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Abstract
Alzheimer’s disease (AD) is common and devastating. However, current symptomatic treatments are unable to 
alter the progression of the disease. Fortunately, many ongoing trials of disease-modifying therapies may provide 
new insights into the treatment and prevention of AD. Due to the long-held amyloid cascade hypothesis, the 
development of pharmacotherapies targeting amyloid-β (Aβ) has been a major focus in AD research. The recent 
positive results and approval of several anti- Aβ monoclonal antibodies seem to be a milestone for AD treatment. 
In this review, we highlight the rationale and status of different Aβ-targeted therapies for AD, including those now 
on the market and those in clinical trials. We also discuss the challenges and future perspectives of Aβ-targeted 
therapies for AD.
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INTRODUCTION
An estimated 15 million older adults are living with dementia in China, among whom 9.8 million have 
Alzheimer’s disease (AD)[1]. As the mean life expectancy increases and the aging population grows rapidly, 
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the global cost attributable to dementia will reach US $9.12 trillion in 2050[2]. As such, effective treatment 
and prevention for AD are eagerly awaited.

Currently, treatment options for AD include both pharmacological and non-pharmacological approaches. 
Non-pharmacological therapies such as cognition stimulation therapy, occupational therapy, and behavioral 
interventions aim to enhance cognitive performance and improve the overall quality of life for individuals 
with AD[3]. Other alternative non-pharmacological therapies, including deep brain stimulation, focused 
ultrasound, and acoustic/light stimulation at 40 Hz, are under investigation[4]. Pharmacological 
interventions for AD primarily focus on the underlying pathophysiology of the disease. In 1993, the US 
Food and Drug Administration (FDA) approved the first drug, tacrine, for AD. Tacrine is an 
acetylcholinesterase inhibitor (AChEI) but is no longer in use due to hepatotoxicity[5]. An improved second-
generation AChEIs and an N-methyl-D-aspartate receptor antagonist entered the market during the decade 
after tacrine. Although widely used, these drugs only provide symptomatic relief[6]. Therefore, research 
efforts have focused on developing disease-modifying therapies for the treatment and prevention of AD. 
Most disease-modifying therapies tested for AD in the past 20 years have targeted amyloid-β (Aβ) peptide 
and tau protein since they are the two key pathological hallmarks of the disease[6,7]. Meanwhile, remarkable 
advances in understanding the pathophysiology of AD have led to multiple hypotheses, such as 
inflammatory hypothesis, metabolism hypothesis, and mitochondrial hypothesis. These emerging 
hypotheses have sparked clinical development for potential treatments targeting these pathways[7,8], which 
have been extensively reviewed in other literature[9,10]. Given the recent advancements in Aβ-targeted 
therapies, this review aims to summarize and provide an updated overview of these therapies, focusing on 
those that have been approved and those currently in clinical trials.

THE AMYLOID CASCADE HYPOTHESIS
The impetus for developing Aβ-targeted therapies originates from the prevailing amyloid cascade 
hypothesis[11]. The production of the Aβ peptide occurs through the cleavage of a type I transmembrane 
glycoprotein, amyloid precursor protein (APP). In the non-amyloidogenic pathway, cleavage of APP by α-
secretase releases a soluble extracellular fragment called sAPPα and retains a membrane-bound C-terminal 
fragment known as CTFα. CTFα is subsequently processed by γ-secretase, resulting in the generation of a 
soluble N-terminal fragment called P3 that does not possess aggregating tendencies. Alternatively, when 
APP is cleaved by β-site APP cleaving enzyme (BACE), it results in the generation of a soluble extracellular 
fragment called sAPPβ and a 99-residue C-terminal fragment called CTFβ or C99. C99 is further cleaved by 
γ-secretase, leading to the production of the neurotoxic Aβ peptide (amyloidogenic pathway)[12]. Aβ exists in 
different lengths, with Aβ40 being the most abundant and Aβ42 being less soluble. Extracellular 
accumulation of Aβ triggers its aggregation, progressing from monomers, oligomers, and protofibrils and 
eventually forming insoluble plaques[13], which is a hallmark pathology of AD[14]. Aβ accumulation serves as 
the initiating event in AD pathogenesis and triggers a series of downstream events such as tau 
hyperphosphorylation, formation of the neurofibrillary tangle, oxidative stress, inflammatory responses, 
synaptic dysfunction, and cognitive impairment[15]. Hence, Aβ has been one of the most popular targets in 
AD drug research. Figure 1 illustrates the mechanism of action of the main Aβ-targeted therapies based on 
the amyloid cascade hypothesis. Aβ-targeted strategies attempt to antagonize Aβ aggregation (Aβ 
aggregation inhibitors), reduce Aβ production by inhibiting or modulating BACE and γ-secretase (BACE 
inhibitors, γ-secretase inhibitors, and γ-secretase modulators), promote clearance of Aβ via active or passive 
immunotherapies (anti-Aβ vaccines and anti-Aβ monoclonal antibodies) or decrease related protein 
expression (RNA-based therapies). Figure 2 illustrates the clinical development of Aβ-targeted therapies for 
AD.
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Figure 1. Illustration of amyloid cascade hypothesis and targets of anti-amyloid-β (Aβ) therapies for Alzheimer’s disease. This figure 
illustrates the mechanism of action of the main Aβ-targeted therapies based on the amyloid cascade hypothesis. Blue circles indicate 
the targets of active and passive immunotherapies. Red circles indicate the targets of Aβ aggregation inhibitors. Aβ: amyloid-β; AICD: 
amyloid precursor protein intracellular domain; APP: amyloid precursor protein; BACE: β-site amyloid precursor protein cleaving 
enzyme; C99: a 99-residue C-terminal fragment; sAPPβ: soluble amyloid precursor protein-β.

