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Abstract
Path loss (PL) is a significant channel parameter for the link budget in unmanned aerial vehicle-aided communica-
tions. This study introduces an innovative neural network model to estimate PL for air-to-ground communication
links. Utilizing the geometric characteristics of varied physical environments, the model accurately predicts PL in
diverse communication scenarios. A back-propagation neural network technique is introduced for extrapolating PL
under both line-of-sight and non-line-of-sight conditions. A dataset acquisition strategy, comprising scenario recon-
struction and advanced ray-tracing techniques, is employed to foster the model’s training and evaluation. Finally,
the proposed model is fully trained in diverse communication scenarios, and then used to predict the PLs in a new
communication scenario generated by the International Telecommunication Union standard at 28 GHz. The results
demonstrate that the extrapolated PLs of the proposed model are well consistent with the reference results. As exist-
ing PL models and standard PL models aim at several specifically defined scenarios, the proposed model can predict
the PLs in some undefined and unknown scenarios.

Keywords: A2G communication, unmanned aerial vehicle (UAV), path loss (PL) prediction, back-propagation neural
network (BPNN)
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1. INTRODUCTION
Unmanned aerial vehicle (UAV) communications have gained attention in both civilian and military fields
due to their cost efficiency and versatility [1,2]. Furthermore, UAVs are increasingly being used in the deliv-
ery of goods and medical supplies, particularly in remote or inaccessible areas, showcasing their potential to
transform logistics and healthcare services [3]. The integration of UAVs into communication networks also
opens up new possibilities for enhancing connectivity in areas with limited infrastructure, thereby bridging
the digital divide [4]. Recently, millimeter-wave (mmWave) communication has gained popularity due to its
significant advantages, such as wide bandwidth, high-speed data transmission, and low latency. The mmWave
spectrum offers a vast amount of available bandwidth, which is essential for meeting the growing demand for
data-intensive applications [5]. Using mmWave frequencies allows for smaller antennas, which promotes con-
siderable directional gain and enhances spatial reuse. This frequency range is particularly suitable for urban
environments where high data rates are required. Moreover, mmWave communication reduces signal inter-
ference and increases security and privacy, as its narrow beams are less susceptible to interception compared
to traditional frequency bands [6]. The deployment of mmWave technology is also seen as a key enabler for the
next generation of wireless networks, including 5G and beyond [7].

Accurate path loss (PL) modeling and prediction are crucial for developing and improving wireless networks.
These models are instrumental in determining coverage areas, enabling network designers to ensure that the
signal reaches the intended locations effectively [8]. They also play a vital role in evaluating transmission dis-
tances, helping to optimize the placement of transmitters (Tx) and receivers (Rx) tomaintain robust communi-
cation links [9]. Furthermore, understanding PL is essential for measuring signal strength within the network
infrastructure, which is critical for maintaining reliable and high-quality service [10]. However, in urban sce-
narios, establishing low-altitude air-to-ground (A2G) channel models becomes increasingly complex. Urban
scenarios include a large number of buildings and trees that typically obstruct the line-of-sight (LoS) paths.
This leads to the multipath effect and produces additional signal attenuation. Owing to the complexity of
this case, it is impractical and unfeasible to conduct detailed field measurements of each type of scenario [11].
Therefore, it is imperative to develop a robust and effective A2G PL prediction model that can be adapted to
different urban scenarios.

