as high-capacity electrodes for LIBs by 
Cariello et al.[59]. These portions enable each molecule to bind numerous lithium ions and maintain low 
solubility in the supporting electrolyte, which is often an exclusion issue for organic electrodes. As indicated 
in Figure 4A-D, BF-H2 and BF-Me2 have Coulombic efficiencies of ~100% and ~96%, respectively, over 100 
cycles at a 0.1 C rate. Different reaction processes involve a variety of structural approaches. Carbonyl 
molecules have a number of challenges, one of which is their high solubility in organic electrolytes, which 
can be reduced by salt formation.

In OEMs, two or more carboxylic acid groups are linked to conjugated structures (i.e., benzene rings). The 
two -C=O in the lithium terephthalate carboxyl group react reversibly with two Li+ and two e- during the 
lithiation and delithiation process [Figure 5A]. The air-stabilized lithium cathode material, which is based 
on the main chain of 1,4-benzenedisulfonate, contains two sulfonate groups, which improves the reaction 
potential to 3.25 V and maintains a reversible capacity of 100 mAh g-1 over 50 cycles at C/20 [Figure 5B][60,61]. 
The anthracene-based organic disulfide cathode material can reversibly react with six Li+ and six e-, resulting 
in the regeneration and dissociation of disulfide bonds. However, its low conductivity and high solubility 
are still challenging [Figure 5C]. The electrochemically active center in the OEMs of LIBs was found to be 
the azo group[62]. The double bond in the azo group of aromatic azo compounds is transformed to a single 
bond in the process of lithiation and then converted back to a double bond in the delithiation process. Each 
N atom reacts with one Li+ and one e- in the lithiation and delithiation reaction [Figure 5D].

In the imine group (C=N), there is a reversible electrochemical reaction between Li+ and nitrogen atoms. 
Peng et al.[63] reported that π-conjugated heteroaromatic quinoxaline molecules (3Q) represent an example 
of an imine-based organic cathode material. The reaction can be divided into two steps, as shown in 
Figure 5E. One Li+ reacts with two N atoms in the imine group in the first step. In the second step, each Li+ 

further reacts with two N atoms, resulting in a N-Li-N structure. In 3Q, each of the six imine groups reacts 
with six e- and six Li+ to yield a reversible capacity of 395 mAh g-1 over 10000 cycles. The super-lithiation 
reaction is based on the conjugated hydrocarbon, such as in polyacetylene, where the carbon-carbon bond 
in the unsaturated hydrocarbons is converted to a saturated carbon-carbon bond during discharge[64]. 
During the discharge process, the unsaturated carbon bond in the OEMs is transferred to a saturated carbon 
bond and each carbon atom receives one e- and one Li+. The reaction process of the unsaturated carbon-
based organic  anodes  and carbonyl  i s  shown in  Figure 5F. The  carbonyl  group in  
naphthalenetetracarboxylic dianhydride first reacts with Li+ and e- and then the unsaturated carbon-carbon 
bond combines with Li+ and e- at a low reaction potential, resulting in an ultra-high capacity of 
1000 mAh g-1.

Solid-state batteries
In the development of solid-state batteries, the solid electrolyte is a critical component. Thin-film solid 
electrolytes and solid polymer electrolytes are the two main types of solid electrolytes. Inorganic solid 
electrolytes, such as garnets (e.g., Li7La3Zr2O12)[65], NASICONs [e.g., LiZr2(PO4)3, LiGe2(PO4)3 and 
LiTi2(PO4)3], sulfides (e.g., Li2S-SiS2 and Li2S-P2S5 based)[66] and perovskites (Li3xLa2/3-xTiO3)[67,68], are the most 
widely studied inorganic solid electrolytes. Oxide materials, such as NASICONs, garnets and perovskites, 
have drawn much interest, since they provide many benefits for all-solid-state batteries, such as mechanical 
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Figure 4. (A) Schematic illustration of organic electrode. (B) Potential reaction procedure and structure of benzo-dipteridine derivatives 
BF-H2 and BF-Me2 with lithium. Cycling and Coulombic efficiency of (C) BF-Me2 and (D) BF-H2 at a 0.1 C rate in an ether-based 
electrolyte. Reproduced with permission from Ref.[59] (Copyright 2020, American Chemical Society).

characteristics, chemical stability, conductivity (10-4 to 10-3 S cm-1) and safety. In contrast, sulfide solid 
electrolyte have high conductivity (10-2 S cm-1), low grain boundary resistance, excellent flexibility and high 
mechanical characteristics[69]. However, sulfide solid electrolytes are limited by their high reactivity with 
metal oxides and their instability when exposed to moisture, which can result in H2S gas evolution[69,70].

Another potential solid electrolyte type for solid-state batteries is the solid polymer electrolyte. Poly(methyl 
methacrylate)[71], polyethylene oxide (PEO)[72], poly(acrylonitrile)[73] and polyvinylidene fluoride[71,74] are 
commonly used as polymer host materials in composite polymer electrolytes. However, these materials have 
considerable drawbacks, such as reduced electrode compatibility and oxidation stability. Therefore, 
improving the conductivity of solid electrolytes over a long period remains a major challenge and there still 
remains the question of whether amorphous or crystalline structures boost ionic conductivity. With lithium 
metal, polymers have the benefits of high stability, low shear modulus and superior flexibility, but they also 
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Figure 5. Reaction mechanisms of (A) a carboxylate-based organic anode, (B) an air stable quinone-based organic cathode, (C) an 
organodisulfide cathode material based on anthracene, (D) an azo compound, azobenzene-4,4′-dicarboxylic acid lithium salt, (E) 
lithiated structures of π-conjugated quinoxaline-based heteroaromatic molecules (3Q) during the discharge process and (F) a carbonyl- 
and unsaturated carbon-carbon group-based organic anode with carbon-carbon bonds in naphthalenetetracarboxylic dianhydride. 
Reproduced with permission from Ref.[61] (Copyright 2020, American Chemical Society).

have low oxidation chemical potential, ionic conductivity and thermal stability. The practical use of solid 
polymer electrolytes is significantly hampered by these issues.

Thin-film solid electrolytes have also piqued interest, owing to their greater flexibility in design applications 
and high energy density compared to standard LIBs. In the early 1980s, a Li/Li3.6Si0.6P0.4O4/TiS2 composite 
was the first thin-film solid electrolyte to be used for secondary LIBs[75]. There are a variety of thin-film 
deposition techniques, including chemical vapor deposition[76], radio frequency sputtering[77], pulsed-laser 
deposition[78] and atomic layer deposition[79]. The lithium phosphorus nitrogen oxide glass (LiPON) battery 
is one of the most studied thin-film batteries. Bates et al.[80] first reported its use in 1992 and a team from 
Oak Ridge National Laboratory (ORNL, USA) then investigated it further. The stability window of LiPON 
compared to a Li metal electrode is reported to be between 0 and 5.5 V[81]. The thermal stability and 
hardness of LiPON have further advantages[82]. As a result, the thin-film LiPON battery (LiNi0.5Mn1.5O4
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/LiPON/Li) shows a cycle life of 10000 cycles, a 90% capacity retention rate and a voltage of up to 5 V[83]. 
Although LiPON has recently become a common solid electrolyte for all-solid-state thin-film batteries, its 
low conductivity in comparison to oxide materials must be overcome to build high-capacity thin-film 
batteries. Solid-state LIB chemistries operated with solid electrolytes and their performance metrics (i.e., 
power density, cycle life, energy density and other relevant parameters) at the current stage of development 
are summarized in Table 1.

Ion transport in solids is a complicated process that is influenced by a variety of parameters and is still in the 
early stages of development at the moment. Liquids have a distinct wetting effect compared to inorganic 
solids[88]. When in contact with solid electrodes, they disintegrate quickly and generate undesired phases, 
which obstruct ion transport and lower the total ionic conductivity[89]. It is anticipated that it will become 
possible to alter key parameters and eliminate related issues during the manufacturing process in order to 
obtain appropriate products in future years.

Li-CO2 batteries
Lithium-carbon dioxide batteries have gained significant interest from the battery industry in recent years. 
This battery system can store energy by removing carbon dioxide from the atmosphere. Takechi et al.[90] 
reported that a novel form of gas battery, Li/CO2-O2, has a high irreversible discharge capacity, which is 
three times that of a lithium-air battery. Lim et al.[91] later developed a reversible Li/CO2-O2 battery utilizing 
DMSO, which resulted in the reversible production of Li2CO3. In response to the earlier O2 and CO2 mixed 
gas battery, Xu et al.[92] developed a main Li-CO2 battery that achieves charging capacity by employing pure 
CO2 gas as the working electrode. Liu et al.[93] demonstrated a 100% reversible Li-CO2 battery by utilizing 
LiCF3SO3 (1:4 mol) as an electrolyte a year later. The following electrochemical reaction can be used to 
increase the charging capacity of lithium-carbon dioxide batteries. In Li-CO2 batteries, there is a 
disproportion process based on the ultimate discharge products of C and Li2CO3. Equations (11-15) show 
that CO2 undergoes a single electron reduction to C2O4

2- (Equation 12), resulting in an open circuit potential 
of 3 V. The intermediate, C2O4

2-, is further disproportioned (Equations 14 and 15) to synthesize stable 
crystalline Li2CO3

[94,95]:

The main component in determining the reversibility of the application of these batteries is Li2CO3. 
Although Li2CO3 is an insulator, its oxidation requires a large overpotential while charging. Qiao et al.[96] 
employed ruthenium as a cathode catalyst in a recent study to successfully minimize the excessive 
overpotential and increase the reversibility of lithium-carbon dioxide batteries. Li-CO2 batteries are 
undoubtedly an attractive technology as they can simultaneously help to address both energy and 
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Table 1. Summary of performance metrics of various solid-electrolyte battery systems

Battery system Solid electrolyte Energy density (Wh kg-1) Power density (mW cm-2) Cycle life (number of cycles) Cell voltage (V) Refs.

Oxide (NASICON, LISICON and garnet) 10-50 (temperature dependent) 300 3.5-5.0 [84,85]

Sulfide (Li2S-P2S5-MSx) 10-60 (temperature dependent) 1000 4.5-5.0 [86]

Thin-film LiPON 5-50 (cathode dependent) 10000 3.0-4.0 [83]

All-solid-state LIBs

Polymer (PEO)

300-600

10-100 (elevated temperatures) 400 3.3-3.7 [87]

LIBs: Lithium-ion batteries; LiPON: lithium phosphorus nitrogen oxide glass; PEO: polyethylene oxide

environmental issues. However, in practice, the major issues to be addressed for their widespread application are excessive overpotential and low Coulombic 
efficiency.

PERIODIC CLASSIFICATION OF ELEMENTS FOR LIBS
S-block elements
Hydrogen is one of the most abundant chemical substance in the universe, accounting for ~75% of all baryonic matter. On this basis, studies have shown that 
storing renewable energy in the form of hydrogen through an electrolytic process is considered the most promising option. Hydrogen storage offers several 
benefits and hydrogen and fuel cells have the potential to contribute to future sustainable development in terms of energy demand and environmental 
sustainability[97]. For decades, hydrogen fuel cells have been investigated as clean alternatives to internal combustion engines. In the past decade, a widespread 
search for alternative fuels has resulted from a lack of safe and effective hydrogen supply and storage. Among the different anodic fuels studied, borohydride 
has been reported to a good choice due to its rapid anodic kinetics, high energy density, high stability and easy storage, transport, usage and disposal. It is also 
free of hazards and pollutant emissions. The eight-electron oxidation process of borohydride results in high-density energy storage. According to the complete 
oxidation reaction of the eight electrons, the theoretical specific capacity of NaBH4-based anodes is up to 5700 mAh g-1. The equilibrium voltage of a NaBH4/O2 
fuel cell with an oxygen cathode was 1.64 V and its energy density was 9.3 kWh kg-1, while a gaseous ammonia fuel cell gave 5.5 kWh Kg-1 and a pure methanol 
fuel cell gave 6.2 kWh kg-1[12].

Lithium has attracted attention because of its high voltage capacity and energy density. LIBs are widely used in portable devices, wearable electronics and 
electric vehicles due to their small size and superior performance[98]. Graphite is the most prevalent anode material used in LIBs[99]. Unfortunately, the Li 
storage capacity of graphite (372 mAh g-1) is limited and further higher capacity materials are therefore needed for modern appliances. Ideal anode materials 
have high adsorption capacity and easily diffusion of Li+ on their surface. Single-walled carbon nanotubes can adsorb lithium internally and comparatively 
show a high reversible capacity (500 mAh g-1)[100]. Furthermore, chemical etching and ball milling techniques offer the potential to synthesize Li2.7C6 CNTs, 
which give higher Li capacity (1000 mAh g-1). High mechanical strength, electrical conductivity, surface area and thermal conductivity and wide 
electrochemical applications make graphene a potential alternative anode material for LIBs[101]. Unfortunately, graphene still has some problems as an anode 
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material. Regardless of the concentration of Li+ on graphene, lithium atoms can form clusters and dendrites, 
which may reduce the battery charge and discharge capacity[102]. The adsorption energy of Li+ on graphene is 
weaker than that of Li-Li, which is the prominent reason for the synthesis of Li clusters.

To solve this problem, the adsorption energy of Li+ on graphene must be higher than their cohesive energy. 
The most studied dopants for graphene are N and B, adjacent to the C atom in the periodic table. In 
graphene, N is electron doped (n-type) and B is hole doped (p-type). These dopants can change the 
electronic structure of graphene by increasing (N) or decreasing (B) the Fermi levels in the valence and 
conduction bands. There is a wealth of information regarding the nitrogen substitution concentration of 
graphene and its applications in oxygen reduction reactions and fuel cell materials[103]. Lowering the 
mobility of the counter anions bis(trifluoromethanesulfonyl)imide with the help of amine-functionalized 
boron nitride nanosheets can improve Li+ transport in ionic gels. Boron nitride nanosheets (BNNS) exhibit 
acidic properties and interact with bases. The activation of BNNS with amine functional groups increases 
Li+ mobility and anion migration, thus improving the ionic conductivity[104,105]. Reportedly, the formation 
energy of N-substituted graphene changes with the N doping concentration, indicating the maximum 
possible content of N in graphene.

The formation of B dopants in graphene can interfere with cluster formation. Therefore, B-doped graphene 
can be considered as an excellent long-term material for battery applications. Reportedly, B-doped graphene 
delivers a very high reversible capacity (1549 mAh g-1) at 50 mA g-1. Wang et al.[106] stated that the theoretical 
capacity of Li for Li6BC5 (B-doped graphene) was calculated using density functional theory (DFT), which 
was higher than 2271 mAh g-1. It was reported that B-doped graphene is more efficient than N-doped 
graphene in terms of Li adsorption. This is because B can transfer most of its valence charge to graphene, 
leaving graphene as a p-type dopant and Li as an electronic dopant for graphene. The high theoretical 
capacity of B-doped graphene for Li+ storage makes it one of the most attractive alternatives to graphite.

Some materials (e.g., Si and Sn with theoretical capacities of 4200 and 994 mAh g-1, respectively) are capable 
of storing multiple Li+ on a single atom through an alloying reaction, thus delivering high energy. However, 
these alloying reactions show a rapid capacity decay as they are primarily associated with large volume 
changes during cycling[107]. Several methods have been proposed to solve the problem of large volume 
changes. One method involves making electrodes based on nanostructures, such as nanotubes, nanowires, 
nanoparticles or porous nanostructures[57,108]. Another method is to dope inactive elements to reduce the 
volume changes. The third method involves the preparation of nanocomposites containing an inert matrix 
and an active substance. In nanocomposites, an inert matrix is used as a mechanical buffer for various active 
substances, which results in better cycling performance than the pristine material[109].

The electrode material determines the electrochemical performance of LIBs. LiMn1-xMxO2, LiMn2-xMxO4, 
LiCoO2 and LiMPO4 (M = Ni, Co or Fe) are all lithium metal oxides with high positive redox potentials and 
are commonly used as LIB cathodes. At high current rates of 1-10 C, they can deliver capacities of 
100-200 mAh g-1. LIB anodes are usually made of low-cost carbonaceous materials with a storage capacity of 
less than 372 mAh g-1. Large-scale applications place a premium on lithium safety. Well-known LIB anode 
materials, such as Si, Sn, Al and their alloys have very high capacities (1000-4000 mAh g-1). However, their 
capacities are prone to fading rapidly even at low current rates (0.05-0.20 C), meaning their actual 
performance is far below that expected due to their rapid volume expansion (> 300%) during cycling. This 
causes the electrode to disintegrate and shatter, thereby losing electrical contact between adjacent 
particles[110].
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Due to their high capacity, rich abundance and safety, metal oxides are considered as promising next-
generation anode materials for LIBs. Metal oxides form a Li2O buffer matrix or crystalline structure (such as 
TiO2) when compared to Al, Sn and Si electrodes. This facilitates the insertion of Li+ in the electrochemical 
reaction and significantly extends the Li+ cycle life. Many metal oxides can be used as anodes at high rates of 
0.5 to 1 C by their redox reaction with Li and have a high capacity of 500-800 mAh g-1. In addition, the 
charge/discharge process for TiO2 electrodes may be faster despite their low storage capacity 
(100-170 mAh g-1) at different rates[111,112]. Low charge/ion conductivity and long-term cycling stability are 
currently limiting the use of metal oxides as anodes in LIBs. Preparing a hollow-structured material with a 
short diffusion path and a large surface area is one of the most efficient methods to solve this problem. 
Metal oxides have large surface areas, which provide more space to store more Li ions. Furthermore, there is 
a large contact area between the electrolyte and electrode, resulting in higher Li+ flux passing through the 
interface. The transparent thin shell provides a very simplified pathway for the diffusion of Li+ and 
electrons, thereby increasing the rate capacity[113]. The hollow interior provides additional free space, reduces 
structural distortions and accommodates large volume changes due to repeated Li+ ion insertion/extraction 
processes, thereby improving the cycling stability. Due to the significant reduction of electrode 
pulverization and polarization, the excellent electrochemical properties of hollow metal oxide structures are 
highly anticipated[114].