Aβ AGGREGATION INHIBITORS
Studies have demonstrated that soluble Aβ oligomers, instead of plaques,  are a major source of
neurotoxicity and cause neuronal damage at the nanomolar level[16]. Hence, Aβ aggregation inhibitors are
presumed to be a rational therapeutic strategy for AD. They disrupt the interaction of Aβ peptides, prevent
their aggregation into oligomers, and thus limit neurotoxicity. Agents with this mechanism of action
include PBT1 and PBT2, scyllo-inositol (ELND005), and tramiprosate.

PBT1(clioquinol) is a small molecule agent functioning as a metal protein attenuating compound[17]. Metal
ions, such as copper and zinc, drive Aβ towards fibrillization and amyloid plaque formation and result in a
series of redox reactions[18-20]. By binding these metal chaperones, PBT1 disrupts the interaction between Aβ
peptides and metals and therefore prevents toxic Aβ oligomerization[17]. PBT1 failed to exhibit significant
improvement in cognition or clinical global function in participants with mild cognitive impairment (MCI)
to AD but showed a positive effect in those with more severe cognitive impairment (as measured by the
Alzheimer’s Disease Assessment Scale-Cognitive [ADAS-cog] Subscale ≥ 25)[21]. The study investigator
attributed this finding to the limited statistical power of the study and the nonlinear sensitivity of the
ADAS-cog instrument, which hinders the detection of subtle cognitive differences in the less severely
affected group. The second-generation clioquinol (PBT2), which has improved pharmacological
prosperities and efficacy[22], also failed to show significant effects on cognition or function in MCI or mild to
moderate AD[23,24].



Page 4 of Cai et al. Ageing Neur Dis 2023;3:13 https://dx.doi.org/10.20517/and.2023.1629

Figure 2. Development of amyloid-β (Aβ)-targeted therapy for Alzheimer’s disease (AD). This figure summarizes the clinical
development of Aβ-targeted pharmacotherapies for AD, reported according to the most advanced phase of the study and main
therapeutic properties. Data were accessed on July 18, 2023. Agents with “*” indicate that the trials have been discontinued or are
inactive. Agents with “†” indicate that the agents have been approved for the treatment of AD. Aβ: amyloid-β; AD: Alzheimer’s disease;
APP: amyloid precursor protein; BACE: β-site amyloid precursor protein cleaving enzyme.

Scyllo-inositol is an oral inositol stereoisomer that is thought to neutralize toxic Aβ oligomers and reduce 
aggregation[25]. This agent showed a dose-dependent reduction in Aβ pathology and ameliorated learning 
deficits in transgenic mice[25,26]. However, scyllo-inositol failed to show clinical benefits in participants with 
mild to moderate AD despite encouraging results in preclinical studies[27]. Severe adverse effects, including 
infections and death, were reported in the higher dosage (2,000 or 4,000 mg/day)[27], while the lower dosage 
(250 mg/day) appeared to have an acceptable safety profile[28]. Further development of the agent has not 
progressed in recent years.

Tramiprosate is a small aminosulfonate compound that functions by binding to and stabilizing Aβ42 
monomers, thereby preventing oligomerization and plaque formation[29]. Tramiprosate did not show 
efficacy in mild to moderate AD in a phase III trial[30], but subgroup analyses demonstrated beneficial effects 
in the high-risk apolipoprotein E (APOE) ε4 carriers[31,32]. Then a prodrug version of tramiprosate, 
valiltramiprosate (ALZ-801), has developed with enhanced pharmacokinetic properties and tolerance[33]. A 
phase III trial is ongoing to validate the cognitive efficacy of valiltramiprosate on APOE ε4 homozygotes 
with early AD[34].