1.1 Related works
There are two commonmethods for modeling PL in wireless communication systems: deterministic modeling
methods and empirical modeling methods [12,13]. Deterministic modeling, based on the principles of physics,
employs mathematical formulations to delineate the impact of obstacles and environmental variables on signal
strength during propagation. Ray tracing (RT) is a well-known method for tracking rays from a Tx to a Rx. It
shows how rays are reflected, refracted, and diffracted along their path, and thus calculates the signal attenu-
ation [14]. For example, the authors in [15] proposed a three-dimensional (3D) scattering scene reconstruction
method based on digital maps. They performed a RT simulation under a campus scenario at 28 GHz and
analyzed the impact of scene reconstruction accuracy on channel parameter characteristics. Authors in [16] in-
troduced a 3D RT technique to enhance the accuracy of propagation predictions and computational efficiency
in indoor environments at 28 GHz. Field measurement also belongs to the deterministic modeling methods.
The UAV channel measurements are performed in a suburban scenario, and the PL parameters are analyzed
in [17]. Authors in [18] conducted a wideband A2G channel measurement campaign for fixed-wing UAVs at
altitudes of up to 700 m, investigating channel characteristics such as PL and shadow fading (SF). Besides, the
authors in [19] conducted UAV-to-Vehicle (U2V) channel measurements in the S and C bands under various
low-altitude UAV and mobile vehicle scenarios to analyze PL characteristics.

Due to the complexity and time-consuming nature of deterministic methods, especially for highly dynamic
UAV communication scenarios, empirical modeling has become more popular. This approach involves col-
lecting measurement data for statistical analysis to establish a link between PL and its influencing factors,
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thereby constructing a mathematical model. Notable empirical models for specific scenarios have been put
forth by various organizations to address both visible and obstructed paths. The 3rd Generation Partnership
Project (3GPP) has introduced comprehensive PL models that are widely used in the industry for different
environmental conditions [20]. Additionally, the WINNER+ project has developed advanced PL models that
provide detailed insights and improved accuracy for various propagation environments, further enhancing
the understanding of signal behavior in both LoS and non-line-of-sight (NLoS) conditions [21,22]. The close-in
(CI) model derived from the empirical model is applied to fit the measurement data to further obtain the sta-
tistical properties of PLs with respect to the communication distances [23,24]. However, the strong dependence
of empirical modeling on statistical analysis can sometimes cause errors.

In light of this, PL modeling methods incorporating machine learning (ML) are emerging, which offer higher
accuracy, flexibility, and adaptability to complex propagation environments [25]. ML-based models can well ex-
plain the complex relationship between the input features and the resultant PL, satisfying the demands of high-
variability and nonlinear feature scenarios. These models excel in dynamic environments by using the ability
to update and retrain with new data. Some examples of such models include deep neural networks (DNN),
regression trees, and support vector machines (SVM). In [26], a model was introduced to forecast PL, incorpo-
rating considerations of path delay, the carrier frequency, and reflection angle (RA) concurrently. However, a
common challenge these predictive models face is their limited ability to generalize across differing scenarios.
Recently, the authors in [11] proposed a method based on neural networks (NNs) for transferring channel pa-
rameter scenarios. They initially conducted measurements of the channel properties, including PL, K-factor,
and the root mean square delay spread in a semi-urban scenario. Then, the channel characteristics in dense-
urban scenario are predicted by this network. Despite its innovation, this method requires RT simulation data
from both initial and target scenarios to create a transfer matrix, making the direct link between geometry and
channel characteristics complex. Additionally, it involves significant computational effort and complexity.

1.2 Motivation
Deterministic PL prediction models are time-consuming and have high computational complexity when deal-
ing with complex environments. Empirical prediction models rely on a predefined mathematical equation,
which may not accurately represent the inner relationship between PL and the other factors for each commu-
nication scenario. ML-based PL prediction models do not need an empirical equation, but current networks
are usually trained for specific scenarios, which leads to insufficient cross-scenario prediction ability. Thus, to
avoid a large amount of fitting and training under different scenarios, it has become necessary to propose an
efficient PL prediction method with cross-scenario ability for A2G mmWave communications.

1.3 Contributions
Motivated by the above background and current research gaps, this paper proposes an innovative NN model.
The contributions and novelties are summarized as follows:

• This paper proposes a back-propagation NN (BPNN)-based PL prediction model for A2G communication
systems. The network includes scenario parameters as inputs for the first time. Combined with horizontal
distance and height, the proposed model can accurately predict the PLs in new scenarios using training
data from limited scenarios.