In Li2O2 batteries, the morphologies of the byproducts of Li2O2 have been well documented. At low current 
density, toroid-shaped nuclei are formed, while at high current density, stratified growth occurs[115]. Li2S is 
also a promising cathode material that is being developed for use in emerging energy storage fields. Li2S and 
S cathodes require effective encapsulation to reduce the dissolution of lithium polysulfide (Li2Sn) in the 
electrolyte. The Li2S cathode is coated with a 2D layered transition metal disulfide, which has high 
conductivity and strong binding to Li2S/Li2Sn. In particular, titanium disulfide (Ti2S) is used as the packaging 
material and demonstrates a high specific capacity of 503 mAh g-1 at 4 C and a high area capacity of 
3.0 mAh cm-2 at high mass loading (5.3-25.3 mgLi2S cm-2). This opens up new possibilities by using transition 
metal disulfides instead of conventional carbon-based materials to effectively enhance the capacity of 
electrode materials[116]. The anode of a Li-ion batteries is made of lithium compounds that are reversibly 
inserted by Li+, while the cathode is made of carbon or graphite, which holds the Li+ in a solid state. Non-
aqueous electrolytes, such as propylene carbonate, and a suitable lithium solution are used to avoid the 
violent reaction of Li with water. The separator is a microporous plastic film that can be coated with 
ceramic particles to improve the safety of the battery.

The safety of Li+ cells should be carefully considered. Thermal runaway is a crucial problem facing LIBs; 
therefore, selected materials, battery design, organic electrolyte and charging systems should be carefully 
identified to minimize the risk. A schematic diagram for the thermal runaway of different materials is given 
in Figure 6[117]. Battery safety systems with thermal sensors, voltage and current measurements and fuses are 
used for safe operation[118]. The following are the main criteria to improve LIBs.

Energy capacity
The energy accumulated in LIBs corresponds to the amount of Li+ ions that can be neutralized and absorbed 
in the battery electrodes during the charge/discharge phase. The effectiveness of Li+ neutralization and the 
way they can be reversibly evacuated and absorbed or desorbed should be considered. Compounds with low 
Li binding energy should be used for all battery parts. For example, in the case of cathode materials, 
LiFePO4, LiCoO2, Li in graphite electrodes and some aprotic polymer electrolytes represent ideal 
candidates[119]. The following Equation (16) is used to determine the storage capacity of LIBs:
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where n shows the number of charges (Li+), F is the Faraday constant, M is the molar mass of the electrode 
material and to convert from Coulombs to mAh, 1000/3600 is used[120].

Power and loading time
The cathode materials must be capable of repeatedly accepting and releasing Li+ at high current rates. This 
depends on the Li+ flux and how fast they can move in the electrolyte and can absorb on the electrode 
surface. The latter aspect requires a low work function, where incoming Li+ ions can be neutralized more 
easily, and high surface mobility and mass diffusion, by which the neutralized Li atoms can be released.

Number of cycles and Li+ loss
The reduction in the number of charge/discharge cycles is mainly because of chemical modification of the 
electrode and electrolyte surfaces. However, this also depends on the release of Li+ with different 
mechanisms that affect the reversibility of Li+ neutralization and absorption, which should be avoided or 
limited. Some of the stable compounds with impurities and degraded electrolyte compounds may 
recombine with Li+; therefore, electrolytes should be selected appropriately. The neutralized Li+ may diffuse 
further into the body of the electrode material and may recombine into a larger low-diffusivity compound 
or rearrange into a solid Li cluster, meaning that specific methods must be adopted. These strategies limit 
the overall diffusion of Li atoms with an appropriate stable diffusion barrier and hinder the formation of Li 
clusters in the electrode bulk material. The synthesis of a passivation layer on the electrode surface and any 
rearrangement of atoms, which is beneficial to dielectric materials, should also be avoided. This particularly 
affects the electrical conductivity of electrode materials containing graphene[119].

It has been reported that a simple and effective method of synthesizing Li anodes is by rationally designing 
3D current collectors with optimized surface and skeleton characteristics from a metal foam wrapped in 
porous carbon nanostructures with N-doped carbon nanosheets (designated as M/NPCN, M = Cu or Ni). 
This potentially enables the placement of a large amount of Li and ensures uniform nucleation/growth of Li 
[Figure 7A]. The synthesized M/NPCN can enhance the stability of the Li anode and the cycle life of high 
sulfur loading in lithium-sulfur anodes. Figure 7B and C show that NPCN has a highly porous surface area. 
A Li/Cu foil|C/S cell showed a capacity of 129 mAh g-1 with an 84.9% CE after 92 cycles (capacity retention 
of 16.6%), while a Li/Cu foam|C/S cell gave a capacity of 280 mAh g-1 with a 95.0% CE of over 300 cycles 
(34.2% capacity retention) [Figure 7D]. A Li/Cu/NPCN|C/S cell gave a high capacity (816 mAh g-1) and very 
stable CE (~99.9%) after 300 cycles, as shown in Figure 7D. Therefore, the prominent reason for the poor 
cycling stability of the Li/Cu foil|C/S and Li/Cu foam|C/S is the instability of the anode, which shows that 
the Li anode limits the practical application of the sulfur in the cathodes. In order to observe the Li anode 
intuitively, the battery cell was disassembled after the cycling test. Many Li dendrites were found, which are 
also known as “dead Li”, as noted in both Li foil and Li/Cu anodes. In contrast, the surface of Li/Cu/NPCN 
was smooth without clear Li dendrites[121].

Graphene becomes an electron-deficient system when doped with Be. DFT simulations were used to model 
the adsorption of Li+ on Be-doped graphene. The adsorption energy of Li+ on Be-doped graphene can be 
increased to -2.53 eV/Li, which is 2.24 times that of Li on undoped graphene[122]. Li+ can be stored on the 
hexagon centered and also on the nearest hexagon of graphene, which can easily interact with 12 Li+ for 
single vacancies of Be on the hexagon and provide 16 Li+ for vacancies around each Be center hexagon of 
graphene. This shows that graphene can be doped with a small amount of dopant to store more Li+, thereby 
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Figure 6. Energy release diagram for a LIB with an NCM/graphite electrode used to analyze the thermal runaway mechanism. 
Reproduced with permission from Ref.[117] (Copyright 2015, Energy Storage Materials, Elsevier). LIB: Lithium-ion battery; SEI: solid 
electrolyte interface; LTO: Li4Ti5O12; LCO: LiCoO2; LFP: lithium Iron Phosphate (LiFePO4/C); ISC: internal short circuit; NCA: lithium 
nickel-cobalt-aluminum oxide (Li[NixCoyAlz]O2); PE: polyethylene; PP: polypropylene.

retaining the extraordinary properties of graphene to a large extent and increasing its Li storage capacity up 
to 2303.2 mAh g-1. This is because Be doping produces Li8BeC7 with a reasonable adsorption energy of 
-1.47 eV/Li. The reported capacity value is 6.19 times that of graphite. This surprising result represents a 
breakthrough for using Be-doped graphene as a LIB anode material[120]. It is important to consider the 
capacity of Be-doped graphene and bare graphene compared with other anode materials. The theoretical 
specific capacities of Li16BeC48, Li12BeC48 and Li12BeC49 were found to be 73.355, 549.266 and 
538.226 mAh g-1, respectively, which are greater than that of Li6.84B2C70 (212.6 mAh g-1). These specific 
capacity values are also higher than those of phosphorus (433 mAh g-1), graphite (372 mAh g-1), Ti3C2 
(320 mAh g-1) and even Mo2C (526 mAh g-1).

When six Li+ (three up and three down) are adsorbed in this system, Li6BeC7 is formed. The measured 
adsorption energy is -1.59 eV/Li, which is slightly lower than that of Li6BeC49 (-1.68 eV/Li). Curiously, the 
theoretical lithium capacity calculated by Li6BeC7 is very high (1727.47 mAh g-1). The calculated adsorption 
energy (Li8BeC7) of a given eight Li+ is as high as -1.475 eV/Li, with a theoretical efficiency of 
2303.29 mAh g-1. This storage capacity is far more than the experimental (1549 mAh g-1) and theoretical 
capacity (2271 mAh g-1) of B-doped graphene used as an anode material for LIBs. The following formula 
can be used to calculate the lithium potential (VLi) of an anode material for LIBs:
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Figure 7. (A) Schematic representation of dendrite-free Li anode (inset: NPCN ink screen printed onto polyethylene terephthalate 
substrate) by designing NPCN-wrapped 3D metal foam. (B) SEM and (C) TEM images of NPCN. (D) Cycling performance of 
Li/Cu/NPCN|C/S, Li/Cu foam|C/S and Li/Cu foil|C/S full cells of sulfur at 1 C. Reproduced with permission from Ref.[121] (Copyright 
2019, American Chemical Society). NPCN: N-doped porous carbon nanosheets; SEM: scanning electron microscope; TEM: transmission 
electron microscope.

where Etot corresponds to the formation and total energy, n is the number of charges (Li+) adsorbed, F is the 
Faraday constant and z is the charge of the lithium ions in the electrolyte (z = 1). An increase in Li 
concentration leads to a decrease in VLi. When the Li concentration in one vacancy (doping) increases from 
one to 12 atoms in a single vacancy (doped), the VLi decreases from 2.53 to 1.33 V and when the Li 
concentration in a double vacancy (doping) increases from one to 16 atoms, the VLi value is reduced from 
2.38 to 1.33[120].

Strontium (Sr) doping can effectively increase the rate performance of Li4Ti5O12. Sr2+ has a much larger ionic 
radius (0.118 nm) than Li+ (0.076 nm) and Ti4+ (0.0605 nm), which makes it difficult to form Li4Ti5O12Sr. 
Nevertheless, if Sr2+ can enter the Li4Ti5O12 network, it expands the Li+ intercalation and deintercalation 
channels and thus improve the Li4Ti5O12 performance. This high performance can be attributed to a 
decrease in particle size and charge transfer resistance and an increase in network parameters due to the 
introduction of Sr into the lattice of Li4Ti5O12. Sr-doped Li4Ti5O12 has a specific discharge capacity that is 
1.62 times greater than undoped Li4Ti5O12 at 5 C. The Sr content has a significant effect on the performance 
of Sr-doped Li4Ti5O12 and the optimum Sr content was found to be 0.02 at an atomic ratio of Sr to Ti. A 
small amount of SrLi2Ti6O14 was formed in the Sr-doped Li4Ti5O12, which has a positive effect on the 
charge/discharge specific capacity of the doped Li4Ti5O12 because Li+ can intercalate/deintercalate within 
SrLi2Ti6O14 at lower charge/discharge potentials than Li4Ti5O12

[123].

The chemical preparation processes for barium and potassium ferrate for alkaline electrochemical energy 
storage are now described. Synthetic salts have been used to show the structure of different super-iron (zinc 
anode) alkaline AAA batteries using Fe(V) salts at high capacity. The results show that the synthesized 
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K2FeO4 is completely stable over 500 cycles. The synthetic route is introduced, which can produce 80-100 g 
of 96.5%-99.5% pure K2FeO4 and BaFeO4. These synthetic products have been proven to give high energy 
discharge in various AAA alkaline batteries. Super-iron alkaline AAA batteries like BaFeO4 can provide 
more than 0.8 Wh of electricity during 2.8 Ω of discharge, which is more than 200% of the capacity of 
traditional alkaline batteries. The studied barium super-iron battery configuration gives a greater capacity 
than the studied configuration of potassium super-iron alkaline batteries[124].

Adding witherite (BaPbO3) to the anode of lead-acid batteries can increase the efficiency and current 
acceptance of deep discharge batteries. At room temperature, the half-life of BaPbO3 in the battery acid 
determined from the decomposition rate constant is ~4 years. However, the rate of decomposition of 
BaPbO3 increases with increasing temperature, applied potential and acid concentration. It is estimated that 
the threshold of BaSO4 content detriment to the cycle life of a lead-acid battery is ~0.3%. With 1% BaPbO3, 
an appreciable improvement of the formation can be attained. At this level, the decomposition of BaPbO3 
into BaSO4 is not detrimental to the life of the battery[125]. Mn-doped BaPbO3 showed improved rate and 
capacity compared to typical MnO3, with a first cycle capacity of ~360 mAh g-1, as well as better recharge 
capacity even after a deep discharge. Further investigation is required to determine the load storage 
mechanism and its specific crystalline and amorphous phases synthesized during the process. The high 
capacity performance of Mn/BaPbO3 suggests that these materials may be potential electrode materials[126]. 
The high impedance characteristics and power discharge performance of cathodes of K2FeO4 and BaFeO4 in 
dry alkaline Zn cells show that ferrate materials are bonded to maximize the surface area of the cathode and 
they can offer superior performance over electrolytic MnO2 at running voltages of > 1.6 V and currents of 
up to 100 mA g-1 of the active material[124].

P-block elements
The anode performance of B-doped graphite was studied by electrochemical measurements. In the 
galvanostatic measurements, a discharge capacity of ~315 mAh g-1 was achieved for B-doped pitch coke-
derived graphite. Due to the graphitization of B, the discharge capacity of B-doped graphite was enhanced 
compared to B-free graphite[127]. It is reported that the doping of B with boric acid, boron oxide and boron 
carbide enhances the discharge capacity and Coulombic efficiency. It is also noted that the B-doped 
mesophase pitch-based carbon fiber exhibits a prominent phenomenon of B doping in carbon, which is 
effective for battery performance. Co-B and Fe-B alloy powders affect the electrochemical performance 
when used in aqueous alkaline solutions as anodic materials. The discharge capacities of Co-B and Fe-B 
electrodes were 1100 and 1200 mAh g-1 at a high rate of 100 mA g-1, respectively, which are much higher 
than that of Zn (820 mAh g-1). The activated B maintains the electrode potential in the negative range, 
thereby preventing passivation of the transition metal[128,129].

Carbon remains a highly promising material for electrochemical devices. Li+ can easily disperse between the 
hexagonal graphite planes of the cathode in lithium-metal/graphite batteries (LiCoO2 batteries), where the 
anode content is made of graphite as opposed to the previously cited design. In the case of LiFePO4 
batteries, black carbon is used as a cathode material to improve its porosity for ionic conductivity and 
reversible Li+ absorption. The graphene-plated anode of LIBs improves the energy storage capacity and 
charging speed of the battery, although it does not provide the desired results in other areas. Furthermore, 
most results have been obtained on a semi-empirical basis, so further research into higher performance and 
reliability is needed. For example, dendritic growth may cause short circuit, attract unwanted compounds of 
basic electrochemical elements or may redeposit and cover the surface of the electrode, eventually resulting 
in electrical and material leakage, and the release of combustible compounds, which may be the result of 
manufacturing failures. Graphite is the utmost common material used for LIBs. However, its limited Li 
storage capacity (372 mAh g-1) restricts LIB performance.
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A suitable anode material is one with high adsorption capacity for Li+ and facile diffusion on the anode 
material. Carbon nanotubes (CNTs) have the potential to adsorb Li, either internally or externally. 
Therefore, experimentally studied single-walled CNTs have been found to be better than graphite and give a 
reversible capacity of 500 mAh g-1. In addition, ball milling techniques and chemical etching offer the 
possibility of synthesizing Li2.7C6 CNTs, which show even higher Li capacities of up to 1000 mAh g-1. 
Graphene is a potential and alternative material for LIBs anode due to its special properties, such as a large 
surface area, high mechanical strength, high thermal and electrical conductivity[121]. In 2015, multilayer Ti3C2

/carbon nanofiber (CNF) particles were used as LIB anode materials and their electrochemical performance 
was successfully improved by growing conductive “CNF bridges” within each Ti3C2Tx flake. The rate 
performance of the Ti3C2/CNFs was improved, while their specific capacity was still maintained at 
320 mAh g-1 over 295 cycles at 1 C. More notably, the capacity of the Ti3C2/CNF hybrid at a super-high rate 
of 100 C is only slightly lower than that of pure Ti3C2Tx particles at 1 C. It was also reported that a 
delaminated Nb2CTx/CNT composite, when used as an anode material, shows an excellent capacity of 
400 mAh g-1 at 0.5 C[130]. However, the maximum specific capacity for carbon cathodes to date is 
~120 mAh g-1 for graphene nanoribbons directly developed on extremely porous 3D graphene structures. 
Despite their high performance, most reported graphene and graphite-based cathodes exhibit low 
Coulombic performance at low rates[131].

Graphene was discovered more than a decade ago. Carbon materials with sp2 bonding have a variety of 
structure forms with different dimensions, including 0D, 1D, 2D and 3D structures, fullerenes, nanotubes, 
graphene and graphite. Graphene is composed of a single honeycomb lattice with covalently bonded carbon 
atoms and fully conjugated π electrons, giving it excellent electronic, mechanical, thermal and chemical 
properties. It is a semiconductor and can withstand a high current density exceeding 109 A cm-2. Graphene 
is also an excellent energy storage material due to its high surface area (2630 m2 g-1) and is conductive and 
easy to functionalize with other molecules. Graphene family include double- and few- (three to nine) layer 
graphene and graphene resembling large polyaromatic molecule called graphene nanoribbon (single-, 
double-, few- or multilayer; multilayer graphene nanoribbons are also called stacked graphite nanofibers or 
graphene nanofibers)[132]. Graphene oxide, represented as a monolayer of graphite oxide, is the most 
important chemically-derived form of graphite and is typically synthesized by its exfoliation, long-time 
stirring of graphite oxide/water mixtures or simple sonication[130].