BACE INHIBITORS
BACE1 is the first and rate-limiting secretase responsible for the proteolysis of APP in the amyloidogenic 
pathway[12]. The level and activity of BACE1 are higher in AD compared to healthy subjects[35]. BACE1 
suppression interferes with the upstream of the amyloid cascade and, therefore, reduces the production of 
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toxic Aβ, which may have important implications in the treatment of AD. Despite numerous studies 
conducted thus far, no BACE inhibitors have successfully completed phase III clinical trials [Table 1]. The 
concerning adverse effects observed in these trials include worsening cognitive function and weight loss. 
These effects may be attributed to the crucial role of BACE1 substrates beyond APP in neurodevelopment, 
as evidenced by the development of myelination deficits[36], cognitive impairment, and axon guidance 
defects in BACE1 knockout mice[36-38]. These findings suggest that developing a BACE inhibitor without 
these side effects could be challenging.

Verubecestat (MK-8931) is an orally administered BACE1 inhibitor characterized by its high cell 
permeability, excellent water solubility, and remarkable ability to cross the blood-brain barrier[39]. 
Verubecestat reduced cerebrospinal fluid (CSF) Aβ concentrations by over 90% in rodents and nonhuman 
primates[39]. Phase I trials[40-42] indicated that verubecestat was well-tolerated and capable of reducing Aβ 
protein levels in CSF. However, subsequent trials revealed that verubecestat failed to delay cognitive decline 
in participants with prodromal AD[43]. Moreover, it was associated with a range of treatment-related adverse 
events, including hippocampal atrophy, suicidal ideation, weight loss, and sleep disorders[44].

LY3202626 is a potent inhibitor of BACE1, known for its ability to cross the blood-brain barrier[45]. 
Preclinical studies demonstrated that LY3202626 dose-dependently reduced Aβ levels in primary cultured 
neurons of PDAPP mice[45]. Phase I trials[46-49] indicated that LY3202626 was generally well tolerated. 
Unfortunately, phase II trials[50] did not show any differences in tau PET, Aβ PET, or cognitive function 
between the treatment group and the placebo group. Additionally, a reduction in brain volume, particularly 
in the hippocampus region, was observed. Therefore, the study was discontinued.

Umibecestat (CNP520) exhibits significant selectivity for BACE1 over BACE2 and other proteases[51]. 
Umibecestat reduced CSF Aβ and Aβ deposition in preclinical models[51]. Animal toxicology studies of 
umibecestat indicated its safety profile, showing no adverse effects such as hair depigmentation, retinal 
degeneration, hepatotoxicity, or cardiotoxicity[51]. However, subsequent findings revealed that participants 
in the treated group experienced cognitive decline, brain atrophy, and weight loss compared to the placebo 
group, leading to the discontinuation of the study[52,53].

Elenbecestat (E2609) is an orally bioavailable small molecule BACE1 inhibitor[54]. Earlier trials demonstrated 
that elenbecestat was generally well tolerated and reduced Aβ levels in CSF and plasma, which holds 
promise for improving cognitive function[54-58]. However, the follow-up study was discontinued due to the 
lack of effective cognitive improvement in the treatment group[59]. Additionally, some participants in the 
treatment group experienced adverse effects such as rash, neuropsychiatric symptoms, cognitive 
impairment, decreased brain volume, a transient decrease in white blood cells, and elevated liver enzymes 
compared to the placebo group[14,52,60-62].

Atabecestat (JNJ-54861911) exhibits effective penetration into the central nervous system (CNS)[63]. Phase I 
results reported up to a 95% reduction in Aβ levels in healthy subjects[64]. However, subsequent phase II and 
III studies were terminated due to abnormally elevated liver enzymes and a potential trend towards 
cognitive decline in participants[65-67]. Follow-up reports suggest that hepatotoxicity may be linked to the 
inflammatory response induced by atabecestat and its metabolites[68].