• To train the NNmodel, the data acquisitionmethod fromRT simulations is introduced. The reconstruction
of statistical scenarios simplifies the reconstruction process, and reduces cost and complexity. Appropriate
transceiver layouts enable the model to improve its ability to predict PL under various scenarios accurately.

• The proposed model is validated and analyzed in an urban scenario at 28 GHz. Simulations and analy-
sis show that all factors, i.e., scenario characteristics, horizontal distance and altitude, have a significant
impact on PL. Furthermore, comparison with the PL results of 3GPP standards shows that our method
achieves higher accuracy. This result establishes a new standard for accurate PL prediction models in UAV
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communication.

The rest of the paper is organized as follows. In Section 2, a cross-scenario PL prediction model based on ML
is given. Section 3 gives the details of the training model and methods of data acquisition. The simulation and
validation of the proposed method are given in Section 4. Section 5 draws the conclusions.

2. NEURAL NETWORK-BASED PL PREDICTION MODEL
The empirical PL models are usually described by parameterized expressions. The free space PL (FSPL) is
the basic method for describing PLs in the obstacle-free environment. However, the model does not consider
practical considerations such as reflections, diffraction, and scattering. Thus, it is less accurate in complex envi-
ronments. Wireless signal propagation is closely linked to complex environments such as areas with buildings
and other obstructions [27]. The 3GPP PL model is suitable for these scenarios: urban, suburban, rural, and
indoor environments. However, it is more complex to implement and requires detailed environmental param-
eters.

To overcome the limitations of traditional models such as FSPL and 3GPP, ML algorithms have emerged as a
promising alternative, capable of learning from large datasets to improve PL predictions in dynamic environ-
ments. However, it is very complicated to precisely define the correlation between PL and various scenario
types. To address this challenge, we parametrically characterize the physical geometry of scenarios defined
by the International Telecommunication Union-Radiocommunication Sector (ITU-R) [28] as input parame-
ters, and a PL prediction model via ML is proposed. In this paper, our focus is not to improve the BPNN
technology; rather, we adopt it to solve the cross-scenario problem of PL prediction. In this way, we do not
need to acquire data and train the network again in a new scenario, which greatly reduces the complexity
of cross-scenario PL prediction. This innovative model is adept at autonomously identifying deep relation-
ships between network input parameters and output data, avoiding the empirical formulation characteristic
of stochastic methods. Moreover, it outperforms the deterministic approach in terms of time efficiency, espe-
cially for massive datasets. The proposed PL model based on BPNN for LoS and NLoS paths can be expressed
as

𝑃LoS/NLoS = 𝑓 LoS/NLoS
BPNN

(
𝛼, 𝛽, 𝛾, ℎLoS/NLoS, 𝑠LoS/NLoS; w, b,𝝈

)
(1)

where 𝑓𝐵𝑃𝑁𝑁 (·) represents the mapping function of the BPNN, which is shaped by the network’s architecture,
while w, b and 𝝈 signify the network’s weight matrix, bias matrix, and activation function matrix, respectively.
h indicates the height of the Tx above ground and s denotes the horizontal separation between the Tx and the
Rx 𝛼, 𝛽 and 𝛾 correspond to the ratio of land area covered by buildings to total land area, the mean number
of buildings per unit area(buildings/ km2), and a factor that influences the distribution of building heights,
respectively. The Rayleigh probability distribution, denoted as P (H ), is related with the parameter 𝛾:

𝑃 (𝐻) = 𝐻

𝛾2 exp
(
−𝐻2

2𝛾2

)
(2)

The model is designed to capture the complex relationships between the input features and the PL. Trained
based on the dataset from various scenarios and different distances, the network can predict the PL accurately
according to a new group of inputs. The parametersw, b are optimized during the training process tominimize
the difference between the predicted and actual PL values. 𝝈 is crucial for introducing non-linearity into the
model. Without non-linearity, the NNwould essentially be a linear regressionmodel, regardless of the number
of layers. 𝑓𝐵𝑃𝑁𝑁 (·) denotes a trained BPNN model that accepts multiple input features and, after layers of
computation (including linear transformation and nonlinear activation), finally outputs the predicted value of
PLs. In this paper, we introduce a NN designed to facilitate a five-input (𝛼, 𝛽, 𝛾, h, s) to single-output P .