In recent decades, the insertion of lithium ions in the graphite lattice has been studied in detail for 
electrochemical energy storage applications. Graphite carbon forms the structure of LiC6 and as a result has 
a low Li+ storage capacity of only 372 mAh g-1. Single graphene sheets can store Li on either side to form 
LiC3 with a capacity limit of 744 mAh g-1. Graphite-based electrode materials suffer from the large size of 
lateral graphite and long Li-ion diffusion paths into the material. In order to enhance the diffusion of Li+ 
into the interlayer space of the substrate and to increase the reversibility, a solution that decreases the lateral 
dimensions (x-y axes) is used. Stacked graphene nanofibers represent such a solution and have a length of 
several micrometers and lateral dimensions of tens of nanometers. Graphite shows high electrochemical 
performance because of its high surface area, edge-like structure and interlayer spacing, although its base 
planes only have space at the ends of nanofibers. These nanosized lateral dimensions provide a better energy 
storage capacity of more than 461 mAh g-1. Nanosized stacked graphene nanofibers have high energy 
storage capacity. Additionally, electrodes made of graphene sheets have been used to boost the basic 
potential of LIBs, resulting in a capacity of 540 mAh g-1. However, to prevent graphene nanosheets from 
restacking, CNTs were used as spacers and the reported storage capacity for LIBs was enhanced to 
730-784 mAh g-1[133].
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In other work, Li and graphene were used as anode and cathode materials, respectively, and the observed 
discharge capacity was 582 mAh g-1. The high discharge capacity of this anode is due to the nanoholes in the 
sheets of graphene. This is a significant discovery for the further development of Li+ graphene-based 
batteries because graphene nanoholes can be used to support the passage of selective ions. However, due to 
the comparatively strong bonds formed with defects during the charge process, the discharge of Li 
necessitates high voltages and, as a result, a large voltage hysteresis. Tangled graphene has a high reversible 
capacity of 794-1054 mAh g-1. These high volumes are very similar to the Li2 covalent model. Although 
graphene batteries initially had poor performance, current devices show outstanding cycling performance 
(90%-95%). It is noteworthy that studies have shown that the solid electrolyte interface between graphene 
with a high specific surface area and electrolyte morphology has a high capacity of reversibility[134].

With the aim of synthesizing metal/graphene nanocomposites, DFT and volumetric experiments proved 
that the capacity of LIB composites of Sn/graphene show an improvement in storage capacity of the cathode 
material and can store up to 994 mAh g-1. Li+ interacts with Sn to form Li4.4Sn but pure Sn can induce 
accumulation and clustering of Sn nanoparticles; therefore, repeated cycles may cause a loss in capacity of 
such electrode materials. Graphene plays a double role in supporting Sn atoms for the adsorption of Li+ and 
avoiding their aggregation. For Sn/graphene nanocomposites, a capacity of up to 795 mAh g-1 has been 
observed. Another option is to use metal oxides (especially transition metal oxides) as components of 
graphene nanocomposites. To separate their adjacent flakes, Co3O4 nanoparticles (10-30 nm) can be 
homogeneously dispersed on graphene sheets. Over 30 cycles, the recycling efficiency of the material was 
98% and the capacity was maintained at 935 mAh g-1. TiO2 nanoparticle/graphene nanocomposites were 
constructed similarly with a recycling efficiency of over 98%[135]. Si and graphene nanosized composites have 
an average Coulombic efficiency of 93% and a high capacity of 1168 mAh g-1 over 30 cycles. Graphene can 
also act as a conductive source for batteries with olivine-based LiFePO4, with minimal capacity fade even 
after several hundreds of cycles[136]. Graphene sheets with a single-fold layer material have the highest 
capacity of 1175 mAh g-1, while threefold and fivefold layer materials have capacities of 1007 and 
842 mAh g-1, respectively. It is evident from these capacity values that graphene sheets with high edge sites, 
increased defects and reduced size are very beneficial for Li storage.

The performance of LIBs can be efficiently increased by heteroatomic doping, which effectually increase the 
surface chemical properties and electronic band structure. For example, B- or N-doped graphene has a very 
high reversible capacity of over 1040 mAh g-1 at a very low rate of 50 mA g-1[133]. More significantly, it has a 
high rate and superb long-term cycling capabilities and can charge and discharge easily in a short period of 
1 h to tens of seconds. Heteroatomic defects, disordered surface morphologies and the unique 2D structure 
of the material increase the inter-sheet distance and electrical conductivity, which are helpful for increasing 
the absorption of Li+ at the surface and providing high Li+ diffusion. Doped materials generally outperform 
pristine carbonaceous materials. Porous graphene has rich porosity and an extraordinary specific surface 
area (SSA), which are advantageous for the faster diffusion of electrolytes and the transportation of 
electrons in energy storage. For instance, well-ordered mesoporous graphene sheets with a large pore 
volume (1.8 cm3 g-1) and high SSA (1000 m2 g-1) have a capacity of 520 mAh g-1 at 300 mA g-1 over 400 cycles. 
However, their practical use in LIBs is limited because of the resulting significant irreparable capacity[137]. A 
quasi-1D form of graphene, graphene nanoribbons (GNRs), has rich edges, which are advantageous for Li+ 
storage. A low capacity (250 mAh g-1) over 50 cycles was delivered by pure GNRs. Taking advantage of N 
doping and the edge effect, N-doped GNRs have a stable capacity of 714 mAh g-1 after 100 cycles at 3 A g-1. 
An N-doped GNR-based 3D aerogel structure exhibited an improved Li+ storage capacity and consequently 
gave 910 mAh g-1 at 0.5 A g-1[133,138].
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Nanomaterials, such as Si and Ge, have short ion diffusion pathways, which are appropriate for the 
insertion of Li+, enhance the energy efficiency and cycling performance and minimize the internal strain for 
LIBs. Si, Ge and their alloys are used as elemental anodes and can provide high capacities but have greater 
volumetric expansion during charging. Therefore, for phase change cathodes, a complex 3D architecture 
should be used for better cycling and rate performance[139]. Si is an excellent anode material for LIBs because 
it has a low discharge potential, high theoretical capacity (4200 mAh g-1) and is ten times more efficient than 
graphite and much higher than various oxide and nitride materials. However, due to drastic volume 
changes (> 300%) upon extraction and insertion of Li+, its usage results in capacity fade and 
pulverization[140]. Results illustrates that Si nanowires have better capacity than other types of Si. Even at a 
higher 1 C rate, they give a capacity of 2100 mAh g-1, which is five times higher than that of graphite. 
Despite their improved performance, due to the interfacial phase of the solid electrolyte, Si nanowires 
anodes lose irreversible capacity through the initial cycling[139]. The performance of gold-plated porous Si is 
superior to that of non-gold-plated porous Si, which has a discharge capacity of 500 mAh g-1 at the initial 
cycle but quickly decreases over the 10th cycle to only 76 mAh g-1.

The composition of the gold coating and internal pores shows excellent long-term cycling stability and high 
performance for LIB anodes[141]. The maximum possible specific capacity of Si (3579 mAh g-1) is much 
higher than the theoretical capacity of graphite (372 mAh g-1). Nevertheless, the increase in volume (~300%) 
of Si during cycling causes cracking of the Si electrode and results in short circuit and rapid capacity loss[142]. 
It is known that at low potentials, Au reacts with Li and has a capacity of 451 mAh g-1 for Li15Au4. 
Lee et al.[143] observed that a 50 nm Au film causes an initial charge capacity of 47 mAh g-1 at 20 C; however, 
by increasing the number of cycles, the charge/discharge capacity decreases rapidly. The low discharge 
potential (< 0.5 V compared to Li/Li+) and increased capacity of Si make it a good choice as a cathode 
material in high-energy LIBs. Despite their huge volume changes, Si and Si-based alloys are considered to be 
possible substitutes for graphite-based cathodes in current commercial LIBs[141].

The electrochemical performance of a Si-Cu3Si-CNT/G electrode was shown to be good but it has not yet 
reached current commercial goals (a reversible capacity of 1000 mAh g-1, an 80% capacity retention over 100 
cycles and a Coulombic efficiency of > 85%). To enhance the performance of Si-Cu3Si-CNT/G, a known 
pyrolytic carbon coating method has been used. A schematic of the three-step manufacturing process of Si-
Cu3Si-CNT/G-C is given in Figure 8A. Under full discharge conditions (100% SOC at 0 V), the expansion of 
the Si-Cu3Si-CNT/G and Si-Cu3Si-CNT/G-C electrodes was 39.5% and 48.0%, respectively, much lower than 
that of Si-Cu3Si (110.3%) and bulk Si (140.4%). When fully charged (0% SOC at 2 V), the expansion rates of 
the Si-Cu3Si-CNT/G and Si-Cu3Si-CNT/G-C electrodes are 9.5% and 8.3%, respectively. In Figure 8B, the 
cycling performance of Si-Cu3Si-CNT/G-C, commercial graphite and bulk Si is compared at 200 mA g-1 in a 
voltage range of 0-2 V. Due to the formation of Li3.75Si, the volume of Si changes significantly, resulting in 
mechanical cracking and destruction, decreasing the ICE and fading the cycling performance and the 
stability of bulk Si. Si-Cu3Si-CNT/G-C shows a high CE of over 99% and a stable cycling performance at 100 
cycles, while the capacity retention rate was 94.9% and 88.0% of IRC after 50 and 100 cycles, respectively[143]. 
A uniform distribution of nanosized Li-active Si nanocrystals prevents agglomeration of Si nanocrystals 
during cycling and buffering effects on bulk Si nanocrystals of a multi-carbon matrix, providing excellent 
ICE, IRC and retention of capacity and volume changes.

Figure 8C shows the rate performance of commercial graphite and Si-Cu3Si-CNT/G-C at 1 C and 
1200 mA g-1. Figure 8D summarizes the capacity retention and ICE of Si, Si-Cu3Si (1st step), Si-Cu3Si-
CNT/G (2nd step) and Si-Cu3Si-CNT/G-C (3rd step). The CV peaks of Si-Cu3Si-CNT/G-C agree well with 
Si-Cu3Si, but by using a multi-carbon substrate, the CV peak is smoothed. In addition, Si-Cu3Si-CNT/G-C 
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Figure 8. (A) Schematic representation of Si-Cu3Si-CNT/G-C synthesis. (B) Cycling behavior of graphite, bulk Si and Si-Cu3SiCNT/G-C. 
(C) Rate capabilities of graphite and Si-Cu3Si-CNT/G-C. (D) ICE and capacity retention for bulk Si, Si-Cu3Si, Si-Cu3Si-CNT/G and Si-Cu3

Si-CNT/G-C electrodes. (E) Voltage profiles from 1st to 100th cycle for Si-Cu3Si-CNT/G-C. (F) Changes to the thickness of bulk Si, Si-
Cu3Si, Si-Cu3Si-CNT/G and Si-Cu3Si-CNT/G-C electrodes according to the SOC. Reproduced with permission from Ref.[143] (Copyright 
2020, Chemical Engineering, Elsevier). CNT: Carbon nanotube; HEBM: heat treatment and ball milling; SOC: state of charge.

has better capacity retention [Figure 8D-F]. Figure 8D summarizes bulk Si, Si-Cu3Si (first preparatory 
stage), Si-Cu3Si-CNT/G (second preparatory stage) and Si-Cu3Si-CNT/G-C (third preparatory stage). After 
100 cycles, the ICE of Si-Cu3Si-CNT/G-C is as high as 82.8%, the value of IRC is 1237 mAh g-1 and the stable 
capacity retention rate is 88%. All these electrochemical parameters (capacity retention, ICE and IRC) have 
reached a certain goal of commercialization for high capacity Si-based anodes for LIBs. Figure 8F shows 
changes in thickness for the Si, Si-Cu3Si-CNT/G, Si-Cu3Si and Si-Cu3Si-CNT/G-C electrodes during the 
charge/discharge process[143].

SnO2 is an excellent semiconductor with high acid/alkali resistance and stability. The capacity of a SnSb 
nanocomposite was almost twice that of a carbon-based cathode material[18]. SnO2 has a high theoretical 
capacity but its volume expansion and rapid capacity fade during cycling render it unsuitable for LIBs. It has 
been reported that rGO and fluorine-doped tin oxide nanocomposites (FTO) are ideal anode materials with 
high rate performance and good capacity and show better structural stability throughout the process of 
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lithiation and delithiation. Through conductive FTO nanocrystals, a stable and thin solid electrolyte 
interfacial film can be formed, which has a discharge capacity of 1439 mAh g-1 after 200 cycles at 
100 mA g-1[144].

Plante invented the lead-acid battery in 1859 and it has been extensively used ever since. Lead-acid batteries 
are a simple technology with low production costs, but they have a limited number of charge/discharge 
cycles, charge slowly and cannot be completely discharged due to their low energy to weight and volume 
ratios. A passive layer of lead sulfate is synthesized through the charge/discharge process on the positive 
electrode surface:

The lead sulfate layer, near the electrode surface, acts as a selective membrane for the diffusion of ions and 
can pass only ions, such as H+ and Pb2+. The growth of lead dioxide (PbO2) is determined by the flux of Pb2+ 
ions. Pb2+ ions move by surface diffusion, besides the surface of PbSO4 crystals to the PbO2 phase and 
oxidized there. The electrochemical properties of carbon-based electrode materials can be improved by the 
modification of their surface with non-carbon-based elements, such as B and N. The presence of non-
carbon-based heteroatom functional groups on the carbon surface can increase Li+ storage capacity, 
conductivity and reactivity. N-doped CNFs have an excellent rate capability and high capacity (943 mAh g-1) 
at 2 A g-1 over 600 cycles[145].

Despite their widespread usage in mobile and portable electronic devices as a result of their high specific 
capacity and power density, LIBs can be ignited, especially under extreme conditions, such as crushing, 
overheating and charging. In order to improve the thermal stability of LIBs, electrochemists have 
considered the development of nonflammable electrolytes. An effective approach is to add flame retardants 
directly into standard electrolytes. Phosphite and phosphate are used as flame retardants and show 
outstanding nonflammability. Among these additives, the compounds of phosphorous(III), such as 
trimethyl phosphite and tris(2,2,2-trifluoroethyl) phosphite, have more efficient nonflammability and can 
enhance the electrochemical performance of LIBs compared to subsequent phosphorous(V) compounds[146].

For the protection of Li anodes, LiPON films represent excellent protective layers for Li secondary batteries. 
A LiPON layer may be adsorbed on a Li electrode surface using radio frequency sputtering as an amorphous 
phase. This layer has excellent characteristics as a lithium ionic conductor and electric insulator for 
protecting the electrode surface from electrolytic decay. Such films are also predicted to be outstanding 
passive layers to protect the anode surfaces of LIBs. The deposition of a LiPON layer synthesizes a stable 
solid electrolyte on the lithium anode surface, which effectively decreases the reaction between lithium and 
the electrolyte (1:1 w/w EC + DEC + 1.0 M LiPF6). Impedance measurements show that the LiPON layer is a 
fast ionic conductor compared to the film formed by electrolyte decay[147]. Triphenylphosphite is also used as 
a phosphorous additive for LIBs. It can improve the thermal stability of electrolytes (1 M LiPF6/ethylene 
carbonate, dimethyl carbonate and diethyl carbonate, 1:1:1 by weight) and provide overcharge safety for 
LIBs. Recently, it has been suggested that metal phosphides can be used as anode materials for LIBs. 
Zhao et al.[148] prepared a CuP2/C composite material with a capacity of 430 mAh g-1 after 30 cycles at 
150 mA g-1. Li et al.[149] reported yolk-shell Sn4P3/C nanospheres with an excellent capacity of 790 mAh g-1 at 
100 mA g-1.
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In LIBs, arsenic (As) is the most promising anode material substitute for graphite. A theoretical and 
experimental approach was used to investigate the electrochemical performance of As/carbon 
nanocomposite materials for LIBs. The LIBs provided good cycling performance with a promising capacity 
of 1306 mAh g-1 (over 100 cycles), which is higher than that of Li3As (1072 mAh g-1)[150].

Microsized antimony (Sb) can be successfully applied as an electrode material for LIBs and provides a high 
capacity of 600 mAh g-1 over 160 cycles and a CE of 99%. It delivers 310 mAh g-1 of discharge capacity at a 
very high current rate of 30 C for LIBs[151,152]. A SnSb/C nanocomposite material based on a Na alloy 
electrode can provide a very high capacity (544 mAh g-1, about double that of intercalated carbon materials) 
and recyclability of Na+ storage (80% capacity over 50 cycles)[153]. However, the poor rate capability and low 
capacity of existing anodes are major hindrances to future development. The homogenous coating of 
antimony sulfide (stibnite) on a graphene surface has also been reported, which provides a capacity of 
730 mAh g-1 at 50 mA g-1. It also provides a model site for the anchoring of nanoparticles. A study has also 
shown that a battery made of a stibnite-graphene composite material does not contain Na metal and its 
energy density is 80 Wh kg-1. This energy density can be optimized over some LIBs[154].

Bismuth is a promising anode material for LIBs and the theoretical capacity of bismuth oxide (Bi2O3) is 
690 mAh g-1. Surprisingly, little attention has been paid to Bi2O3. Bi2O3 nanoparticles with a particle size of 
~5 nm were uniformly dispersed on rGO sheets. The nanocomposite Bi2O3/rGO enhances cycling stability 
and electrochemical reversibility compared to agglomerated bare Bi2O3 nanoparticles. This Bi2O3/rGO 
anode material can provide an excellent rate capability of 270 mAh g-1 at a high current rate of 10 C and an 
initial capacity of 900 mAh g-1 at 0.1 C [Figure 9A]. Over 100 cycles at 1 C, the capacity of the Bi2O3/rGO 
anode material is maintained at 347.3 mAh g-1 and its capacity retention rate is 79% [Figure 9B]. The 
diffusion coefficient of Li+ is ~10-15-10-16 cm2 S-1 during the lithiation/delithiation of Bi2O3/rGO 
nanocomposites[23].

The specific initial charge/discharge capacity of bare Bi2S3 is 598 and 921 mAh g-1, respectively. The 
charge/discharge capacity of a Bi2S3/rGO composite at 100 mA g-1 is 685 and 1004 mAh g-1, which is 14.5% 
and 9.0% higher than that of Bi2S3, respectively. The retention rate of the capacity of Bi2S3 is only 0.4% 
(4 mAh g-1) after 50 cycles, far less than that of Bi2S3/rGO [11.9%, (110 mAh g-1)]. These results show that 
graphene not only increases the electrochemical activity of the whole electrode but also greatly improves the 
conductivity of Bi2S3 during cycling[155]. The layered structure of Bi2S3 also provides host sites for the 
insertion of Na ions. CNTs play a role in promoting the high conductivity network of electron transport in 
Bi2S3/CNT nanocomposites. The results exhibit that Bi2S3/CNT nanocomposites have a stable capacity in the 
range of 0.01-3.0 V (vs. Na/Na+), particularly better than bare Bi2S3 materials[156]. Bismuth directly developed 
on nickel foam (p-Bi2O3/Ni) has excellent electrochemical properties compared with Bi2O3 powder (p-Bi2O3) 
prepared by a polymer-assisted solution and commercial Bi2O3 (c-Bi2O3). The capacity of p-Bi2O3/Ni was 
maintained at 782 mAh g-1 over 40 cycles at 800 mA g-1[157].