Lanabecestat (LY3314814, AZD3293) showed promising potential in preclinical studies with various animal 
models[69], leading to its progression into clinical trials. Phase I trial[70] demonstrated the safety of 
lanabecestat and its ability to significantly reduce Aβ levels in both plasma and CSF. However, the phase III 
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Table 1. Clinical trials of BACE inhibitors, γ-secretase inhibitors and modulators

Target/Mechanism Sponsor Drug Study 
Population Phase Status Clinical trial 

identifier Start date Estimated 
end date Results Remarks 

Mild to moderate 
AD

II/III Terminated NCT01739348 November 
2012

April 2017 Lack of efficacy No cognitive or functional  
benefits

Merck Verubecestat 
(MK-8931)

Prodromal AD III Terminated NCT01953601 November 
2013

April 2018 Toxicity and lack of efficacy Worse cognition and  
functional ability; more 
adverse effects

Eli Lilly LY2811376 Healthy subjects I Completed NCT00838084 December 
2008

June 2009 Toxicity nonclinical retinal toxicity

Eli Lilly LY2886721 Mild AD I /II Terminated NCT01561430 March 2012 August 2013 Toxicity Abnormally elevated liver 
enzymes

Eli Lilly LY3202626 Mild AD II Terminated NCT02791191 June 2016 July 2018 Toxicity and lack of efficacy -

Preclinical AD  II/III Terminated NCT03131453 August 
2017

March 2020Amgen/Novartis Umibecestat 
(CNP520)

Preclinical AD II/III Terminated NCT02565511 November 
2015

April 2020

Toxicity and lack of efficacy Worse cognition; brain 
atrophy weight loss

Eisai/Biogen Elenbecestat 
(E2609) 

Early AD III Terminated NCT02956486 October 
2016

January 2020 Toxicity and lack of efficacy No cognitive benefits; 
more adverse effects

Janssen Atabecestat (JNJ-
54861911)

Preclinical AD II/III Terminated NCT02569398 October 
2015

December 
2018

Toxicity and lack of efficacy Worse cognition; more 
adverse effects 

Early AD III Terminated NCT02972658 March 2017 October 2018Astrazeneca/ Eil 
Lilly

Lanabecestat 
(LY3314814, 
AZD3293)

Mild AD III Terminated NCT02783573 July 2016 September 
2018

Toxicity and lack of efficacy Worse cognition; brain 
atrophy

Healthy subjects I Terminated NCT02254161 November 
2014

February 
2015

Healthy subjects I Completed NCT02106247 April 2014 June 2014

Boehringer 
Ingelheim

BI-1181181 (VTP-
37948)

Healthy subjects I Completed NCT02044406 January 
2014

September 
2014

Toxicity Skin reactions

Healthy subjects I Completed NCT02793232 June 2016 January 2017

Healthy subjects I Completed NCT03126721 April 2017 July 2017

Pfizer PF-06751979

Healthy subjects I Completed NCT02509117 July 2015 July 2016

Discontinuing research and 
development in neurology

-

Healthy subjects I Completed NCT01664143 July 2012 September 
2012

Healthy subjects I Completed NCT01592331 May 2012 October 2012

Hoffmann-La Roche RG7129 
(RO5508887)

Healthy subjects I Completed NCT01461967 September 
2011

December 
2011

No results have been 
published

-

CoMentis CTS21166 Healthy male I Completed NCT00621010 June 2007 February 
2008

No results have been 
published

-

BACE inhibitor
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High Point 
Pharmaceuticals, 
LLC

HPP-854 Mild AD I Terminated NCT01482013 October 
2011

March 2012 No results have been 
published

-

AstraZeneca AZD3839 Healthy subjects I Completed NCT01348737 June 2011 November 
2011

Toxicity -

Probable AD III Completed NCT01035138 December 
2009

April 2011

Mild to moderate 
AD

III Completed NCT00762411 September 
2008

April 2011

Eli Lilly Semagacestat 
(LY450139)

Mild to moderate 
AD

III Completed NCT00594568 March 
2008

May 2011

Toxicity and lack of efficacy Worse cognition; risk of 
skin cancer and infections

γ-Secretase inhibitor

Bristol-Myers 
Squibb

Avagacestat 
(BMS708163)

Prodromal AD II Terminated NCT00890890 May 2009 July 2013 Toxicity and lack of efficacy Worse cognition; 
gastrointestinal and 
dermatological side 
effects

Probable AD III Terminated NCT00380276 September 
2006

December 
2008

Mild AD III Terminated NCT00322036 May 2006 December 
2008

Myrexis Tarenflurbil (R-
flurbiprofen, MPC-
7869)

Mild AD III Completed NCT00105547 February 
2005

May 2008

Toxicity and lack of efficacy 
inadequate ability to 
penetrate the brain

-

FORUM 
Pharmaceuticals

EVP-0962 MCI or early AD, 
healthy subjects

II Completed NCT01661673 November 
2012

October 2013 Toxicity -

Eisai E2212 Healthy subjects I Completed NCT01221259 January 
2010

November 
2012

Acceptable safety and 
promising 
pharmacodynamic response

-

Healthy subjects I Completed NCT02407353 October 
2015

March 2016

Healthy subjects I Completed NCT02316756 December 
2014

March 2015

γ-Secretase modulator

Pfizer PF-06648671

Healthy subjects I Completed NCT02440100 May 2015 October 2016

Discontinuing research and 
development in neurology

-

Aβ: amyloid-β; AD: Alzheimer’s disease; APP: amyloid precursor protein; BACE: β-site amyloid precursor protein cleaving enzyme; MCI: mild cognitive impairment.