3. PL PREDICTION FOR THE CROSS-SCENARIO

http://dx.doi.org/10.20517/ces.2024.55


Zhang et al. Complex Eng Syst 2024;4:18 I http://dx.doi.org/10.20517/ces.2024.55 Page 5 of 15

Figure 1. BPNN-based framework of path loss prediction.

3.1 BPNN-based PL prediction
Under the LoS conditions, the PL is predominantly influenced by the distance between the Tx and Rx, given
the absence of obstructions along their direct path. The input variables, namely the height h and the horizontal
distance s, play a crucial role in determining the P . Consequently, it becomes unnecessary to incorporate an
extensive array of scenario parameters such as 𝛼, 𝛽 and 𝛾. By focusing on h and s, we aim to clarify the
impact of altitude and horizontal distance on P , and a detailed examination of these parameters is presented
in Section 4.

Under NLoS conditions, PL is influenced by either reflection or diffraction phenomena. It is observed that
propagation paths of identical distances between the Tx and Rx can exhibit markedly different PL values. This
variation underscores the necessity of incorporating a broader range of scenario parameters into the input
dataset to enhance themodel’s capability to discern the intricate relationship between input variables and the re-
sulting PL.The framework for PL prediction utilizing a BPNN for both LoS andNLoS paths is illustrated in Fig-
ure 1. Central to the BPNN architecture is the arrangement of an input layer, hidden layers, and an output layer.
As depicted in Figure 1, the input layer is designed with five neurons, while the output layer features a single
neuron. The original data sets denote {𝑃LoS/NLoS

𝑎𝑙𝑙 , 𝛼LoS/NLoS
𝑎𝑙𝑙 , 𝛽LoS/NLoS

𝑎𝑙𝑙 , 𝛾LoS/NLoS
𝑎𝑙𝑙 , ℎLoS/NLoS

𝑎𝑙𝑙 , 𝑠LoS/NLoS
𝑎𝑙𝑙 } All of

them can be obtained by the data acquisition in Section 3. Then, these data sets are divided into two parts by the
proportion of 8:2 randomly, i.e., training set {𝑃LoS/NLoS

𝑡𝑟 , 𝛼LoS/NLoS
𝑡𝑟 , 𝛽LoS/NLoS

𝑡𝑟 , 𝛾LoS/NLoS
𝑡𝑟 , ℎLoS/NLoS

𝑡𝑟 , 𝑠LoS/NLoS
𝑡𝑟 }

, and testing set, {𝑃LoS/NLoS
𝑡𝑒𝑠𝑡 , 𝛼LoS/NLoS

𝑡𝑒𝑠𝑡 , 𝛽LoS/NLoS
𝑡𝑒𝑠𝑡 , 𝛾LoS/NLoS

𝑡𝑒𝑠𝑡 , ℎLoS/NLoS
𝑡𝑒𝑠𝑡 , 𝑠LoS/NLoS

𝑡𝑒𝑠𝑡 }, respectively. The data from
the training set are used to train the model. The output prediction value of PL can be expressed as

𝑃LoS/NLoS
𝑡𝑟 𝑝𝑟𝑒 = 𝜎

(
wTx + b

)
(3)

where x represents the input matrix of training set {𝛼LoS/NLoS
𝑡𝑟 , 𝛽LoS/NLoS

𝑡𝑟 , 𝛾LoS/NLoS
𝑡𝑟 , ℎLoS/NLoS

𝑡𝑟 , 𝑠LoS/NLoS
𝑡𝑟 }. In

this paper, the Tansig function is employed from the input layer to the hidden layer to enhance the network’s
nonlinear prediction capabilities. For the transition from the hidden layer to the output layer, the Purelin
function is applied. These functions are expressed as