Of the chalcogens, S as a cathode material for lithium-sulfur batteries has been widely studied because of its 
low cost and high theoretical gravimetric energy density of 2570 Wh kg-1. By the one-electron transfer 
method, synthesizing LiO2 by absorbing oxygen on the surface of Li was proposed to reduce the oxygen 
content of Li and then one electron reduction to form Li2O2 (solid). It is also proposed that LiO2 can 
chemically decompose to Li2O2 and O2. Furthermore, Li2O2 is reduced to LiO2 in the discharge potential 
range of Li-O2 batteries (2.8-2.0 V Li). The specific capacities of Li-air batteries are dominated due to the 
electrode porosity required for the storage of Li2Ox and by the diffusion of oxygen through the pores of 
flooded electrolytes. Therefore, using electrolytes with high oxygen solubility and oxygen pressure enhances 
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Figure 9. (A) Rate and (B) cycling performance of Bi2O3 and Bi2O3/rGO anode materials at 0.01-3.0 V vs. Li/Li +. Reproduced with 
permission from Ref.[23] (Copyright 2017, American Chemical Society).

the specific activity. Usually, the reported specific capacities for carbon-based Li-air cathodes are 
2500-5000 mAh g-1. Pt/C is a useful catalyst for the charging of LiO2 batteries and it provides one of the 
lowest charging voltages (3.8 V Li at 250 mA g-1)[158].

Li-S batteries are extremely promising for future two-electron reaction energy storage systems. Li-S has a 
capacity of 1675 mAh g-1, which is much greater than typical LIBs (387 Wh kg-1). Furthermore, elemental 
sulfur has other advantages, such as its abundance in nature and low environmental pollution and cost. 
However, there are many barriers to improving Li-S batteries, including the dissolution of polysulfides in 
the liquid electrolyte and reaction of intermediates with the Li anode in the electrolyte, leading to the 
migration of low-order polysulfides towards the cathode and the “shuttle effect”. The slow decay of active S 
from the cathode into the electrolytic solution and onto the Li metal anode also results in “shuttle 
reactions”, severe degradation of cycle life, low Coulombic efficiency, low utilization of the cathode, self-
discharge, poor conductivity of S and a large expansion in volume (80%) from S to Li2S after lithiation, 
resulting in rapid capacity decay and instability of the cathode.

Extensive research attempts have been devoted to resolving these challenges. Chen et al.[159] successfully 
anchored S nanoparticles on the surface of multiwalled CNTs to improve the sulfur cycling performance. 
The capacities of the S/C nanocomposites were increased up to 1000 mAh g-1, depending on the content of S 
in the composite material. Ji et al.[160] noted that mesoporous carbon/sulfur nanofillers had a specific 
capacity of up to 1300 mAh g-1. Carbon enhances the electrical contact between the carbon matrix and 
insulating sulfur particles and decreases the solubility of the polysulfides by anchoring the sulfur particles on 
some supports. However, the manufacturing procedure of these composite materials is complicated. 
Xiao et al.[161] stated that MoS2 may reduce to Li2S and Mo at 0.01 V (vs. Li+/Li).

However, it has been experimentally clarified that the Li storage process of a fully discharged MoS2/Li cell 
estimates the feasibility of applying Li2S as a cathode active material with carbonate-based electrolytes in Li-
S batteries[162]. Therefore, Li-S batteries undergo rapid capacity decay and low Coulombic efficiency, thereby 
hindering the commercialization of S cathodes. The polar oxygen-containing functional groups in graphene 
oxide nanosheets are eliminated by microwave irradiation. S2O3

2- ions are reduced to nanostructures by HCl 
treatment after adding Na2S2O3 into the suspension of irradiated GO. The mixture of GOF/nano-S is evenly 
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dispersed in a VC-Na solution and heated for 3 h at 95 °C to obtain the mixture of rGOF/nano-S, as given 
in Figure 10A. When the specific capacity of rGOF/nano-S hybrids (~886 mAh g-1) is compared with 
rGO/nano-S (612 mA h g-1), it is again proved that the sulfur utilization ratio of the rGOF/nano-S hybrid 
structure at 0.1 C is better than that of the rGO/nano-S structure. In addition, the rate performance 
[Figure 10B] shows that when the discharge rate is raised from 0.1 to 2.0 C, the discharge capacity of the 
rGO/nano-S hybrid material is still greater than 531 mAh g-1 (61%). Figure 10C compares the cycling 
performance of the rGOF/nano-S and rGO/nano-S hybrid cathodes. The initial specific capacity of the 
rGO/nano-S cathode is 598 mAh g-1 and it remains 408 mAh g-1 (68.3%) over 800 cycles, showing that the 
capacity of each cycle decreases by 0.04%. In contrast, despite the high initial capacity (590 mAh g-1) of the 
rGO/nano-S hybrids, their capacity is rapidly reduced to 181 mAh g-1 over 800 cycles and the capacity of 
each cycle is decreased by 0.09%. This capacity decay is equivalent to the reported values in the literature[163].

Like sulfur, selenium is also a chalcogen and may become a candidate material for cathodes in the future. 
The theoretical gravimetric capacity of Se is 675 mAh g-1, which is lower than S (1675 mAh g-1), but its high 
density (2.5 times that of S) contributes to a higher theoretical capacity density (3253 mAh cm-3), which is 
almost equal to S (3467 mAh cm-3). Li-Se batteries have better output voltage and volumetric energy density. 
Volumetric energy is far most significant than gravimetric energy in portable devices due to its limited 
battery packaging space. Furthermore, the conductivity of Se (1103 S m-1) is better than S (51028 S m-1), 
which indicates that Se has good electrochemical activity, a high utilization rate and fast electrochemical 
reaction with Li. Therefore, Se is believed to be a promising material for the manufacturing of high-energy 
batteries for transportation and household appliances. Cui et al.[164] recently used Se as a cathode material 
and noted that the consumption of active substances in bulk Se is 20.45%. This phenomenon is generally not 
observed in Li-S batteries. Se has higher electrochemical activity and a weak shuttle effect compared to S. 
However, the synthesis of polyselenide during charge and discharge, weakens the interaction between the 
conductive substrate and Se, which leads to the shuttle effect and fades the cycling performance of the 
cathode and as a result, the full theoretical capacity of bulk Se cannot be achieved. This problem can be 
solved by using a porous conductive carbon matrix.

A Se composite containing only mesoporous carbon cyclic Se8 molecules (CMK-3) has been synthesized. 
XRD and Raman spectroscopic analysis show that it is because of the conversion of cyclic Se8 into Sen on the 
carbon channel. Due to the strong attraction between carbon mesopores and Sen, Sen has high 
electrochemical performance. As a result, the cathode of Se gives a better capacity, close to the theoretical 
capacity of Se and maintains cycling stability[165]. The Se/CMK-3 cathode provides an excellent reversible 
discharge capacity (~600 mAh g-1) over 50 cycles. The unique arrangement of Se molecules restrained in a 
matrix of mesoporous carbon decreases the shuttle effect and gives excellent cycling performance, high 
volumetric energy density and better conductivity for LIBs[165]. It gives a reversible capacity of 516 and 
306 mAh g-1 for LIBs over 900 cycles at 0.5 and 4 A g-1, respectively.

A flexible Se/porous carbon nanofiber composite material (Se/PCNFs) was synthesized by infiltrating Se 
into the pores of CNFs and gave a reversible capacity of 516 mAh g-1 at 0.05 A g-1 over 900 cycles and 
306 mAh g-1 at 4 A g-1. The uniform distribution of Se in the three-dimensional PCNF framework reduces 
the shuttle effect of polyselenide in the cycling process and gives excellent conductivity, a better rate 
capability, high capacity and good cycling stability[166]. Se has higher electrical conductivity (1 × 10-3 Sm-1) 
than S (5 × 10-28 S m-1), which has led to Li-Se batteries receiving significant attention in recent years. It 
should be emphasized that Se is the neighbor of S in the periodic table, which makes them very similar in 
many properties. Thus, the general problems of Li-S batteries also exist for Li-Se batteries, but the Se 
advantages can make this kind of rechargeable batteries more useful. Nevertheless, the key focus remains on 
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Figure 10. (A) Schematic representation of the synthesis of rGOF/nano-S hybrids. (B) Rate capabilities and (C) cycling performance of 
rGOF/nano-S and rGO/nano-S. Reproduced with permission from Ref.[163] (Copyright 2019, Electrochimica Acta, Elsevier).

Li-S batteries. There are some unique properties of Li-Se batteries that require special attention. Se is much 
more expensive than S and its specific energy is less, but its invaluable advantages make it an attractive 
option compared to S[167].

Te is in the same group as O, S and Se. A Te/C composite was prepared by injecting liquid Te into the pores 
of porous carbon at 600 °C. The Te/C electrode material can provide 1400 mAh cm-3 (224 mAh g-1), a high 
reversible capacity at 312 mAh cm-3 and maintain 87% capacity over 1000 cycles. If the current is enhanced 
by 12,480 mA cm-3 (2000 A g-1), the electrode can provide 500 mAh cm-3 capacity. Te/C is a promising 
electrode material for LIBs[168]. rGO has excellent flexibility, can be used to construct highly conductive 3D 
skeletons and can be used in binder-free self-supporting lithium tellurium (Li-Te) batteries with excellent 
electrochemical performance to obtain rich porous cathode materials. The initial capacity of a 0.2 C Li-Te 
cathode material was 2611 mAh cm-3 and the retention rate over 200 cycles was as high as 88%, with a rate 
capacity at 10 C of 1083 mAh cm-3. After 500 cycles, the 3D aerogel cathode maintained a capacity of 
1685 mAh cm-3 at 1 C and exhibited long-cycling performance at high current density. Because of these 
useful properties, the stated 3D rGO/Te nanowire aerogel has potential applications and can be utilized as a 
high-performance cathode for Li-Te batteries[169].

Since it is complicated to use F2 gas as a cathode material, various fluorides, chlorides, sulfides and oxides 
have been examined. Subsequently, it was found that graphite fluoride is the most excellent cathode 
material for a primary LIB. The first Li/(CF)n battery was commercialized by Matsushita Battery Co., Ltd. in 



Page 28 of Bashir et al. Energy Mater 2021;1:100019 https://dx.doi.org/10.20517/energymater.2021.2059

1973 in Japan. It was noticed in 1980 that fluorine is absorbed into graphite at room temperature and a 
fluorine-graphite intercalation compound was synthesized as a result. This material is an electric conductor 
and is significantly different from graphite fluoride, which was applied to a new graphite anode material 
using KF2HF for the electrolytic production of F2 gas[170]. The wettability of KF2HF melt with carbon anode is 
therefore reduced with increasing CF film having a low surface energy, which result in abrupt decrease in 
electrolytic current and simultaneously increase in cell potential. This phenomenon is known as the “anode 
effect”. As a result of the “anodic effect”, a spark or arc is observed between the cathode and anode and 
electrolysis cannot be sustained. Carbon materials react with F2 gas giving several different side products 
(CF, C2F, CF4 and C2F6) depending on the crystalline nature of the raw carbon materials and reaction 
temperature[170].

We can also use graphite oxide for smooth discharge but it is difficult due to the reaction products, such as 
LiOH and Li2O, which are not as stable as LiF. It gives a low discharge capacity because the diffusion of Li+ 
ions in graphite oxide is slow. However, the discharge properties can be modified by the fluorination of 
graphite oxide at low temperatures between 100-150 °C. The discharge capacity of fluorinated graphite 
oxides is similar to those of (CF)n samples. CxF synthesized at room temperature contains C-F covalent 
bonds and works as a cathode material in primary LIBs. It gives a higher discharge potential capacity but the 
current is reduced[170]. Li/(CF)n batteries have a long life and high stability because graphite fluoride cathode 
materials are stable compounds under extreme conditions. Organofluorine compounds have much higher 
stability against the reactions with Li and electrochemical oxidation, effectively enhancing the safety of 
LIBs[170]. F-SnO2 nanoparticles were anchored uniformly on the sheets of rGO by a hydrothermal process. 
The load of F-SnO2 in the composite (F-SnO2/rGO) was high (~90%). The diffusion and conductivity of Li+ 
in the electrode are improved by doping F with rGO, which enhances the rate performance, long-term 
cycling stability and reversible capacity of the composite material. The electrode provides a reversible 
capacity of 860 and 770 mAh g-1 at 1 and 2 A g-1, respectively, over 150 cycles. Furthermore, over 250 cycles 
at 500 mA g-1, the electrode can maintain a high reversible capacity of 733 mAh g-1. The composite has 
excellent electrochemical properties and can be used as a high-energy LIB anode material[171].

Tin oxide (SnO2) has a high theoretical capacity; however, its fast fading capability during cycling causes 
volume expansion, which prohibits its practical application in LIBs. However, if a FTO nanocomposite is 
used with rGO as an anode active material, it gives a high stability, rate capability and capacity. The 
composite material (FTO/rGO) has high structural stability through the processes of lithiation and 
delithiation. The nanocrystals of FTO are conductive and conducive to the synthesis of a stable and solid 
film of electrolytes. The FTO/rGO composite at a current density of 100 mA g-1 provides a discharge 
capacity of 1439 mAh g-1 and at a current density of 1000 mA g-1, provides a rate capacity of 1148 mAh g-1 

after 200 cycles[144]. Polyvinylidene fluoride and polyvinyl alcohol were also examined as potential binding 
materials for the Li, Na, K, Zn, Al and Ag2O electrodes.

Like F, Cl is also a gas and cannot be used directly. It is instead used in the form of compounds. Polyaniline 
can be prepared by a usual chemical oxidation method and then the hydrogen atom on the six-membered 
ring was replaced by HCl. As a result, polyaniline chloride was produced for high-energy secondary LIBs as 
a cathode material. A button-type battery was prepared and examined through a charge/discharge test, 
which shows an excellent initial discharge capacity of ~980 mAh g-1[172].

D-block elements (transition metals)
Transition metal oxides with different oxidation states are promising energy storage materials for 
supercapacitors and batteries. Fast surface redox storage (pseudocapacitive) techniques can allow devices to 
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store far more energy than electrical double-layer capacitors (EDLCs). However, due to their low inherent 
electrical and ionic conductivity, only a few pseudocapacitive transition metal oxides can deliver significant 
power.

Scandium (Sc) is the first member of the first transition series. Alloys comprising Sc and Mg have showed a 
very promising storage capacity of 1500 mAh g-1, which is four times that of metal-based materials. 
Palladium-capped thin films of MgxSc(1-x) with different concentrations (x = 0.50-0.90) enhance the 
hydrogen storage capacity by 5%-20% compared to their bulk materials, even using higher discharge 
rates[173]. Li3Sc2(PO4)3 is a promising electrolyte for Li rechargeable micro-batteries due to its resistance to 
dielectric breakdown, ease of preparation and stability in air. The formation of Li3(Sc2-xMx)(PO4)3 (M = Y3+ or 
Al3+) resulted in a considerable improvement in ionic conductivity, greater sinterability and a decrease of 
porosity. Li3Sc2(PO4)3 is yielded by the electron beam evaporation of amorphous thin films of Li4.8Sc1.4(PO4)3 
with high ionic conductivity (5 × 10-5 S cm-1)[174].

Among all anode materials, TiO2 has the advantages of a comparatively high working voltage (1.5 V vs. Li+

/Li) and extremely small volume change (< 4%), making it a promising electrode material. The small volume 
change, high working voltage and excellent long-term cycling stability avoid the synthesis of the solid 
electrolyte interface layer (SEI) and a lower irreversible capacity. The anatase form of TiO2 has a theoretical 
capacity of 335 mAh g-1; however, its poor ionic and electronic conductivity fade its rate performance and 
cycling stability. The use of specific facets, namely, (001), (101) or (010), for Ti3+ carbon coupling and 
doping (reduction or hydrogenation by Mg) is a useful method for overcoming the above obstacles because 
these methods can provide greater electronic conductivity and shorter ion diffusion pathways.

In particular, a number of excellent studies have been carried out on TiO2/MXene, TiO2/graphene and 
TiO2/C[175]. The typical charge/discharge curves of graphene/Si, TiO2/graphene/Si, TiO2/graphene/SiNW, 
TiO2/graphene/Ag/SiNW and TiO2/N-graphene/Ag/SiNW nanocomposites show discharge capacities of 
333.5, 525.9, 693.1, 836.7 and 966.1 mAh g-1, respectively, as presented in Figure 11A. The high Li storage 
capacity of TiO2/N-graphene/Ag/SiNWs is due to the high specific surface area of the SiNWs and the high 
conductivity of graphene. The rate capabilities of the graphene/Si, TiO2/graphene/Si,TiO2/graphene/SiNW, 
TiO2/graphene/Ag/SiNW and TiO2/N-graphene/Ag/SiNW nanocomposites at different current rates are 
given in Figure 11B. As the current rate increased to 5 A g-1, the specific capacity of the TiO2/N-
graphene/Ag/SiNW electrode decreased slowly, showing the highest specific capacity. The TiO2/N-
graphene/Ag/SiNW electrode had a high specific surface area, conductivity and mesoporosity. Figure 11C 
shows that all the EIS curves include semicircles in the range of high-frequency lines to the low-frequency 
range, which are fixed at a constant angle to the actual axis. The semicircle diameter of the TiO2/N-
graphene/Ag/SiNWs is much smaller than that of other semicircles, indicating that the TiO2/N-
graphene/Ag/SiNWs have interfacial and charge transfer resistance between the three electrodes. This is 
because N-graphene/Ag substantially increases the electronic transport and its hollow structure enhances 
the ionic conductivity[176].