study[71] revealed that lanabecestat treatment did not slow or prevent cognitive decline. Furthermore, some adverse events were reported, including brain 
atrophy, neuropsychiatric symptoms, weight loss, and hair depigmentation.
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BI-1181181 (VTP-37948) is an inhibitor of both BACE1 and BACE2[72]. Results from the phase I trial in 
stages I and II indicated that a single dose of BI-1181181 was well-tolerated, and its long half-life supported 
a once-daily oral dosing regimen[73,74]. However, the phase I trial was terminated during stage III due to skin 
reactions observed in some participants[75].

LY2811376, the first small molecule BACE1 inhibitor entering clinical trials, demonstrated a significant 
reduction in Aβ levels in both plasma and CSF during the phase I trial[76]. However, subsequent toxicological 
data revealed retinal toxicity, leading to the discontinuation of further studies[45,77].

LY2886721, a second-generation BACE1 inhibitor developed after LY2811376, exhibits a 10-fold stronger 
inhibition of BACE1 without affecting other aspartic proteases like histone D, pepsin, and renin[78]. In a 
PDAPP transgenic mouse model, oral administration of LY2886721 significantly reduced Aβ levels in 
primary neurons[79]. Phase I trials[80-85] demonstrated the good tolerability of LY2886721 under different 
dosages and its ability to lower CSF Aβ levels. However, hepatotoxicity was observed in many participants 
during the phase II trial[86], leading to the discontinuation of the study.

The development of several BACE1 inhibitors has been terminated for various reasons. PF-06751979, 
developed by Pfizer, showed promising results in preclinical and phase I studies with a reduction in CSF Aβ
42 levels[87-92]. However, Pfizer decided to discontinue its development in neurology, leading to the drug not 
advancing to phase II or III trials[93]. RG7129 (RO5508887) was found to be hepatotoxic, resulting in the 
discontinuation of the study[94]. Only one registered phase I trial was found for CTS21166[95] and HPP-854[96], 
but no relevant trial results or records of further clinical studies are available.

γ-SECRETASE INHIBITORS AND MODULATORS
γ-Secretase, a transmembrane protein complex, cleaves more than 140 substrates, including APP and
Notch[97]. APP is initially cleaved by BACE, producing C99, which is subsequently proteolyzed by γ-secretase
at multiple sites to generate Aβ peptides[12,98]. Therefore, targeting γ-secretase is considered a promising
strategy for AD. Agents under this rationale include γ-secretase inhibitors and modulators [Table 1].

Semagacestat (LY450139) is the most potent γ-secretase inhibitor tested in humans. A study using stable
isotope-labeled amino acid (13C6-leucine) found that semagacestat reduced Aβ production in a dose-
dependent manner in the human CNS[99]. However, clinical trials of semagacestat failed due to its non-
selective inhibition of substrates, leading to suppressed Notch signaling and accumulation of CTFs. These
side effects included an increased risk of skin cancer, infection, gastrointestinal symptoms, and a decline in
cognitive performance, which ultimately resulted in the discontinuation of clinical development[100-103].

Avagacestat (BMS708163) was initially considered a potent and selective γ-secretase inhibitor with “Notch-
sparing” activity[104]. Preclinical studies indicated that it was 193 times more selective for Aβ processing than
Notch and effectively inhibited the formation of Aβ40 and Aβ42, suggesting it may have fewer adverse
effects compared to non-selective agents[104]. However, subsequent research revealed that avagacestat
exhibited only 3-7 fold selectivity for APP over Notch[105]. Consistent with the latter findings, avagacestat
caused Notch-deficient toxicity similar to semagacestat, that is, higher incidence of skin cancer, worsened
cognitive function, and higher brain atrophy rate in phase II trials[106,107]. Therefore, the development of
avagacestat was terminated.
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One reason for the extensive toxicities of γ-secretase inhibitors may be that these proteases regulate many 
physiological processes within and outside the nervous system[108]. Another explanation for the failure would 
be too much and too quick suppression of Aβ, as Aβ accumulates and causes neurotoxicity in a chronic 
manner. Novel strategies aimed at partial suppression of the proteases and gradual reduction of Aβ are 
under development[109]. γ-Secretase modulators selectively modulate the γ-secretase cleavage site of APP 
rather than the downstream ε-cleavage site[110]. Consequently, γ-secretase modulators that exert a lesser 
influence on Notch signaling or other substrates would result in fewer side effects[111].

Nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen, indomethacin, and sulindac sulfide, 
are the first identified γ-secretase modulators based on the epidemiological findings of lower prevalence of 
AD in NSAID users[112-114]. Short-term administration of NSAIDs reduced Aβ42 levels in the brain of APP 
transgenic mice and decreased Aβ42 secretion in cultured cells accompanied by an increase in Aβ38 
isoforms, suggesting that NSAIDs subtly modulate γ-secretase activity without significantly affecting other 
APP processing pathways or Notch cleavage. Notably, the effect of NSAIDs on Aβ pathology in the brain is 
independent of their cyclooxygenase activity[115]. Tarenflurbil is the R-enantiomer of NSAIDs targeting the 
presenilin component of γ-secretase, which has less effect on cyclooxygenase activity and thus causes fewer 
gastrointestinal symptoms[115-118]. Tarenflurbil selectively reduced Aβ42 level and rescued the memory 
deficits of APP transgenic mice at chronic dosage in preclinical studies[116,119]. However, tarenflurbil failed to 
show significant efficacy in clinical studies, which is ascribed to its suboptimal pharmacodynamics, and the 
agent was no longer developed[120,121]. CHF507480, an NSAID-derived carboxylic acid analog, is initially 
considered a γ-secretase modulator but is now reported to act on multiple targets, including tau and 
neuroinflammation[122,123]. CHF507480 restored hippocampal neurogenesis, decreased brain Aβ burden, and 
improved memory in mouse models of AD[124,125]. CHF507480 showed clinical improvement in participants 
with MCI, especially in APOE ε4 carriers[126,127]. However, this differential clinical outcome could be 
attributed to the higher levels of neuroinflammation in APOE ε4 carriers compared to non-carriers[128], and 
this agent is being investigated as a microglial modulator[129].

E2012 is a non-NSAID-derived imidazole γ-secretase modulator. A preclinical study showed it dose-
dependently reduced Aβ40 and Aβ42 levels in rat CSF, brain, and plasma[130]. It also increased shorter Aβ 
peptides such as Aβ37 and Aβ38, while maintaining the total amount of Aβ peptides[131]. It demonstrated a 
50% efficacy in reducing plasma levels of Aβ42 during the phase I trial[132]. However, a high-dose group in a 
preclinical safety study exhibited lenticular opacity, leading to the suspension of the clinical trial[133]. E2212, 
an improved compound of E2012, demonstrated an acceptable safety profile and promising 
pharmacodynamic response in doses ranging from 10 mg to 250 mg in the phase I trial[134], but no further 
updates have been reported.

ACTIVE IMMUNOTHERAPIES AGAINST Aβ
Immunotherapies have emerged as a potential treatment approach to slow down or halt the progression of
AD by eliminating Aβ aggregates. The focus is on generating antibodies (active immunization) or using
existing antibodies (passive immunization) against Aβ antigens to facilitate the clearance of Aβ[135]. Active
immunization allows the production of antibodies over a longer period by administering a few doses of
vaccine. However, T-cell-mediated adverse effects may occur after active immunization and limit its use[136].
Figure 3 illustrates the Aβ epitope targeted by representative anti-Aβ vaccines.

The first Aβ-targeted active immunotherapy candidate, AN1792, was developed using full-length Aβ42 and
formulated with QS21 adjuvant. The inclusion of QS21 adjuvant was aimed at shifting T cell response
towards a TH1 phenotype and enhancing the antibody response[137]. In the phase I trial, AN1792 was able to
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Figure 3. Amyloid-β (Aβ) epitopes of anti-Aβ vaccines and monoclonal antibodies tested in clinical trials for Alzheimer’s disease. Aβ 
amino acid sequence is indicated in the one-letter code. Anti-Aβ vaccines and monoclonal antibodies are classified according to the 
targeting epitope of Aβ. Aβ: amyloid-β.

generate an antibody response against Aβ42, leading to a reduction in amyloid plaques in the brain and an 
improvement in cognitive function among participants[138]. However, the phase II trial was terminated after 
6% of participants developed meningoencephalitis mediated by Aβ-specific T-cell inflammatory 
response[139]. The severe adverse effect is presumably due to the use of full-length Aβ42, which contains 
T-cell epitopes in the C-terminus.  Additionally, AN1792 faced challenges with weak immunogenicity, 
resulting in low antibody titers and limited therapeutic efficacy[140].