𝜎tansig (𝑥) =
2

1 + 𝑒−2𝑥 − 1 (4)

𝜎purelin (𝑥) = 𝑥 (5)
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At the beginning of the training phase, the weight and bias parameters of each neuron in the network have
not yet been optimized, resulting in significant differences between the predicted and reference values. To
overcome this difference, it is crucial to establish a suitable loss function. This function helps to continuously
refine the neuron parameters through back-propagation, thusminimizing the errors. The loss function utilized
in this paper is expressed as

𝐿 (w, b, 𝜎) = 1
2𝑅

𝑅∑
𝑟=1

(
𝑃LoS/NLoS
𝑡𝑟 𝑝𝑟𝑒,𝑟 − 𝑃LoS/NLoS

𝑡𝑟,𝑟

)2
(6)

whereR is the sum of training set, 𝑃LoS/NLoS
𝑡𝑟,𝑟 ∈ 𝑃LoS/NLoS

𝑡𝑟 and 𝑃LoS/NLoS
𝑡𝑟 𝑝𝑟𝑒,𝑟 ∈ 𝑃LoS/NLoS

𝑡𝑟 𝑝𝑟𝑒 . Following the principles
of stochastic gradient descent (SGD), the back-propagation algorithm is employed to iteratively adjust the
weight and bias matrices, as detailed below

𝑤 (𝑘)
𝑖 𝑗 = 𝑤 (𝑘)

𝑖 𝑗 − 𝑙
𝜕𝐿 (w, b, 𝜎)

𝜕𝑤 (𝑘)
𝑖 𝑗

+ 𝑚Δ𝑤 (𝑘)
𝑖 𝑗 (7)

𝑏 (𝑘)𝑗 = 𝑏 (𝑘)𝑗 − 𝑙
𝜕𝐿 (w, b, 𝜎)

𝜕𝑏 (𝑘)𝑗

+ 𝑚Δ𝑏 (𝑘)𝑗 (8)

where 𝜕 (.) represents the partial derivatives, 𝑤 (𝑘)
𝑖 𝑗 ∈ w and 𝑏 (𝑘)𝑖 𝑗 ∈ b are the connection weight values and bias

value of the j th neuron in the k th layer of the network and the i th neuron in the previous layer, respectively.
l is the learning rate of the NN andm is the momentum factor. the output prediction value of PL from testing
dataset can be expressed as

𝑃LoS/NLoS
𝑡𝑒𝑠𝑡 𝑝𝑟𝑒 = 𝑓 LoS/NLoS

BPNN

(
𝛼LoS/NLoS
𝑡𝑒𝑠𝑡 𝑝𝑟𝑒 , 𝛽LoS/NLoS

𝑡𝑒𝑠𝑡 𝑝𝑟𝑒 , 𝛾LoS/NLoS
𝑡𝑒𝑠𝑡 𝑝𝑟𝑒 , ℎLoS/NLoS

𝑡𝑒𝑠𝑡 𝑝𝑟𝑒 , 𝑠LoS/NLoS
𝑡𝑒𝑠𝑡 𝑝𝑟𝑒 ; w, b, 𝜎

)
(9)

Root mean square error (RMSE) is proposed as the validation function to evaluate the performance of NN
using the testing dataset [29], which can be expressed as

𝑅𝑀𝑆𝐸 =

√√√
1
𝑇

𝑇∑
𝑡=1

(
𝑃LoS/NLoS
𝑡𝑒𝑠𝑡 𝑝𝑟𝑒,𝑡 − 𝑃LoS/NLoS

𝑡𝑒𝑠𝑡,𝑡

)2
(10)

where T is the sum of testing set, 𝑃LoS/NLoS
𝑡𝑒𝑠𝑡,𝑟 ∈ 𝑃LoS/NLoS

𝑡𝑒𝑠𝑡 and 𝑃LoS/NLoS
𝑡𝑒𝑠𝑡 𝑝𝑟𝑒,𝑟 ∈ 𝑃LoS/NLoS

𝑡𝑒𝑠𝑡 𝑝𝑟𝑒 .