Vanadium pentoxide (V2O5) is a potential cathode material with the advantages of rich reserves, high energy 
density, low costs and easy preparation. The theoretical capacity of V2O5 at 2-4 V is ~294 mAh g-1, which is 
superior to the conventional cathode materials LiFePO4 (176 mAh g-1) and LiMn2O4 (148 mAh g-1). 
Regardless of these advantages, the electrochemical performance of V2O5 is restricted by its sluggish 
diffusion of Li ions (~10-12 cm-2 S-1) and its poor electrical conductivity (10-3 to 10-2 S cm-1). Moreover, the 
phase transitions of LixV2O5 during the charge/discharge process regularly cause structural instability and 
can decrease its cycling performance. These shortcomings have limited the practical application of V2O5 in 
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Figure 11. (A) Charge/discharge profiles, (B) comparison of rate capability and (C) EIS analysis of graphene/Si, TiO2/graphene/Si, TiO2

/graphene/SiNW, TiO2/graphene/Ag/SiNW and TiO2/N-graphene/Ag/SiNW electrodes. Reproduced with permission from Ref.[176] 
(Copyright 2019, Materials Letters, Elsevier).

commercial LIBs[177]. AgxV2O5 shows higher discharge capacities, which seem to be credited to the higher 
diffusion of Li+ in Ag-doped V2O5 compared to bare V2O5 thin-film cathode materials. The poor discharge 
capacity of Ag1.8V2O5 films seems to be due to the cauliflower-like structure of the films. All thin-film solid-
state batteries showed excellent reversibility up to 200 cycles. The energy density of the material is relatively 
low at ~40 Wh kg-1; however, recent research showed that a modified electrolyte solution produces a 70% 
enhancement in energy density[178].

The most important benefit of vanadium redox batteries (VRBs) is that it can be charged only by changing 
the electrolyte and can provide unlimited capacity by using a large storage tank. If the electrolyte is 
accidentally mixed, the battery will not be permanently damaged and it can be left uncharged for long 
periods without any effects. The disadvantage of VRBs is that compared with standard batteries, they are 
complex and their energy volume ratio is relatively low[178]. Ti3C2 MXenes provide a capacity of 410 mAh g-1 
for LIBs. Interestingly, the capacity of MXenes can be as high as 800 mAh g-1 after intercalation with 
different cations, such as Sn4+, NH4+ and Al3+. Compared with the Ti3C2 MXene, the V2C MXene with a 
smaller molecular weight can obtain a higher theoretical LIB capacity of 940 mAh g-1. Unfortunately, the 
experimental capacity of V2C MXene is 260 mAh g-1 at 1 C, which is very far from the theoretical value. 
Recently, it has been found that the V2C MXene with Co ion intercalation can provide a 1100 mAh g-1 Li+ 
storage capacity and better cycling stability[179].

The Ragone diagram in Figure 12A gives the relationship between the density of power and energy for 
vanadium oxide with different Na, Ca, Zn and H2O interlayer ions and molecules, as well as materials other 
than vanadium oxide, such as Na2V2(PO)2F3/C, VS2 and ZnHCF. Compared with Zn0.25V2O5 in the low power 
range and Ca0.25V2O5 in the high power range, VONTs provide balanced power and energy density with 
superior performance in ZIBs. VONTs have a wider working voltage, high discharge capacity and better 
stability against over-discharge. In addition, the cathode also provides a relatively high discharge capacity 
between the comparative materials. These cathodes at different current densities of 0.3 A g-1 (1 C), 0.6 A g-1 
(2.1 C), 1.2 A g-1 (4.7 C), 2.4 A g-1 (11 C), 4.8 A g-1 (30.5 C), 7.2 A g-1 (60 C) and 9.6 A g-1 (109 C) retain 
specific capacities of 94.5%, 89.2%, 81.7%, 69.1%, 50%, 38% and 27.9%, respectively, as shown in Figure 12B. 
The battery was tested at 0.3 and 0.1 A g-1 and the discharge capacity recovered to 296 and 309 mAh g-1, 
respectively. As presented in Figure 12D, the cathode is activated for the first four cycles at 0.1 A g-1 to 
obtain the CV data. In this process, the CE slowly increased to 99.8% (the sixth cycle). The capacity 
retention rate of the cathode is 80.5% after 950 cycles at 2.4 A g-1, while the CE is close to 100% in all cycles, 
which shows that a minimal decrease in capacity produces outstanding durability under strong current 
fluctuation, as shown in Figure 12C. The reduction peaks shifted to a higher voltage and then stabilized at 
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Figure 12. Electrochemical performance of coin cells with VONTs as cathode and Zn as anode in the range of 0.3-1.9 V vs. Zn/Zn+: (A) 
Ragone plot of different materials; (B) rate performance at current densities from 0.1 to 9.6 A g-1; (C) charge/discharge curves; (D) 
cycling performance at a current density of 2.4 A g-1. Reproduced with permission from Ref.[180] (Copyright 2019, Journal of Power 
Sources, Elsevier). VONTs: Vanadium oxide nanotubes.

0.419 and 0.815 V, while the two oxidation peaks moved to the lower position and then stabilized at 0.736 
and 1.1 V, which proves that the change of peak value decreases with increasing cycling. The curve of the 
fourth cycle almost coincides with the curve of the third period. These phenomena show that the decrease 
of overpotential and enhancement of cycling stability are highly consistent with the curves of galvanostatic 
charge/discharge, as given in Figure 12D[180].

A comprehensive comparison, including cycle and charge/discharge tests and capital cost analyses, was 
provided for vanadium redox flow batteries (VRFBs) and iron-chromium redox flow batteries (ICRFBs). 
ICRFBs show similar energy efficiency with VRFBs at high current densities. Energy efficiencies of 78.4% 
and 80.3% can be achieved for ICRFBs and VRFBs at 120 mA cm2, respectively. Through the cycle test, the 
efficiencies of both RFBs were stable[181].

Manganese (Mn) can be reduced from Mn(IV) to Mn(II), which allows for full lithiation and gives Li2

MnSiO4, which may allow two Li-ion insertions/extractions for each transition metal and provides a 
theoretical capacity of 330 mAh g-1[19]. It is reported that the capacity of a Na0.85Li0.17Ni0.21Mn0.64O2 cathode 
material is 95 mAh g-1 and it has better withholding capacity over 50 cycles. A single-crystal Na4Mn9O18 
(orthogonal lattice structure) nanowire material with a capacity of 128 mAh g-1 and a cycling stability of 
more than 1000 times was also reported[182].

Iron batteries have sufficient capabilities for commercial use in low-power projects and devices. The 
internal resistance of iron cells is high and therefore their discharge rate is limited. Poor transfer charge 
rates from the electrode of carbon to the Fe3+ in the cathode is because of the poor electrical conductivity of 
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the electrolyte, poor ionic conductivity of the membrane and poor electrical contact among the components 
are several probable reasons for high resistance[183]. Iron batteries can oxidize Fe(II) to Fe(III) at the cathode 
and store energy by reducing Fe(II) to Fe(0) at the anode. Iron cells are non-toxic, efficient, highly stable 
and safe. Iron batteries have lower specific energy than commercial batteries but give the opportunity for 
safe handling and low-cost raw materials. Metal hydrides and Li are flammable, toxic, react strongly with 
water and oxidize in air. Iron is relatively non-toxic and is only marginally reactive with air and water (i.e., 
rust formation). Iron with sulfate solution is reliable and represents stable salt chemistry for all-iron 
batteries. As saturated potassium sulfate solution is mixed with iron chloride and the pH was adjusted to 
obtain the anodic electrolyte (iron(II) chloride), which is used as a cathode electrolyte[184]. Although iron(IV) 
can be easily synthesized, the safety concerns related to the high oxidation state, which prohibit its use. 
Other iron salt solutions were also examined, including solutions containing fructose, sucrose, ferric 
cyanide and EDTA. In solution, these unconventional systems exhibit similar behavior but the sulfate 
precursor exhibits the best Coulombic capacity. While using sulfate solution, less amount of iron is lost 
from the bulk of the metallic iron electrode over the charge/discharge process. During the reaction, the iron 
anode is oxidized, liberating electrons at the cathode[185].

Iron oxides, especially Fe3O4 and Fe2O3, have attracted significant attention because of their high abundance, 
low processing costs, excellent theoretical capacity (~1000 mAh g-1), strong corrosion resistance, non-
toxicity and other advantages. High Li insertion potential and the good safety protection of non-
flammability in large-scale applications are further advantages of iron oxide-based anode materials. The 
storage mechanism of iron oxide for Li depends on the redox reaction, i.e., the reduction of Fe2O3 to metal 
nanoclusters dispersed in the Li2O matrix and then the reduction to the initial oxidation state in the process 
of delithiation. The reaction mechanism of Fe2O3 with Li+ is given by:

The oxidation of Fe0 to Fe3+ gives three electrons, resulting in a high theoretical capacity for Li storage and is 
thermodynamically possible as shown in the above forward reaction. However, it seems that it is not feasible 
in thermodynamics to extract Li+ from the Li2O matrix. In addition, the cyclability of iron oxides is poor 
because of the drastic volume decrease during cycling and has low conductivity, especially at high current 
density[186]. A 3DG/Fe2O3 free-standing mechanical press was used to study the LIBs. The results show that 
the press has an excellent performance of 1129 mAh g-1 2022/1/11at 0.2 A g-1 and excellent cycling stability 
over 130 cycles, while the capacity retention is 98% over 1200 cycles at 5 A g-1[187]. The direct anchoring of 
continuous MIO nanofilms on the surface of graphene nanosheets (GNSs) as LIB anode materials via an in 
situ thermal decomposition method was examined and the shrinking effect of the GNSs on the change of 
volume of MIO at the molecular level was reported. The MIO/GNS nanocomposite has an outstanding 
specific capacity of ~1000 mAh g-1 at 100 mA g-1 and there is no capacity attenuation even over 400 cycles at 
1000 mA g-1. This outstanding cycling performance is credited to the superior strain hosting capability of 
the MIO/GNS nanocomposite[188].

From a comparison of the cycling properties of Fe3O4-NP/G and Fe3O4-NS/G composites at 0.2 C for 160 
cycles, the reversible capacity of the Fe3O4-NS/G composite was maintained at 1025 mAh g-1 for 50 cycles 
and then decreased to 920 mAh g-1 for 100 cycles. It then began to increase, reaching 1070 mAh g-1 again 
after 160 cycles. In contrast, the reversible capacity of the Fe3O4-NP/G composite rapidly decreased to 
460 mAh g-1 after 50 cycles and then increased to 860 mAh g-1 after 160 cycles. For different nanostructured 
metal oxide electrodes, the capacity increased over a long cycle and it is believed that the irreversible partial 
reactivation of Li2O synthesized in the early cycle is due to the electrochemical grinding effect[189,190].
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Spherical Fe/AuNPs were uniformly dispersed on the surface of rGO sheets. It was proved that the 
Fe/AuNPs-AETrGO composite has a high specific gravity of 1500 mAh g-1 and a high long-term cycling 
stability. The improved electrochemical performance of the Fe/AgNPs-AETrGO composite material is 
credited to the small size and uniform distribution of Fe/AgNPs on rGO sheets[191]. Co-B and Fe-B alloys 
examined as anode materials give a reversible capacity of 1100 and 1200 mAh g-1, respectively, at 100 mA g-1. 
The outstanding high capacities of Co-B and Fe-B anodes are due to the activation of B atoms inside the 
matrix of transition metal atoms and the negative electrode potential of B prevents the transition metals 
from passivation[128]. The charge/discharge capacity of Fe3O4/rGO (849.6 mAh g-1) is greater than pristine 
Fe3O4 and rGO, which may be due to the crystalline nature of Fe3O4 after calcination and the high 
conductivity of GO. The capacity of the Fe3O4/rGO battery decreased sharply during initial cycles and then 
increased gradually. This was attributed to the reversible formation of polymer gel films, which have the 
additional reversible capacity for the first few cycles, as shown in Figure 13A and B. The rate performance of 
Fe3O4/rGO was measured at various current densities, i.e., 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 A g-1, and gave 
specific discharge capacities of 1188, 1086, 1011, 903, 811, 718 and 593 mAh g-1, as shown in Figure 13C. 
Figure 13D shows the charge/discharge curves of the Fe3O4/rGO anodes examined at various current 
densities. The insertion/extraction of Li+ is reversible due to the approximate symmetric shape of the 
curves[190].

Today, cobalt (Co) is a very popular metal in the field of energy storage and materials science and is used in 
most commercial LIBs but it comes at a high price. LiCoO2 is the most effective commercial cathode 
material. In the literature, several examples of N-doped carbon coating composites of Co3O4 have been 
reported[192]. Co has received much attention in the field of energy storage because of its high energy density 
and thermal stability. Cathodes made with Co cannot catch fire on overheating, which is the main safety 
issue. Co used in ultrafine amorphous alloy powders (Co-B and Fe-B) as a anodic material show better 
electrochemical performance than pristine elements when used as an aqueous alkaline solutions for anodic 
materials. The discharge capacities of Co-B and Fe-B electrodes are 1100 and 1200 mAh g-1 at 100 mA g-1, 
respectively. It has been noted that the outstanding capacities of these alloys are because of the activation of 
B atoms in the extremely dispersed transition atoms. The B atoms hold the electrode potential to a negative 
side to avoid the transition atoms from passivation[128]. It is particularly attractive in several different cathode 
materials of rich nickel (LiNixCoyMnzO2), which provide a capacity of 195 mAh g-1 with high capacity 
retention, making them ideal material for electric vehicles, although some problems limit the performance 
of the materials with increasing Ni content[193].

Metal-organic frameworks and coordination polymers have high porosity, excellent composite properties, 
rich network topologies and broad application prospects as electrode materials in LIBs and supercapacitors. 
Three different phosphonates, C30H5 0N6Ni2 . 6 7Co1 . 3 3O2 7P2 (PNC), C15H3 2Co2N3O1 6P (PC1) and 
C30H50N6Ni2.67Co1.33O27P2 (PNC), have the same structure. Ni and Co have similar oxidation states, the same 
coordination behavior and similar ionic radii (Ni2+ = 0.700 Å and Co2+ = 0.745 Å). Therefore, in the same 
crystallographic position, Ni2+ and Co2+ can be partially replaced easily, but the rate of occupancy of both 
ions is not the same. The chains are interconnected by H-bonding, which is provided by four free and five 
coordinated water molecules, forming a large number of hydrogen bonds between chains, resulting in a 
complex 3D hybrid framework, as shown in Figure 14A and B. The specific capacity of PC1 for the first 20 
cycles decreases and then increases slowly from the 21st cycle at 50 mA g-1. This may be because of the 
electrolyte immersion in the anode and the irreversible change of the state of the active substance caused by 
the current influence, as shown in Figure 14C. The charge/discharge curves of PNC, PC1 and PN1 in the 
cycle tests are shown in Figure 14D. PC1 has the most stable cycling performance and highest cycle-specific 
capacity among the three phosphonates[194].



Page 34 of Bashir et al. Energy Mater 2021;1:100019 https://dx.doi.org/10.20517/energymater.2021.2059

Figure 13. (A) Cycling performance of Fe3O4/rGO, Fe3O4/rGO-180, rGO and Fe3O4 at 0.5 A g-1. (B) Long-term cycling of Fe3O4/rGO 
and Fe3O 4. (C) Rate performance of Fe3O4/rGO electrode at 0.05-5 A g-1. (D) Charge/discharge curves of Fe3O4/rGO. Reproduced 
with permission from Ref.[190] (Copyright 2017, Royal Society of Chemistry).

a-Ni(OH)2 is an excellent energy utilization material due to its high specific capacity and discharge 
potential. If the cation radius to be replaced is larger than Ni3+ (0.56 A) in the state of charge, then the 
discharge level of a-Ni(OH)2 will be enhanced due to the change in Madelung energy at the Fermi level 
point of the nickel hydroxide electrode. Mn3+ ions are continuously oxidized to Mn4+ due to their 
incorporation into the sites of a-Ni(OH)2, which enhances the discharge capacity. The results show that the 
continuous oxidation of Mn3+ cations in the interlayer gives poor cycling stability due to the lack of protons 
in the structural layer, while the number of large anions (like SO4

2-, NO3- and CO3
2-) introduced as charge 

compensating species is limited due to the steric effect[12].

NiS2/NG-S is another promising electrode material and can be prepared by the partial etching of nickel in a 
graphene nanoshell, followed by sulfidation of the nickel and sulfur loading, as shown in Figure 15A. It is 
noted that the long-term cycling of NG/S and NiS2/NG-S electrodes at a current density of 0.5 C shows 
excellent stability and the attenuation is stable and slow from the first cycle. The specific capacity of the NiS2

/NG-S electrode is slightly higher than that of the NG/S electrode, while NiS2/S has poor cycling 
performance, low specific capacity and its capacity attenuation is fast. The initial specific capacities of the 
NiS2/S, NG/S and NiS2/NG-S electrodes at a current density of 0.5 C are 894, 973 and 1074 mAh g-1, giving 
capacity retentions of 67.45%, 80.45% and 78.12% with specific capacities of 603, 783 and 839 mAh g-1, 
respectively, over 100 charge/discharge cycles, as shown in Figure 15B. The NiS2/NG-S electrode shows 
superior electrochemical performance and stable charge/discharge curves at 1 C for the first, 100th and 
200th cycles, as presented in Figure 15C, while the NiS2/S cathode can be attributed to low conductivity, a 
lack of buffer space due to the absence of graphene and the slow diffusion rate of Li ions. The existence of 
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Figure 14. (A) Wireframe view of unit cell structure of cobalt phosphonate (PC1) along an axis, with dotted lines showing H-bonding 
among the chains (B). Polyhedron view of unit cell of PC1, with hydrogen atoms omitted for clarity and the red dots showing free water 
molecules. (C) Cycling stability diagram of PC1. (D) Comparison of cycling stability of C15H32N3Ni2O16P (PN1), C15H32Co2N3O16P (PC1) 
and C30H50N6Ni2.67Co1.33O27P2 (PNC). Reproduced with permission from Ref.[194] (Copyright 2019, Electrochemica Acta, Elsevier).