To address the issue of self-reactive T cell response and achieve higher antibody titers, second-generation 
vaccines were developed to target the B cell epitope of Aβ while avoiding T cell-mediated response[141]. The 
B cell epitope is primarily found in the Aβ1-15 region, and the fragment Aβ3-10 retains sufficient 
immunogenicity to elicit strong immune responses while minimizing T cell response. Consequently, 
the Aβ3-10 fragment is employed as the key component in the peptide vaccine[142-144]. Several second-
generation Aβ vaccines have been developed, including amilomotide (CAD106), Vanutide cridificar (ACC-
001), Lu AF20513, UB-311, ACI-24, V-950, ABvac40, ALZ-101, AD01, Affitope AD02, and AD03[145,146]. 
These vaccines have not induced meningoencephalitis in clinical trials, but certain antibody-mediated 
adverse reactions such as vasogenic edema and microhemorrhages have been reported. Currently, only a 
few of these vaccines have advanced to late-phase clinical trials, namely amilomotide, ACI-24, UB-311, and 
ABvac40[146].

Amilomotide is composed of multiple copies of Aβ1-6 coupled to a virus-like particle derived from the 
bacteriophage Qβ[141]. Active immunization with amilomotide prevented brain amyloid plaque accumulation 
in a transgenic mouse model of AD, with an 80% reduction in plaque compared to controls[147]. Phase I/II 
clinical trials of amilomotide conducted thus far have shown a favorable safety profile, acceptable antibody 
response, and promising effects in slowing down Aβ deposition in humans[141,148]. Notably, no cases of 
meningoencephalitis, aseptic meningoencephalitis, or vasogenic edema were reported[141]. Given these 
positive outcomes, amilomotide holds great potential as an effective therapeutic agent for preventing Aβ 
deposition in high-risk groups. However, further phase II/III trial of amilomotide was terminated 
prematurely due to unpredicted cognitive changes, brain atrophy, and weight loss[149].

ACI-24 is an Aβ vaccine consisting of a tetra-palmitoylated Aβ1-15 peptide in β conformation, coupled with 
liposomes containing monophosphorylated lipid A as an adjuvant[150]. Preclinical studies using mouse 
models of amyloidosis[150] and Down syndrome[151] demonstrated the efficacy of ACI-24 in rescuing memory 
deficits. Having achieved satisfactory results in the preclinical trial[152], a phase I/II trial[153] was conducted in 
mild to moderate AD to compare different doses of ACI-24 with placebo and assess its safety, 
immunogenicity, and efficacy. However, the trial ultimately enrolled only 48 participants, and the planned 
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phase II efficacy stage was canceled due to limited antibody response. A phase II trial[154] with a new 
formulation was then initiated in participants with mild AD. Results presented in 2021 showed a clear IgM 
antibody response, and increased CSF Aβ levels, but no observable change in amyloid-PET scans. Another 
phase I study[155] investigated the safety, tolerability, and immune response of ACI-24 in Down syndrome. 
The study showed that the ACI-24 vaccine was safe and well tolerated, with no serious adverse events, CNS 
inflammation, or T-cell activation observed. A dose-dependent IgG response was seen at the higher doses. 
However, the study had a small sample size of only 16 subjects, and long-term follow-up is necessary to 
assess the cognitive function of the participants.

UB-311 contains two Aβ1-14-targeting peptides (B-cell epitopes), each linked to a different helper T-cell 
peptide epitope. These chimeric peptides are formulated to enhance immunogenicity within a Th2-biased 
delivery system, thereby minimizing T-cell inflammatory reactivity[156]. In a phase I study, UB-311 elicited a 
strong antibody response against Aβ without stimulating a cytotoxic T-cell response[156]. The safety and good 
tolerability of UB-311 were further confirmed in a phase II study in participants with mild to moderate AD. 
Exploratory endpoints of the study demonstrated a slower rate of cognitive decline in AD participants and a 
reduction in brain Aβ. The extension of the phase II trial was terminated due to treatment assignment 
error[157,158] and a phase III trial is planned[159].

While the majority of Aβ vaccine research has focused on N-terminal epitopes, alternative approaches are 
being explored. One such candidate is ABvac40, which consists of multiple repetitions of Aβ33-40, a 
C-terminal fragment of Aβ40, conjugated to keyhole limpet hemocyanin[160]. Aβ40 is the most common Aβ 
isoform and the predominant component of cerebral amyloid angiopathy[161]. Furthermore, it can also 
generate toxic aggregate[162,163] and is associated with the severity of AD[164,165]. The phase I trial demonstrated 
that ABvac40 was well tolerated and elicited the production of specific antibodies against Aβ40[160]. 
According to the topline results of the phase II trial presented recently, ABvac40 met its primary safety and 
efficacy outcome, displayed an excellent safety and tolerability profile, and elicited a robust immune 
response in participants with MCI or mild AD[166]. More details of the study are pending.