Training concludes and the network stabilizes once any of the following criteria are met: the loss function
diminishes to a predetermined threshold, the number of training epochs is reached, or the gradient’s decrease
meets a predefined value. If the performance is appropriate, this network could be saved and a new group of
input parameters; i.e., 𝛼𝑛𝑒𝑤 , 𝛽𝑛𝑒𝑤 , 𝛾𝑛𝑒𝑤 , ℎ𝑛𝑒𝑤 , 𝑠𝑛𝑒𝑤 are used to generate the corresponding prediction value of
PL.

3.2 RT-based dataset acquisition
In the BPNN PL prediction model, dataset acquisition is crucial for tuning NN parameters and ensuring ac-
curacy. Due to the complexity of developing an mmWave A2G channel sounder, we are unable to acquire
enough training data at the mmWave band. Considering that the RT is one of the accurate channel modeling
methods, this paper chooses to acquire the dataset via the RT simulation. The dataset acquisition involves 3D
scenario reconstruction and RT simulation.

Traditional methods for scenario reconstruction, such as point-cloud and digital mapping technologies, de-
mand detailed scene information, such as the scatter location, size, shape, and material, making the process
complex. To overcome this obstacle, the ITU standard organization has introduced a virtual city-based 3D
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Figure 2. RT simulation setup.

reconstruction technique. This method draws on field measurements and statistical analyses to derive a sta-
tistical profile for scatter properties, particularly for buildings in urban scenarios. By acquiring statistical data
from real environments, it simplifies the reconstruction process and reduces cost and complexity. Operators
only need to specify the parameters, 𝛼, 𝛽 and 𝛾, mentioned in Section 2 to accomplish the 3D scenario recon-
struction.

Taking, for example, a city block measuring 1,000 meters by 1,000 meters, the number of buildings per row is
calculated as

𝑏 = 𝑓 𝑙𝑜𝑜𝑟
√
𝛽 (11)

where the floor function is applied to guarantee that the quantity of terms in the calculation yields an integer
number of buildings. The spacing between buildingsD and the width of buildingsW can be calculated easily
according to the geometric relationship, expressed as

𝑊 = 1000
√
𝛼/𝛽 (12)

𝐷 =
1000
√
𝛽

−𝑊 (13)

Then, a series of random numbers are generated that matched the Rayleigh distribution with a mean value of
𝛾, to the total number of buildings. These random numbers represent the heights of the buildings. With the
3D information of the urban environment, the building modeling can be accomplished using the Ruby Code
Editor plugin in SketchUp.

The design of the RT simulation scheme plays a role in ensuring comprehensive and efficient data collection.
For every scenario, the Rx is located in the center of the area, and the Txs are at different altitudes on several
layers, each with hundreds of Tx uniformly distributed. At last, the building material is set to concrete. The
scenario reconstruction and the layout of the transceivers are shown in Figure 2.

A software called Wireless Insite is used for RT simulation. The precision of the reconstructed digital map
is 5 m. During the RT simulation, we set the order of reflections to be no more than two, and the order of
the diffraction to be one. The channel parameters are computed through three steps, i.e., decomposition of
ray source, tracking of rays, and superposition of filed strength [30]. The power received at each RX point is
precisely determined and subsequently converted into amplitude as

http://dx.doi.org/10.20517/ces.2024.55
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Table 1. Four typical urban scenarios with characteristic parameters

Scenarios 𝛼 𝛽 𝛾

Suburban 0.1 750 8

Urban 0.3 500 15

Dense 0.5 300 20

Highrise 0.5 300 50

𝛼𝑜 = 10
𝐴𝑜
10 (14)

where 𝐴𝑜 is the power of the oth path. The value of the PL can be expressed as

𝑃 = 10log10(
𝑂∑
𝑜=1

𝛼2
𝑜) (15)

where O is the number of rays.