Figure 15. (A) Schematic representation of the synthesis of S-loaded NiS2/NG-S yolk-shells. (B) Long-term cycling stability of NiS2/S, 
NG/S and NiS2/NG-S electrodes at 0.5 C. (C) Corresponding charge/discharge curves of NiS2/NG-S cathode after first, 100th and 
200th cycles at 1 C. Reproduced with permission from Ref.[195] (Copyright 2020, American Chemical Society).
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the NiS2 nanoshell in the NiS2/NG-S yolk-shell structure limits the chemical adsorption of lithium 
polysulfide (LiPS). However, the free space of the NiS2/NG yolk-shell and the NG/S nanoshell is conducive 
to a change in volume during the charge/discharge process and plays an important catalytic role in the LiPS 
transformation, resulting in excellent electrochemical performance for lithium-sulfur batteries. In the 
process of NG/S cathode cycling, Ni-based nanostructures are formed due to the presence of nickel residues 
(left during etching), which may play a vital role in the electrochemical performance of comparable 
batteries. In contrast, the slow redox reaction and poor conductivity of the bare NiS2/S cathode result in 
poor electrochemical performance[195].

The first battery was invented in 1799 using only Zn and Cu. Cu, being more malleable and ductile than 
silicon, acts as an adhesive that combines the electrode material and prohibits the electronic separation of 
the particles of silicon upon charge/discharge cycling, thereby reducing capacity fade. A thin-film electrode 
(porous copper-coated silicon) synthesized by magnetron sputtering were evaluated for cycling efficiency, 
and rate capability in lithium-ion coin-cells, and compared to equivalent uncoated silicon thin-film 
electrodes. The layer of Cu between the electrolyte and electrochemically active material enhances the 
cycling efficiency and rate capability of the Si electrode and decreases capacity loss due to pulverization. The 
rate capability and energy decrease considerably if the thickness of Cu is higher because the active material 
of silicon will not be accessed. Therefore, to increase the rate capability and capacity retention in LIBs, it is 
recommended that the porosity and thickness of the Cu coating are optimized[196].

The easily scalable synthesis of the Cu-based metal-organic framework [Cu2(C8H4O4)4]n is a promising 
candidate for LIBs due to the porosity of crystalline materials that can store Li+. The terephthalate network 
responds reversibly with Li and retains 84% of its energy retention after 50 cycles. In the initial cycle, the 
theoretical capacity is ~95%, i.e., 227 mAh g-1 at 24 mA g-1[197]. Unfortunately, most of the metal phosphides 
reported have an irregular particle size ranging from hundreds of nanometers to micrometers, thus 
providing limited cycling stability. The majority of metal phosphides have a limited number of 
charge/discharge cycles (30-150); however, Cu3P nanowires without additives grow directly on the Cu 
collector as anode materials. After phosphidation treatment, it has a stable cycling capacity and the 
retention rate was ~70% over the 260th cycle[198].

The electrochemical properties of yttrium-rich Li materials were studied by constant current 
charge/discharge experiments and EIS. The results show that a Y3+-doped lithium-rich electrode material 
has a capacity of 184.5 mAh g-1 over 40 cycles at 1 C and a high capacity retention rate of 240.7 mAh g-1 over 
40 cycles at 0.1 C. It is demonstrated that an appropriate amount of Y3+ substituted for Mn4+ in Li1.2Mn0.6-x, 
Ni0.2YxO2 results in high initial columbic efficiency, cycling capacity and rate capability. The electrochemical 
enhancement of Y3+-doped materials has been confirmed due to the “super-large” radius of Y3+, which can 
promote the fast transfer of Y3+ ions by spreading the layered structure. The strong Y-O bond can maintain 
the layered arrangement in the bulk and an extremely trace amount of Y2O3 is produced after excessive 
doping, which can protect the particles from the erosion of electrolytes and maintain Li+ and oxygen 
vacancies. This material leads to advanced LIBs that could possibly resolve renewable energy storage and 
electric transport requirements[199].

A high-performance composite (Nafion-ZrNT) membrane consisting of perfluoro sulfonic acid (Nafion) 
and ZrO2 nanotubes (ZrNTs) was fabricated for vanadium redox flow batteries (VRBs). The VRB with a 
composite membrane enhances the selectivity of ions and presents a low rate of self-discharge, high energy 
efficiency and high discharge capacity compared to a commercial Nafion-117 membrane. The incorporation 
of the Nafion matrix with ZrNTs shows high oxidative stability (99.9%) and proton conductivity 
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(95.2 mS cm-1). Compared with the Nafion-117 membrane (280 mAh g-1), the Nafion-ZrNT composite 
membrane has higher ion selectivity (2.95 × 107 s min cm-3), lower V+ permeability (3.2 × 10-9 cm-2 min-1) and 
higher discharge capacity (987 mAh g-1) over 100 cycles. Compared with the original membrane, the self-
discharge rate of the Nafion-ZrNT composite membrane is lower, upholding an open circuit voltage of 
1.3 V for 330 h, which is lower than that of the original membrane (29 h). These superior properties resulted 
in a higher voltage and CEs compared to the VRB with the Nafion-117 membrane at a current density of 
40 mA cm-2[200]. Pristine zirconium- and nickel-modified Li2MnO3 samples were also studied, with the Ni-
modified material having a high discharge capacity and the Zr-modified electrode material showing less 
irreversible loss[201].

Lubimstsev et al.[202] showed that the origin of the high rate performance of Nb2O5 is due to the open 
channels between the sheets of NbOx, which effectively facilitate local charge transfer and reduce the energy 
barrier. The charge storage of Nb2O5 is not restricted by semi-infinite diffusion because of its low 
conductivity (~10-6 S cm-1). Nb2O5/graphene, Nb2O5/CNT and Nb2O5/carbon core-shell composites are 
examples of nanostructured Nb2O5/carbon materials used to enhance the conductivity of Nb2O5. Nb2O5 
shows a high power capability and specific energy related to rapid Li+ intercalation within the (001) or (110) 
planes, which depend on the phase of the crystals[203]. A comparative study of TT-Nb2O5, T-Nb2O5 and M-
Nb2O5 showed that T-Nb2O5 has excellent power treatment performance because of its rapid 2D Li+ 
transport in the crystal structure and no phase transition occurs through the electrochemical reaction. 
Polymer-bound electrodes have been mostly synthesized by mixing Nb2O5 nanoparticles, fibers and 
nanosheets with conductive additives. An extremely thin electrode without conductive additives was 
prepared by directly injecting Nb2O5 nanoparticles on thin mesoporous films used as a current collector. 
However, this approach remains limited due to scalability[204]. T-Nb2O5/C hybrid nanofiber mats were 
synthesized by treating NbC with CO2 gas, resulting in a capacity of 156 mAh g-1 from the high 
graphitization of the structure of carbon and the outstanding charge propagation in the nanofiber 
network[204]. To explain the intercalation and diffusion energy barriers in materials, first-principles 
calculations can be applied, which provide new awareness of the phenomena of ion transport and 
electrochemical performance. For example, Monte Carlo simulations have been used to explain the origin of 
the high rate of monoclinic Nb2O5 and show that the open channel system of quasi-2D NbOx efficiently 
reduces the energy barrier of Li+ from one site to another[202].

Molybdenum disulfide (MoS2) is like graphite in structure and consists of three atomic layers. The 
molybdenum layer is sandwiched between two sulfur layers. The large interlayer space and high surface area 
of MoS2 make it an ideal host for ion intercalation/deintercalation. Bulk MoS2 is used as an electrode 
material in LIBs. However, in the process of ion intercalation, the large volume expansion often leads to 
structural instability[205]. The electrochemical performance and stability of mesoporous MoS2 are the same as 
that of mesoporous MoSe2. The key difference between MoSe2 and MoS2 lies in the well-defined redox 
system of MoSe2, which is characterized by a flat platform on the galvanostatic profile and a well-shaped 
peak pair in its cyclic voltammogram. Wang et al.[206] prepared core-shell MoSe2/C nanocomposites by 
modifying hollow carbon nanofibers with small-sized and ultra-thin MoSe2 nanosheets as an anode material 
for LIBs and they retain 100% of their initial capacity and specific capacity of 658 mAh g-1 over 100 cycles at 
a current density of 0.5 mA g-1. MoSe2 has a large interlayer spacing (compared to MoS2) and is thus suitable 
for providing accommodation for large metal cations, like Na, and has better performance than MoS2. 
Morales et al.[207] suggested that LixMoSe2 is subjected to structural change by the x value but the d spacing is 
almost the same during the process of intercalation/deintercalation. MoS2 undergoes a structural change at 
1.1 V vs. Li/Li+ with Li intercalation/deintercalation because of conversion from 2H-MoS2 to 2T-LixMoS2. 
This phase transformation is characterized by the cathodic peak at 1 V in CV. A similar performance is also 
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observed for MoSe2
[168]. The results show that the theoretical adsorption capacity of 335 mAh g-1 can be 

attained by a double-sided Na+ adsorption method for monolayer MoS2. A comparative study shows that the 
activation barrier of monolayer MoS2 is 0.11 eV, while the interlayer migration barrier of bulk MoS2 is 
0.70 eV, confirming that Na+ diffusion in monolayer MoS2 is faster than in bulk MoS2. CNT/MoS2 was 
fabricated and showed outstanding electrochemical properties with a specific capacity of 1298 mAh g-1[208].

The structure of intercalated ions (Mo2CrC2) and three highly symmetric positions in the Brillouin region 
are given in Figure 16A-D. The calculation of binding energy is determined by the Mo atom, C atom and 
metal ion at the top of the Cr atom on both sides of the MXene. Therefore, considering the dispersion 
interaction, Li+, Na+, K+ and Mg2+ ions were considered. To test the energy stability of metal ions on the 
monolayer Mo2CrC2 MXene, the average calculated adsorption energy of Li+, Na+, K+ and Mg2+ in different 
states has similar adsorption sites, as shown in Figure 16E. Using the PBE functional, the binding energies of 
these metal ions are calculated. When metal ions are adsorbed on the top of the Mo site, they move 
spontaneously to the top of the Cr site. After the adsorption of Li+, Na+, K+ and Mg2+, the adsorption energy 
is negative. This shows that these ions can be adsorbed by MXenes (Mo2CrC2). K+ has better adsorption 
energy than the other ions, which may be related to its strong interaction with the MXene surface[209].

Ag-Ca alloy batteries are a subtype of lead-acid batteries that are used instead of novel lead-calcium or 
traditional lead-antimony alloys. They are known for their resistance to the destructive effects of high 
temperatures and corrosion. The high energy density characteristics of silver oxide batteries are used in the 
aerospace industry and the military. They can also withstand high energy flow. Thin metallic coatings, such 
as Ag, have been shown to increase the cycling stability and capacity of Si materials. Ag/TiO2-NTS 
composites can be easily prepared by a classical silver mirror reaction. Ag as an additive has high 
conductivity. At a high charge/discharge rate, the cycling stability and reversible capacity of TiO2 nanotubes 
are enhanced and their cell polarization is reduced[210]. MXene/Ag composite material consisting of layered 
MXene films and nanosized Ag particles was synthesized directly by reducing AgNO3 on the surface of a 
Ti3C2(OH)0.8F1.2 MXene. The composite has an initial specific capacity of ~550 mAh g-1 and reversible 
capacities of 310 mAh g-1 (1 C) and 150 mAh g-1 (50 C). The composite can withstand almost decaying 
capacity at different current densities, even above 5000 cycles[211]. The main reason is the reduced interfacial 
resistance and the reduction of Ti(III) to Ti(II) through charge/discharge for long cycling with extremely 
high capacity.

Ag/1D-TiO2 and Au/1D-TiO2, fabricated through a simple one-step electrospinning method, can enhance 
the electrochemical properties of 1D TiO2. The electronic configurations were maintained and the particle 
size of the TiO2 consisting of the 1D nanostructure was decreased after the doping of Au or Ag 
nanoparticles into 1D TiO2. The inserted Au or Ag nanoparticles not only reduce the charge transport of 
TiO2 nanoparticles but also act as conductive agents. For Li+ storage performance, the storage capacity was 
increased by 20% or more compared to pristine 1D TiO2. The better charge transfer and smaller particle size 
contributed to the improved cycling stability and electrochemical properties of Au/1D-TiO2 and Ag/1D-
TiO2. In contrast, due to the poor crystalline nature, Ag/1D-TiO2 shows less considerable changes than 
Au/1D-TiO2 after the incorporation of Ag[212]. Ag-doped vanadium oxide (Ag/V2O5) thin films exhibit 
higher discharge capacities due to the higher diffusion of Li+ compared to non-doped V2O5 film cathodes. 
V2O5 films show a poor discharge capacity than Ag/V2O5, which appears to be due to a cauliflower-like 
structure. All the thin-film batteries show outstanding reversibility over 200 cycles[213]. A Li4Ti5O12 (LTO)/Ag 
composite was prepared by a simple chemical deposition process. In the voltage range of 1.0-2.5 V (vs. Li+

/Li), after 120 charge/discharge cycles at 30 C, the high power capacity of the material reaches 131 mAh g-1, 
maintaining more than 98% of the initial capacity. Nanosized Ag particles (< 10 nm) were anchored on the 
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Figure 16. Structures of Mo2CrC2 supercell (2 × 2 × 1): (A) top view; (B) side view; (C) considered adsorption sites on the surface of 
Mo2CrC2 monolayer (top view). (D) Schematic diagram of top-view Mo2CrC2 with three high-symmetry sites. (C) Adsorption energy of 
metal ions in the first layer is located at Mo, Cr and C atom sites on both sides for Mo2CrC2 monolayer surface. (E) To test the energy 
stability of metal ions on the monolayer Mo2CrC2 MXene, the average calculated adsorption energy of Li+, Na+, K+ and Mg2+ in different 
states has similar adsorption sites. Reproduced with permission from Ref.[209] (Copyright 2020, Applied Surface Science, Elsevier).

surface of the nanocrystalline LTO (90 nm)[214].

Tungsten (W), also known as wolfram, is a chemical element with atomic number 74. Kumagai et al.[215] 
showed that monoclinic WO3 particles synthesized by the moderate heating of H2WO4 show better cycling 
efficiency. Because the electrode materials interact with Li via the mechanism of intercalation, Li+ diffusion 
in the host lattice plays a significant role. Therefore, it is attractive to find a structure of WO3 that facilitates 
the diffusion of Li+ and it is generally believed that by reducing the size of the material down to the 
nanometer scale, a significant enhancement in their properties is observed. The performance of hexagonal 
WO3 nanorods as anode materials of LIBs has also been studied. The first cycle discharge capacity was 
215 mAh g-1. WO3 hollow nanospheres have a high initial discharge capacity of more than 1054 mAh g-1 at a 
charge/discharge rate of 0.2 C. The electrode based on hollow particles maintains structural integrity even at 
a high current density of 2000 A g-1[216].

ReS2 nanosheets can be used as energy storage materials for LIBs. The growth of ReS2 nanosheets was 
oriented vertically on the surface of the substrate. This achieves two significant goals. First, it greatly 
enhances the surface area of the nanosheet and second, it exposes the sharp edges of the ReS2 nanosheets. 
The vertically grown ReS2 nanosheets can be used as electrocatalysts and polysulfide immobilizers in the 
hydrogen evolution reaction and lithium-sulfur batteries. Over 300 charge/discharge cycles, the specific 
capacity of a Li-S battery with a vertical ReS2 nanosheet catalyst was kept above 750 mAh g-1 and the 
capacity loss per cycle was only 0.063%, which is far better than the pristine one (i.e., without ReS2). When it 
is tested under similar conditions, the capacity loss per cycle was 0.184%[217].

The specific capacity of gold-coated porous Si is greater than 2500 mAh g-1 after 75 cycles and can attain 
3000 mAh g-1 for over 50 cycles at 100 μA cm-2 with high CEs above 95%. In contrast, non-Au-coated porous 
Si had a capacity of 500 mAh g-1 at the very first cycle, which rapidly decreased to 76 mAh g-1 after the 10th 
cycle at a constant current rate of 50 μA cm-2, which is a considerable enhancement over Au-plated 
nonporous silicon. When the current is constant at 100 μA cm-2, the maximum capacity of Au-plated 
nonporous Si is 1 mAh g-1 and it faded over 10 cycles to 0.25 mAh g-1, illustrating the importance of internal 
pores. The internal pores formed by the combination of porous Si and Au enhance the capacity and long-
term cycling capacity of LIBs[141]. NiCo2O4/Au nanotube electrodes have an excellent capacity of 
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732.5 mAh g-1 at a current density of 100 mAg-1, even over 200 cycles with excellent cycling stability. Au 
nanoparticles can be inserted into the whole electrode to form 3D networks, which act as mechanical 
anchoring points or adhesion centers to firmly fix adjacent NiCo2O4 particles. Due to the stress or strain 
caused by the rapid ion/electron transfer during cycling, high volume expansion resistance occurs[218]. An 
aniline [polyaniline (PANI)-1] and 4-para-phenylenediamine (PPDA) composite material was synthesized 
on the surface of the Au plate and used for LIBs. The maximum discharge capacity of the cathode material 
(PANI-PPDA/Au) is 103.2 mAh g-1 and the decay rate is 0.147 mAh g-1 at a charge/discharge rate of 
0.4 mA g-1[219].

Magnesium-gallium (Mg-Ga) amalgam has been used as an anode material for a seawater activated battery. 
Under different current densities, the annealing sheets of Mg-4%Ga-2%Hg have the largest negative 
corrosion potential. The Mg-4%Ga-2% Hg alloy has a higher negative corrosion potential than AP65 and 
AZ31 alloys. EIS showed that the interface process of Mg-Ga-Hg alloy/seawater is determined by the 
activation control reaction. The electrochemical properties of the Mg-4%Ga-2%Hg alloy were improved by 
Mg21Ga5Hg3 and Mg3Hg phases. The prototype battery with CuCl as a cathode and Mg-4%Ga-2%Hg alloy 
used as an anode shows good discharge performance due to the microstructure and discharge 
characteristics of the alloy[220].