4. SIMULATIONS AND VALIDATIONS
4.1 Model training in limited scenarios
To validate the accuracy of the proposed PL predictionmethod, a large number of datasets are obtained through
RT simulation, asmentioned in Section 3.2. For the LoS case, four typical urban scenarios are reconstructed for
simulations according to the defined parameters in the ITU standard [28], as shown in Table 1. Three stochastic
simulations are conducted for each typical scenario to account for the effects of different building heights; i.e.,
a total of 12 scenarios are considered. However, it is necessary to explore more scenarios for NLoS conditions.
To cover more scene types, parameters are varied: 𝛼 from 0.1 to 0.8 in 0.1 intervals, 𝛽 from 100 to 800 in 100
intervals, and 𝛾 from 8 to 50 in two intervals. This approach includes 176 scenarios, producing a rich dataset.
However, due to the delicate and efficient model, only eight of these scenarios are ultimately employed for
network training. The Txs are deployed at six different heights, from 30 to 80 m in 10 m intervals, while the Rx
is located in the center of the area at 25 m above the ground. In addition, we set the reflection and diffraction
counts by RT simulation software to obtain LoS and NLoS datasets, respectively. The details of the specific
simulation parameters are presented in Table 2.

Subsequently, the acquired RT simulation data is performed as a dataset for BPNN training. The learning rate
is set to 0.0001, the momentum factor is set to 0.95, the number of training epochs is set to 2,000, and the
hidden layer is set to a single layer consisting of 20 neurons. For the LoS case, there are 6,078 datasets, of
which 4,862 are used for training and 1,216 for testing. Similarly, for the NLoS case, there are 49,230 datasets,
of which 39,384 are used for training and 9,846 for testing. For the LoS case, there are 6,078 datasets, of which
4,862 are used for training and 1,216 for testing. Similarly, for the NLoS case, there are 49,230 datasets, of
which 39,384 are used for training and 9,846 for testing. This division helps make the training of the network
suitable for various scenarios.

In the LoS case, the effect of scenario parameters on PL is found to be minimal. Consequently, we focus on
examining the dynamics between horizontal distance s, Tx height h and PL P , as depicted in Figure 3. It is
observed that PL intensifies with the distance between the Tx and Rx. Importantly, the impact of horizontal
distance on PL is more significant at lower altitudes compared to the effect of vertical separation. Figure 4A
illustrates the analysis of the RT simulation data with the PL values predicted by the BPNN model, showing a
high degree of correlation and highlighting the accuracy of the model. The deviation results are all less than
3 dB, as shown in Figure 4B. This further validates the reliability of the model and confirms the accuracy of
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Table 2. Simulation parameters

Parameters Value

Scenarios 4 for the LoS case, 8 for the NLoS case

Frequency (Bandwidth) 28 GHz (1 GHz)

Antenna type Omnidirectional for both Rx and Tx

The height of Tx (interval) 30∼80 m (10 m)

The height of Rx 25 m

Building material Concrete

Maximum number of reflections 0 for LoS and 2 for NLoS

Maximum number of diffraction 0 for LoS and 1 for NLoS

Figure 3. Simulated PL for the LoS case.

our prediction method. Additionally, the RMSE is determined to be 0.2493, following the calculation given in
Equation (10).

In scenarios where the LoS path is obstructed, various environmental factors significantly influence PL.
Figure 5-Figure 7 illustrate the relationship between the input factors and the PL in this case. Specifically,
Figure 5 shows that an increase in Tx height leads to a reduction in PL.This phenomenon can be explained by
a reduction in obstacle interference, since increasing the Tx height effectively lengthens the LoS path, thereby
reducing signal attenuation caused by physical obstacles. Figure 6 shows that greater building coverage indi-
cates a denser urban environment, where buildings are more likely to obstruct and weaken the signal, thereby
increasing PL and negatively affecting signal quality. In addition, the presence of higher buildings increases
the likelihood of signal blockage and reflection, further exacerbating PL, as evidenced in Figure 7.

Figure 8 demonstrates the performance of the NN. Obviously, the NN shows good prediction ability. About
eighty percent of the deviation results are less than 5 dB and the RMSE is 8.27489.

4.2 Model validation in a new scenario
To further validate the effectiveness of our network, we introduce a new scenario setting with 𝛼 = 0.4, 𝛽 =
400 and 𝛾 = 18 ensuring consistency with the network configurations used in previous experiments. Then, we
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Figure 4. (A) Prediction accuracy and (B) Histogram of prediction error for the LoS case.

Figure 5. The impact of Tx height on PL for the NLoS case.

compare the PL values derived from the BPNN with RT simulations. The outcomes are depicted in Figure 9.
The significant agreement between the BPNN predictions and the RT simulation data highlights the reliability
and efficiency of our proposed method. Additionally, we also incorporate the concept of 3D distance between
the Tx and the Rx, which is formulated as

𝑑3D =
√
𝑠2 + (ℎ − 25)2 (16)

http://dx.doi.org/10.20517/ces.2024.55
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Figure 6. The impact of 𝛼 on PL for the NLoS case (𝛼=0.1, 0.3, 0.5 and 0.8, respectively).

Figure 7. The impact of 𝛾 on PL for the NLoS case (𝛾=10, 30, 40 and 50, respectively).

For comparison, traditional prediction methods such as the 3GPP model were also simulated and the results
are shown in Figure 10 and Figure 11. It should be emphasized that the 3GPP PL results are calculated us-
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Figure 8. (A) PL prediction accuracy and (B) Histogram of prediction error for the NLoS case.

Figure 9. Predicted PL for (A) LoS and (B) NLoS case in the new scenario (𝛼 =0.4, 𝛽 = 400 and 𝛾 = 18).

ing the LoS/NLoS path formulae for RMa scenarios [20]. This comparative analysis clearly demonstrates the
enhanced performance of our proposed prediction method compared to traditional methods. Our model is
tailored to the specific scenario data and utilizes ML techniques, which has a significant correlation with the
simulation results. On the contrary, the 3GPP model, which is usually applied to Rx at lower heights (0-10
meters), demonstrates a less accurate predictive capability in specific scenarios. Looking ahead, this compari-
son underscores the potential of ML-based methods to address limitations in traditional models, particularly
in scenarios with higher Rx heights or more complex scenarios. Future research could build on the three sce-
nario parameters in this paper by further exploring additional environmental feature parameters (e.g., terrain
relief), integrating them into the ML model, and validating their performance in a wider range of scenarios.
This approach may bring more powerful prediction tools and facilitate advances in wireless network planning
and optimization.

http://dx.doi.org/10.20517/ces.2024.55


Zhang et al. Complex Eng Syst 2024;4:18 I http://dx.doi.org/10.20517/ces.2024.55 Page 13 of 15

Figure 10. Predicted PL of different methods in the LoS case (𝛼 = 0.4, 𝛽 = 400, and 𝛾 =18).

Figure 11. Predicted PL of different methods in the NLoS case (𝛼 = 0.4, 𝛽 = 400, and 𝛾 = 18).

5. CONCLUSIONS
This paper has proposed a cross-scenario PL predictionmodel based on BPNN for A2G communications. The
model has demonstrated the ability to accurately forecast the power for both LoS and NLoS paths trained with
extensive RT simulation data across a variety of urban environments. A correlation has been established be-
tween the PL and scenario parameters, horizontal distance, and altitude. The performance of trained BPNN
has been evaluated against a new scenario dataset derived from RT simulations and 3GPP standard model,
confirming the superiority of the proposed method over traditional PL prediction approaches. In the future,
we will develop an mmWave A2G channel sounder for further validating the proposed method via field mea-
surements.
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