F-block elements (lanthanides and actinides)
Heavier transition metals can also be used to replace LiMn2O4; however, they are far from ideal alternatives 
due to cost and size issues. In regards to this, only a very small amount of dopant can be applied, since this 
can increase the stability of the spinel due to stronger M-O bonds for transition metals[221]. Furthermore, 
lanthanides are heavier than the first two rows of transition metals, thereby limiting the performance of 
electrodes in portable devices. Therefore, little attention has been given to lanthanide compounds in 
connection with LIB electrodes. The majority of research into lanthanides for energy storage is devoted to 
solid electrolytes based on fast lithium-ion conducting perovskites. This does suggest the potential of 
finding a suitable lanthanide series with an appropriate redox couple and conventionally occurring oxides. 
TMOs can alter their oxidation state in solution (e.g., Ce3+ to Ce4+), which is also an attractive phenomenon. 
Redox active electrolytes can compensate for the loss of energy density caused by the improvement of an 
open electrode structure, thus improving the accessibility of ions. A significant enhancement was noted in 
the electrochemical performance of numerous pseudocapacitive metal oxides, including Nb2O5 and 
CeO2

[222].

Gd is a high neutron absorber, which makes it unsuitable for NPD experiments. Gd2TiO5 has a Ti41/Ti31 
redox couple, comparable to the commercialized anode (Li4Ti5O12) of LIBs. This Ti41/Ti31 redox couple 
creates a stable voltage of 1.55 V against Li, which deposits Li on the surface of the anode (dendrites), 
thereby enhancing the safety of LIBs. Thus, Li4Ti5O12 anodes can provide safer and longer life to LIBs. 
Taking advantage of the comparable Ti41/Ti31 redox couple, Gd2TiO5 has a structure with comparatively 
large channels running beside the c axis, which may be feasible for Li or Na ion anode or 
insertion/extraction processes. Gd was initially selected as it is situated in the middle of the lanthanide series 
and is a good starting point to determine the effect of lanthanides on the electrochemical performance of 
electrodes. Gd2TiO5 has an interstitial-rich channel structure, which may be suitable for the insertion and 
extraction of Li+ during the charge/discharge process. The typical form of ion transport in electrodes tends 
to be intercalation or vacancies, whereas this material may provide the chance for ion transport through 
mobile interstitials. It was found that for LIBs, the capacity is 45 mAh g-1 over 20 cycles at 4 mA g-1[223]. 
Na2Ti3O7 (NTO) is an insertion-type anode material. The octahedral layer of TiO6 can accommodate Na+ 
reversibly during cycling, with a theoretical capacity of 178 mAh g-1. In addition, NTO also has an effective 
low charge/discharge platform of 0.3 V, which is the first reversible reaction between oxides and Na at such 
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a low voltage. Due to the above shortcomings, it is essential to enhance the intrinsic conductivity of NTO. It 
is found that the capacity and conductivity of the metal oxide electrode can be improved by the creation of 
lattice defects in the crystal. As dopants in the electrode of LIBs, lanthanides ions can considerably enhance 
both the rate performance and capacity of the electrode. Even a small amount of lanthanide leads to an 
improvement in the rate performance and specific capacity of LIBs. The discharge capacities of NTO and 
NTO:Yb are 44.9 and 89.4 mAh g-1 at 30 C and 214.1 and 153.1 mAh g-1 at 1 C, respectively [Figure 17A]. 
The discharge capacity of NTO is 43.9 mAh g-1 and the retention capacity is 34.58%, while the discharge 
capacity of NTO:Yb remains at 71.6 mAh g-1 with a capacity retention of ~46.02% over 1500 cycles at 5 C 
[Figure 17B]. The reversible capacity may be reduced and the capacity may fade after a few cycles at 5 C due 
to the enhancing polarization caused by a side reaction or the formation of an SEI layer[224].

Doped samples of NTO show high electrochemical performance compared to pure NTO. Such a high-
performance NTO anode was achieved without carbon coating and nanosizing. The insertion of 
lanthanides into the NTO structure causes a lattice distortion, resulting in the formation of oxygen 
vacancies, which considerably enhance faster charge storage kinetics and increase the donor density and 
electronic conductivity, thereby ensuring long-time cycling performance and superior rate performance[225]. 
A uranium-doped LiMn2O4 cathode exhibited outstanding cyclability in comparison with a pristine 
LiMn2O4 cathode. The LiU0.01Mn1.99O4 base cathode retains capacity at ~100% of its initial capacity over 100 
cycles. Since the quantity of dopants is minimal, there is no cost issue and is thus suitable for 
commercialization. In contrast, since only a small amount of dopant is required, it does not decrease the 
theoretical capacity but does decrease the lattice constant[226]. Finally, we summarize all the electrochemical 
performances of NTO:Ln samples in Figure 17C. The long-term cycling performance illustrates that Ln3+-
doped samples have better electrochemical performance than that of pristine NTO[225].

Hybrid materials
An approach to prepare electrochemical energy storage materials is to synthesize strongly coupled hybrids 
of inorganic and organic carbon nanomaterials, such as graphene, carbon nanotubes, chalcogenides, metal 
carbides and nitrides (MXenes)[227]. Inorganic nanohybrid materials present a new route for preparing 
electrode materials with better electrochemical performance, synthesized by simple physical mixtures of 
conducting carbon materials and electrochemically active inorganic particles. Graphene, carbon nanotubes, 
metal carbides and nitrides, with various degrees of oxidation, offer novel substrates for the growth of 
nanoparticles. The interactions between the oxidized carbon substrates and inorganic precursors provide 
control over the structure, morphology and size of the inorganic nanoparticles. The conductivity of 
electrons and ions is very important to improve the rate performance of battery electrodes, especially when 
large and multivalent ions are applied in electrolytes. The theoretical values of the energy density of thin 
electrodes are much higher than the theoretical values of thick films.

A transition to 3D nanostructures (such as T-Nb2O5
[227] or MnO2 spinel) is required to enhance the access of 

ions to the surface of electrochemically active materials and decrease both macroscopic electrode strain and 
diffusion limitations through the charge/discharge process. 3D architectures permit the use of thicker 
electrodes[228]. 2D materials, like transition metal carbides, dichalcogenides, nitrides and oxides, can store 
larger metallic ions (Na+, K+, Mg2+ and Al3+) in between their layers. They are therefore recommended as 
promising anode materials for post-LIBs[229], where the substrate material (MXene, graphene, and carbon 
nanotubes) acts as a conductive substrate for the active material and therefore gives mechanical strength 
and stability to the structure. In addition, they also increase the conductivity of the electrodes. Some “spacer 
reagents” can be incorporated between the layers to prevent from restacking and also enhance the 
electrochemical performance of the electrodes[230]. A computational study showed that the functional groups 
in Li-S battery electrode materials are polar and therefore, due to the anchoring property on polysulfides, 
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Figure 17. (A) Rate and (B) cycling performance of NTO and NTO:Yb in a half cell. (C) Cycling performance of NTO:Ln and NTO (Ln = 
La, Er, Gd, Sm, Ce, Nd or Yb) at a current rate of 5 C with a cycle number of 1000 to 1500. Reproduced with permission from Ref.[224] 
(Copyright 2012, American Chemical Society). NTO: Na2Ti3O7.

they can easily accommodate metal oxides[231]. The properties of bulk transition metal dichalcogenides have 
different characteristics, such as metallic (NbS2 and VSe2), semiconductors (MoS2, WS2, WTe2 and TiSe2), 
insulators (HfS2) and low-temperature superconductors (TaS2 and NbSe2). These materials are converted 
into monolayers or few layers and also preserves their characteristics due to their confinement effects and 
gives additional characteristics[232]. A liquid exfoliation process was employed to synthesize mono- and 
multilayer nanosheets of inorganic compounds, such as MoTe2, WS2, MoSe2, NbSe2, MoS2, NiTe2, TaSe2, h-
BN and Bi2Te3

[233].

MXenes
MXenes were first discovered by Naguib et al.[234] in 2011 and they now represent the largest family of 2D 
materials. We can synthesize MXenes by the etching of selective atoms (A) from the MAX phase with the 
help of HF. The general formula of the MAX phase is Mn1+AXn, where A is a group A element, M is a 
transition metal, n can be 1, 2 or 3 and X is nitrogen and/or carbon. MAX has a large family (more than 60 
phases) of ternary metal nitrides and carbides[5]. Various MXenes have been experimentally fabricated to 
date, including Ti3C2, Ti2C, Ti3CN, V2C, (V0.5Cr0.5)3C2, Nb2C (Ti0.5Nb0.5)2C and Ta4C3. Due to their high 
conductivity compared to graphene, MXenes have attracted significant consideration. Shein et al.[235] 
examined the relative stability and structural features of MXenes (Tin+1Nn and Tin+1Cn). According to DFT 
calculations, by changing the surface terminators with a tunable bandgap, the conductivity of MXenes may 
be controlled. MXenes, where the surface of the sheet is terminated with surface terminators (i.e., -OH, -F 
and -O), are semiconductors but nonterminated MXenes have high conductivity and are metallic. The 
theoretical specific capacity of bare Ti3C2 is 320 mAh g-1; however, the addition of a terminator group limits 
its storage capacity. The results show that the specific capacities of Ti3C2(OH)2 and Ti3C2F2 are 130 and 
67 mAh g-1, respectively[236]. DFT calculations show that in Li-, Na-, K- and Ca-ion batteries, Ti3C2 can be 
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used as an electrode material. The atomic content of Li, Na and K has a linear relationship with the capacity. 
The theoretical capacities of Li, Na, Ca and K are 447.8, 351.8, 319.8 and 191.8 mAh g-1, respectively[237].

Kurtoglu et al.[238] found that the elasticity of steel (400 GPa) is less than that of MXenes (> 500 GPa), which 
confirms that MXenes have comparatively high rigidity. It has been discovered that MXenes have a 
relatively similar capacity (372 mAh g-1) as graphite electrodes for Li in LIBs; however, they have 
outstanding potential regarding cycling. For example, additive-free MXenes can retain a reversible capacity 
of 110 mAh g-1 at a cycling rate of 36 C, while graphite cannot maintain this capacity at such a high cycling 
rate, which may be due to the smallest diffusion barrier for Li atoms in Ti3C2. With the help of DFT 
calculations, it has been determined that graphite and anatase TiO2 (0.35-0.65 eV) have a greater diffusion 
barrier of Li atoms than Ti3C2 (0.07 eV)[28]. MXenes can also be synthesized from a new layered ternary and 
quaternary compound {Mn[Al(Si)]4 or C3MnAl3C2}, which acts as a precursor for the preparation of 
MXenes. They synthesized Zr3C2Tx and Hf3C2Tx by eliminating the (AlC)x units from Zr3Al3C5 in the 
presence of a 50% concentrated solution of HF. The synthesized 2D MXene (Hf3C2Tz) material shows an 
excellent reversible volumetric capacity (1567 mAh cm-3) at 200 mA g-1 over 200 cycles for LIBs[239]. 
Li et al.[240] used hydrogen peroxide (H2O2) to open the sheets and use it as an electrode material to give an 
excellent capacity of 389 mAh g-1 over 50 cycles at 100 mA g-1 and an excellent rate capability of 150 mAh g-1 
at 5 A g-1.

In 2013, Mashtalir et al.[241] synthesized a “paper” of Ti3C2 colloidal solution by reacting with DMSO, which 
gives the electrode a controlled capacity of 410 mAh g-1 at 1 C and 110 mAh g-1 at 36 C over 700 cycles. The 
enhancement of capacity may lead to the formation of an additional Li layer on the surface of the lithiated 
terminated MXene. The theoretical capacity of 320 mAh g-1 was expected by Kurtoglu et al.[238] for Li 
intercalation of bare Ti3C2. Zhou et al.[242] proved the synthesis of a 2D Hf3C2Tz MXene by etching 
Hf3[Al(Si)]4C6 in an aqueous solution of HF. For LIBs, this 2D Hf3C2Tz MXene material showed a better 
reversible volumetric capacity of 1567 mAh cm-3, over 200 cycles at 200 mA g-1. To synthesize the 
multilayered Ti3CNTx MXene, Zhang et al.[203] used environmentally-friendly LiF and HCl, unlike the 
directly HF etching etchant. In order to obtain the Ti3CNTx MXene with minimum restacking ability, they 
developed a freeze-dried method, which gives a specific discharge capacity of 300 mAh g-1 over 1000 cycles 
at 0.5 A g-1. The new 2D Nb2C was examined for LIBs. At room temperature, the layered sample was 
successfully synthesized by etching of Al atoms from Nb2AlC. A reversible capacity of 170 mAh g-1 over 150 
cycles was achieved for Nb2C at 1 C, while a reversible capacity of 110 mAh g-1 was attained at 10 C, 
respectively, with good cycling stability[236].

Although the specific capacity of MXenes for LIBs (372 mAh g-1) is analogous to the specific capacity of a 
commercial graphitic electrode, MXenes have excellent rate performance at high rates, whereas graphite 
cannot hold a high cycling rate. This may be due to the smaller diffusion barrier of the Li atoms on the 
surface of Ti3C2

[236]. For the charge/discharge process, the diffusion barrier is the key factor to determine the 
discharge rate of the battery. In good agreement with earlier reported values, the diffusion barrier for Li is 
0.068 eV, for Na is 0.096 eV, for K is 0.103 eV, for Ca is 0.118 eV and for commercial graphite the diffusion 
barrier is 0.30 eV, which shows that Ti3C2 is the most promising high-rate electrode material. For improving 
the performance, having high capacity MXene with metal oxides is an alternative choice. The “conventional 
method” and “MXene bonding method” are used for the preparation of traditional polymer-bonded HC 
electrodes. Ahmed et al.[243] proposed an atomic layer deposition technique to synthesize a SnO2/Ti3C2Tx 

composite material for LIBs as anode materials. The SnO2/MXene electrode coated with HfO2 gives a 
discharge specific capacity of 843 mAh g-1 at 500 mA g-1 over 50 cycles. Zhang et al.[244] also fabricated a 
Co3O4@Ti3C2Tx composite material successfully. A capacity of 999.3 mAh g-1 at 500 mA g-1 was achieved 
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after 900 cycles. An effective strategy was used by Lin et al.[245] in 2015 to synthesize Ti3C2Tx/carbon 
nanofibers, which are in a multi-stacked form.

Mashtalir et al.[246] worked on the delaminated Nb2CTx/CNT composite material for LIBs in the same year. 
The free-standing CNT/MXene composite “paper” electrode, used as an anode material shows best cycling 
performances and recycling capacity of 400 mAh g-1 at 0.5 C. Ren et al.[247] synthesized porous a 2D MXene 
(p-Ti3C2Tx) in aqueous solutions at room temperature. A flexible electrode was fabricated by the addition of 
CNTs (p-Ti3C2Tx/CNT) and it exhibited a distinctly improved Li+ storage capability of ~500 mAh g-1 at 0.5 C 
after 100 cycles and rate performance of 330 mAh g-1 at 10 C was achieved compared with pristine Ti3C2Tx. 
They also prepared porous V2CTx and Nb2CTx MXenes using the same method. Wu et al.[248] synthesized 
MoS2Ti3C2-MXene/C nanocomposites by a simple carbon nanoplating method, where the reversible 
discharge capacity was 1750 mAh g-1 at 0.2 A g-1 and 1200 mAh g-1 over 700 cycles at 1A g-1. Rakhi et al.[249] 
synthesized a MXene coated with whiskers of nanocrystalline ε-MnO2. The MXene/ε-MnO2 showed 
outstanding cycling performance (88% retention) over 10,000 cycles.

Specifically, the MXene substrate with high conductivity can effectively remove the aggregation of MoSe2 
nanosheets and improve the electronic conductivity, while the carbon layer gives strength to the composite 
structure and further improve the overall conductivity of the hybrid nanosheets, as shown from the EIS 
results given in Figure 18. The strong chemical interaction at the interface of the MXene and MoSe2 
improves the durability of the structure and promotes the charge transfer dynamics. Therefore, MoSe2

/MXene/C has a high rate performance of 183 mAh g-1 at 10 A g-1 and an outstanding reversible capacity of 
355 mAh g-1 at 200 mA g-1. The EIS measurements of MoSe2/MXene/C, MoSe2/MXene, MoSe2 and MXene 
after several cycles show straight lines (low-frequency range) and semicircle depressions (middle- and high-
frequency ranges), respectively, as given in Figure 18. The high-frequency semicircle is related to the surface 
contact resistance, while the low-frequency slope line represents the diffusion and phase transformation of 
ions in the electrode. This clearly shows that MoSe2/MXene/C has the smallest high-frequency concave 
semicircle and the smaller interfacial resistance. The proposed design strategy provides a broad prospect for 
the development of more useful PIBs electrode materials[250].

Zou et al.[211] produced a MXene/Ag composite material of layered MXene films and Ag nanoparticles. 
AgNO3 is reduced in the presence of MXene [Ti3C2(OH)0.8F1.2] and a MXene/Ag composite material is 
synthesized. The MXene/Ag composite material shows a better starting specific capacity of 550 mAh g-1. 
Furthermore, this sample also shows reversible capacities of 150 mAh g-1 at 50 C and 310 mAh g-1 at 1 C 
even over 5000 cycles. This is due to the close connection of the conversion of Ti(III) to Ti(II) and the 
reduction of the interfacial resistance during the charge/discharge process. Sn4+ was successfully introduced 
inside the interlamination of an alkylated Ti3C2. Because of the synergistic effect of the Sn4+ between the 
layers of alkyl-Ti3C2 matrix layers, it plays an important supporting role among the alk-Ti3C2 matrix layers 
and this process is known as the “pillar effect”. The nanocomposites show a capacity of 635 mAh g-1 and a 
better volumetric capacity of 1375 mAh cm-3 at a high current density of 216.5 mA cm-3 (100 mAh g-1), 
which is considerably greater than the graphite electrode (550 mAh cm-3) over 50 cycles. These 
nanocomposite materials hold a specific volumetric capacity of 504.5 mAh cm-3 and a reversible charge 
capacity of 233 mAh g-1 even at an extremely high current density of 6495 mA cm-3 (3A g-1)[211].

Among the various MXenes, Ti3C2 and Ti2C have been extensively studied. For example, Ti3C2 gives a 
capacity of 410 mAh g-1 for LIBs. Interestingly, by intercalation with different cations, such as NH4+, Al3+ and 
Sn4+, the capacity can be greatly increased to ~800 mAh g-1. As a comparison, V2C MXene has a small 
molecular weight that can attain a higher theoretical LIB capacity of 940 mAh g-1. Unfortunately, the 
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Figure 18. EIS results of MoSe2/MXene/C, MoSe2/MXene, MoSe2 and MXene anodes after several cycles. The inset shows the 
corresponding equivalent circuits for data fitting, where Rct, Zw, RF, CPE and RS represent contact resistance, constant-phase element, 
electrolyte resistance, charge-transfer resistance and Warburg ion-diffusion resistance, respectively. Reproduced with permission from 
Ref.[250] (Copyright 2019, American Chemical Society).

experimental V2C MXene shows only 260 mAh g-1 capacity at 1 C, which is significantly lower than the 
theoretical value. However, recently it has been noted that V2C has excellent storage capacity (1100 mAh g-1) 
for Li+ and good cycling stability after intercalation with Co[179].

Graphene oxide
In 1958, Hummers synthesized GO using the most commonly used method today by treating oxidizing 
graphite with NaNO3 and KMnO4 in the presence of H2SO4

[251]. It is noteworthy that these processes release 
poisonous gases, such as NO2, N2O4 and ClO2, which may cause an explosion. Brodie was the first to 
synthesize GO in 1859 when a small amount of potassium chlorate (KClO3) was reacted with graphite in the 
presence of fuming nitric acid[252]. Graphene oxide is synthesized from monolayer films, like sheets of GO, 
which was planned more than a century ago. The properties of graphene oxide depend upon its extent of 
oxidation and special properties, like optical and electronic behavior. A large film of graphite can be 
synthesized from GO because it is water soluble and can be used as a component of the cathode and also as 
a binder in LIBs for carbon products. Moreover, its hydrophilicity allocates it on substrates uniformly, 
which is essential for applications in the field of electronics[253]. The treatment of multiwalled carbon 
nanotubes with concentrated H2SO4, KMnO4 and then phosphoric acid (H3PO4) gives graphene oxide 
nanoribbons in a scalable manner. This process is known as the “improved method” and can be used to 
synthesize improved GO. The basal plane of GO produced by the Hummers method is comparatively 
small[2]. The majority of GO presented was fabricated based on Offerman’s process and the Hummers 
method, which offers little control over the degree of functionalization and is a time-consuming method.

Due to the very weak Van der Walls interaction, GO shows very low thermal stability[254]. Anchoring of 
metal and non-metal oxides on sheets of graphene increases the cycling stability and electrochemical 
reversibility of the composite materials. Bismuth oxide (Bi2O3) has a high theoretical capacity of 
690 mAh g-1. A Bi2O3/rGO composite was synthesized by a hydrothermal process, which gives better cycling 
stability and electrochemical reversibility compared to bare Bi2O3 nanoparticles. Bi2O3/rGO used as an 
anodic material shows an outstanding initial capacity of 900 mAh g-1 at 0.1 C and a rate capability of 
270 mAh g-1 at 10 C and 347.3 mAh g-1 at 1 C, with a capacity retention rate over 79% after 100 cycles, which 
is much higher than for bare Bi2O3 nanocrystals[159]. The strong interaction between the nanoparticles of 
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Co3O4 and graphene sheets is beneficial to control the volume expansion and the accumulation of Co3O4 
NPs during the charge/discharge process, which gives a capacity of ~935 mAh g-1 over 30 cycles compared 
to bare graphene nanosheets and Co3O4 nanoparticles[133,255]. An SnO2/graphene nanocomposite used as a 
LIB anode material have a reversible capacity of 432 and 638 mAh g-1, respectively, over 100 and 150 cycles 
at 20 mA g-1[256].

Alloys
In order to design better electrode materials with outstanding microstructures, corrosion resistance and 
hardness, the edifice of different elements can be applied. For this purpose, alloying is the best choice due to 
the potential for superior electrochemical properties and electronic conductivity. Alloys of Sb and Sn, such 
as Cu6Sn5, SnSb, Mo3Sb7 and Cu2Sb, have received particular attention because of their enhanced rate 
capability and long-term cycling performance. Such intermetallic candidates have outstanding properties 
compared to pure elemental electrodes since they are expected to show better capacity retention at very low 
temperatures (2.2 K) and low operating voltages (0.9 V) and possess excellent capacity retention vs. Li. One 
such candidate is Mo3Sb7. This electrode material gives a reversible capacity of 494 mAh g-1 and its 
volumetric capacity (4273 mAh cm-3) is comparatively close to pristine Sb (4422 mAh cm-3)[155]. The alloys of 
lead and antimony are also applied in the assembly of lead-acid grid battery because of the soft nature of 
pure lead. It has been found that the introduction of small amounts of elements, like selenium and arsenic, 
to the alloys of lead-antimony, significantly enhances the electrochemical performance and mechanical 
properties of batteries[192,208,211]. However, due to the dendrite structure of Pb-Sb alloys with Sb contents of 
1.5-3.5 wt.%, they become very brittle, hard and easy to crack[257].

Na can produce alloys with different elements like tin (Na15Sn4), bismuth (Na3Sb), germanium (Na3Ge) and 
lead (Na15Pb4). The thermodynamic potentials required for the alloying of Na is comparatively higher than 
that of Li atoms and make it potentially safer. An Sb/C nanocomposite shows a reversible capacity of 
397 mAh g-1 for the initial 30 cycles. Afterward, the capacity fades rapidly to 100 mAh g-1, while the Sn/C 
nanocomposite electrode shows poor recyclability and the initial capacity suddenly decreased to 80% after 
13 cycles. The capacity decay in a single metal electrode is due to the expansion of volume during 
mechanical stress, which mainly occurred in the electrodes of Li alloys. The size of Li-Sn and Li-Sb alloys is 
less than the size of Na-Sn and Na-Sb alloys and this difference is further increased during the alloying 
process[155]. The binary alloys of SnSb are more stable compared to the single metals, which may be due to 
the occurrence of an electrochemical reaction at a wide potential range of (0.0-0.9 V) and distinctive 
structural confinement through the charge/discharge process. Therefore, it is expected that the pristine Sb 
and Sn phases produced through the in situ charge/discharge process sustain the conductivity and integrity 
of the electrode material and fabricate a self-supporting network[258].

CURRENT CHALLENGES FACING LIBS
The next generation of LIBs will be more capable, stable, durable, environmentally friendly and less 
expensive. However, we continue to confront some challenges. These challenges are as follows.

Overcharge and overdischarge
The major causes of safety incidents with LIBs are heat evolvement and storage inside the batteries. Gas 
production is generally accompanied by heat generation and both are regulated by battery voltage and 
temperature. One of the most common reasons of heat evolvement is overcharging. As a result, adopting 
precautions to avoid spontaneous overcharging within the battery will complement the exterior overcharge 
prevention methods. Thermal runaway occurs when a battery short circuit occurs due to separator 
breakdown and the heat generated locally cannot be dissipated efficiently. The development of temperature-
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sensitive materials for limiting local temperature rises in the battery is a pivotal approach to avoid thermal 
runaway. Another possible technique for heat dissipation is to create an internal fast heat diffusion path (for 
example, by adding materials with high thermal conductivity). Finally, careful selection of active electrode 
materials and electrolytes is necessary to minimize heat and gas production, while also protecting the 
electrode interface[259]. Furthermore, LIBs should not be charged at temperatures below 32 °F. Lithium 
coating results in the accumulation of Li atoms along the anode surface when charging at this temperature 
and the battery is more susceptible to harm, such as high-speed charging, which can lead to short circuit. 
Excessive discharge and overcharging of LIB packs must be avoided by those who use them. LIBs chemistry 
must have a voltage of at least 2 V. This problem might arise if the battery has been kept for an extended 
period of time or has been drained excessively. Both the cathode and the anode begin to break down when 
the voltage is less than 2 V. The anode collector will disintegrate when copper dissolves in the electrolyte. 
Cu ions begin to precipitate into metal Cu when the battery is charged over 2 V, resulting in a short circuit. 
Simultaneously, the cathode begins to release oxygen and the battery begins to lose capacity permanently 
after a few cycles.

Thermal runaway
The temperature difference between high-temperature operation and the battery will result in battery 
accelerated aging, out-of-control heating and other safety issues, posing a serious threat to vehicle safety. 
The breakdown of electrolyte and metal oxide cathode is caused by the pace at which the heat and pressure 
rise. The safety vent does not discharge the gas from the battery pack quickly enough and gas begins to 
build in the battery pack. Nothing can prevent this effect before the battery ignites or explodes and once one 
battery in the battery pack experiences thermal runaway, the next battery in the battery pack will begin to 
experience thermal runaway as well. Since it allows the system temperature to be managed, the well-
designed built-in cooling system is a key component of LIB safety. A cooling system may be necessary if 
heat is created too late in the cycle to disperse. A cooling system is also necessary to manually regulate the 
overall temperature in the event of unequal temperature distribution. The operating temperature range for 
LIBs is 15-35 °C[260]. As a result, an optimum cooling control system capable of maintaining this range is 
critical for safely extending battery life and lowering costs. The electrolyte is the most dangerous part of a 
LIB and the core is flammable. The exothermic reaction rate inside the battery increases when the battery 
temperature goes over 80 °C. These processes eventually cause LIBs to thermally runaway, causing the 
battery to burst and explode. The cause for this is that the high-temperature flammable gas in the battery 
interacts with the surrounding oxygen[261].

Dendrite formation
One of the main causes of thermal runaway is the growth of Li dendrites, which can be mitigated by four 
different methods: (1) capping with additive molecules or ions; (2) redirecting dendrite growth away from 
the separator with Li friendly/hydrophobic coatings; (3) using a compartment/structured collector; and (4) 
inhibition using a solid electrolyte. Currently, the composite of a ceramic or glass electrolyte and polymer 
hybrid, as well as the insertion of an artificial interface stabilizing layer between Li and electrolyte, are the 
most prevalent and promising techniques among the aforementioned tactics. The dendrite development 
process in SES needs to be investigated and understood better in the future, so that a more practical and 
scalable method may be used to provide a new path to solve the dendrite problem[262]. To assess dendritic 
inhibition, it is advised to utilize standard CE characterization, more powerful in situ characterization 
technology, restricted Li, early detection of “soft short circuit” and thinner electrolytes.

Safety issues caused by undesirable chemical reactions
Only Li+ shuttle occurs in the electrolyte during the insertion/extraction cycle of the cathode and anode in 
the typical voltage and temperature range. Electrochemical reactions grow more complicated at high 
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temperatures and pressures, with the breakdown of the SEI membrane, oxygen release on the cathode side 
and extra electrolyte/electrode side reactions occur[263]. The temperature rises as a result of SEI membrane 
breakdown occurring, which increases the danger of oxygen leakage from active cathode materials. These 
processes eventually cause LIBs to thermally runaway, as described above[261].

Short circuit
A separator is an important part of a LIB. Its purpose is to keep the positive and negative electrodes of the 
battery from making physical contact, to prevent internal short circuits, and to act as an electrolyte reservoir 
for ion transfer. The ideal separator should have a large electrolyte absorption capacity to lower the internal 
resistance, as well as an extremely thin thickness, high mechanical strength, electrochemical and structural 
stability, a highly porous structure and a large curvature to prevent tree-branched lithium dendrite 
formation. Industry and scientific research will require high-performance battery separators in the future as 
demand for high charge discharge efficiency and high energy density LIB growth. Experiments are now 
used to do research on separator materials and characteristics. Simultaneously, DFT simulations are a cost-
effective and efficient method to design separators and battery systems. In order to provide safer and more 
powerful separators, it is very important to develop new LIBs or battery systems and optimize the 
manufacturing process. The following DFT research and development models are recommended for the 
future: (1) a novel thermal runaway model for LIB systems, which can combine a variety of battery 
separator materials with different mechanical and physical properties; and (2) a coupling multiscale 
simulation model to study all internal/external coupling phenomena.

FUTURE PROSPECTS OF LIBS
LIBs have come a long way since their introduction in 1991, with their specific energy content nearly 
tripling. Despite the necessity for complex control systems and battery energy reserves, LIBs have more than 
quadrupled their life, allowing them to fulfill most automotive calendar and cycle life requirements. While 
attaining significant performance gains, the cost of LIBs has been lowered by roughly two orders of 
magnitude and has been steadily declining in recent years. These LIB technological advancements have been 
made while retaining the high level of safety demanded by automotive goods.

1. The next generation of LIBs will be greater in capacity, have longer service lives, more environmentally 
friendly and less expensive, necessitating possible lightweight collectors with higher electrochemical stability 
and conductivity. Furthermore, in the future, a collector with a flexible construction will be required for the 
use of wearable devices.

2. A number of successful techniques are discovered based on an understanding of LIB structures and 
operating principles. The safety and performance stability of LIBs may be substantially enhanced by 
carefully selecting electrode materials, separators and electrolytes, as well as improving battery architecture. 
External methods, such as cooling and battery balance, can also significantly improve LIB safety 
performance under typical circumstances.

3. As the size of the real battery pack has grown in recent years, a new vehicle quick charging objective has 
emerged, resulting in a constant increase in the charging rate of the battery system. LIBs will be able to 
reach a total energy of 350 Wh/kg at the start of their life, based on current development and materials 
chemistry research results. Unfortunately, this energy content is insufficient to satisfy the vehicle energy 
objective if this performance is moved to the accessible end-of-life value of components[264]. About a decade 
ago, numerous research initiatives beyond lithium ion were launched in response to this impending 
problem. The Li metal system has been the most advanced beyond lithium ion technology in the last 
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decade. The American Advanced Battery Alliance recently issued an automobile LIB objective that 
highlights the advancement and potential effect of LIBs.

4. New liquid electrolytes compatible with Li metal have recently made significant progress by enhancing 
the design of existing LIBs[265]. The possibility of a Li metal solid-state battery has also been revised thanks to 
the discovery of many recently found solid Li superionic conductors (LMSSBs)[266]. Traditional LIB cathodes 
and battery design characteristics are also used in most proposed LMSSB systems. Long-term LIBs 
development will need a deeper knowledge of Li mechanics[267] and Li-electrolyte interactions, whether 
liquid or solid[268]. Regardless of whether solid or liquid electrolyte systems are utilized, the basic architecture 
of these Li metal batteries will inherit the vast majority of the LIB system’s technical and materials chemistry 
advancements.

5. The scientific community must still satisfy its standards in order for solid-state batteries to be 
commercialized in the future. The area specific resistance (ASR) of the interface between the solid-state 
ceramic electrolyte and the electrode (containing anode and cathode) is less than 25 Ω cm-2 (the total battery 
resistance of commercial LIBs is 22 Ω cm-2, which is utilized for liquid batteries). The ASR range of most 
solid ceramic electrolytes’ ceramic Li metal interface is 37-20,000 Ω cm-2. The cathode is more powerful. 
Hitz et al.[269] investigated the construction of a three-layer Li garnet electrolyte, which had a low interface 
impedance of 7 Ω cm-2 and a high current density of 10 mA/cm2. However, the production cost must be 
weighed against the existing technological level.

6. Environmental atmosphere is required for the stability of a sulfide-based Li-ion conductor ceramic 
electrolyte. The next class of most promising superionic Li-ion conductors (≥ 10-4 S/cm) will be accurately 
identified using a combination of a computational prediction models of material selection and a density 
functional theory molecular dynamics calculation[270]. Many potential possibilities have been found using 
machine learning calculation approaches, including Li5B7S13, Li2B2S5, Li3ErCl6, LiSO3F, Li3InCl6, Li2HIO, 
LiMgB3(H9N)2 and CsLi2BS3. The Li-ion conductivity (74 mS/cm) of Li5B7S13 is expected to be several times 
that of the fastest Li-ion conductor known today[271].

7. To assess dendritic inhibition, it is advised to utilize standard CE characterization, restricted Li amount, 
early detection of “soft short circuit”, more powerful in situ characterization technology and thinner 
electrolytes.

8. Coin cell batteries have been used to test the majority of existing Li-metal protection techniques. Testing 
the stability of Li metal in larger batteries is quite practical (such as pouch batteries). The artificial interface 
layer between SE and Li metal must be stable and functional.

9. Simulation is becoming increasingly essential in identifying novel electrolyte possibilities and assisting 
experimenters in gaining a better understanding and predicting performance. We have a fundamental 
knowledge of the design and interfacial stability of Li-metal anodes on different scales, notably the interface 
layer can guide Li-metal anode development and stabilization eventually commercialization of Li-metal 
anodes in ASLBs.

CONCLUSIONS
Emerging electrochemical energy storage devices will play a vital role in the future energy systems of the 
world. The innovation of electrode materials is a decisive factor for the improvement of new 
electrochemical energy storage devices. Nanotechnology opens up new properties and uses the advantage of 
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the best chemical properties of elements to bring them to a useful plane. The in-depth knowledge of 
elemental chemistry has been fully utilized, providing new applications for nanomaterials. The periodic 
table of elements is helpful to understand the chemical diversity of elements. It also helps us to find out the 
effective combination of elements to produce novel nanoenergy storage materials and assists us in making 
additional progress and innovation in the field of nanoscience and nanotechnology. The combination of 
periodic table knowledge with theoretical calculations and experimental procedures will pave the way for 
the development of novel materials with excellent electrochemical properties. The specific capacity, rate 
performance, energy density, cycling performance, long-term cycling stability and their mechanisms for 
LIBs of s-, p-, d- and f-block elements, transition and inner transition metals and hybrid materials (MXene, 
graphene oxide and alloys) were studied in detail, which provided appropriate treatment methods and 
creative remedial measures for the better performance of energy storage devices. We have also highlighted 
the challenges facing LIBs and their future prospects for the next generation.
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