DNA vaccines, also known as genetic vaccines, represent the third generation of vaccines and offer distinct 
advantages over traditional peptide vaccines. Unlike peptide vaccines, DNA vaccines do not require the 
addition of adjuvant-like peptides. They are relatively safe, cost-effective, and capable of maintaining a 
sustained level of antigen expression within host cells[167]. AV-1959D is a DNA vaccine incorporating three 
copies of Aβ1-11, along with 12 T-cell-activating epitopes derived from various sources such as tetanus 
toxin, hepatitis B, and influenza viruses. These foreign antigens help enhance antibody responses by 
activating naïve and memory lymphocytes, which is particularly beneficial for older individuals who 
typically have weaker responses to vaccines[168,169]. AV-1959D demonstrated a robust cellular immune 
response and generated potent anti-Aβ antibodies in animal models, without triggering T-cell 
infiltration[170-173]. Furthermore, the early version of the vaccine effectively inhibited amyloid plaque 
accumulation, reduced glial activation, and prevented behavior deficits in aged mice[167]. No toxicities or 
amyloid-related imaging abnormalities (ARIA) were observed in mice susceptible to cerebral amyloid 
angiopathy[169]. These findings highlight the vaccine's potential as a safe and effective treatment for AD, 
leading to its advancement to a clinical trial in December 2022. The phase I clinical trial[174] aims to enroll 48 
participants with early AD, who will receive different dosages of AV-1959D or placebo to assess its safety 
and tolerability.
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PASSIVE IMMUNOTHERAPIES AGAINST Aβ
Many active immunotherapies against Aβ were discontinued either because of severe T-cell-mediated
meningoencephalitis or for futility[139,148,175]. Consequently, efforts have shifted towards passive
immunotherapies to avoid T-cell-mediated responses. Passive anti-Aβ immunotherapies involve humanized
monoclonal or polyclonal antibodies targeting Aβ. The anti-Aβ antibodies used in clinical trials have varied
in their specificity, targeting different domains of the Aβ peptide [Figure 3]. They have different affinities for
various forms of Aβ, including monomers, oligomers, protofibrils, and plaques [Figure 4]. Several
monoclonal antibodies have entered phase III trials: aducanumab, lecanemab, donanemab, remternetug,
gantenerumab, bapineuzumab, solanezumab, and crenezumab. In addition, three monoclonal antibodies
including SHR-1707[176], ACU193[177], and ABBV-916[178] are under phase I and II trials.

Aducanumab is a recombinant human IgG1 monoclonal antibody targeting N-terminal Aβ3-7[179]. It
preferentially directs against soluble Aβ aggregates and insoluble fibrils Aβ. Aducanumab received its first
approval for AD in the US in June 2021 based on significant biomarker outcomes in EMERGE and
ENGAGE studies[179,180]. Evidence of clinical efficacy is discordant and conflicting in the two identically
designed studies[181]. EMERGE study (1,638 MCI or early AD) showed a significant 22% slowing of decline
on the Clinical Dementia Rating-Sum of Boxes (CDR-SB) in the high-dose group, while no significant
cognitive benefit was observed in either the low- or the high-dose group in ENGAGE study (1,647 MCI or
early AD)[180,181]. The approval of aducanumab is controversial, and concerns have been raised about
insufficient clinical efficacy and the misuse of statistics[182]. Notably, aducanumab was granted via an
accelerated approval mechanism, which means that clinical benefits must be verified in postmarketing trials
to obtain continued approval. Aducanumab exerts effects by decreasing amyloid plaques in the brain and, to
some extent, phosphorylated tau (p-tau), representing the downstream tau pathology[180]. According to the
prescribing information, aducanumab is recommended to be initiated in participants with MCI or mild
AD[179]. The most worrisome adverse reactions are ARIA, including ARIA edema (ARIA-E; 35% vs. 3%),
ARIA hemosiderin deposition (ARIA-H) microhemorrhage (19% vs. 7%), and ARIA-H superficial siderosis
(15% vs. 2%). These adverse reactions are dose-dependent, leading to a greater withdrawal rate in the high-
dose group[179,183]. Recipients must be pre-evaluated for susceptibility to these adverse reactions and closely
monitored with scheduled magnetic resonance imaging (MRI) scans[184]. The marketing application for
aducanumab was rejected by the European Medicines Agency and Japan's Health Ministry in 2021.

To obtain more data on the long-term safety and tolerability of aducanumab, a phase IIIb EMBARK
study[185,186] is ongoing. Furthermore, a phase IV confirmatory trial ENVISION[187] began in June 2022. The
trial will enroll 1,500 individuals with early AD and last 18 months. The primary outcome is CDR-SB and
secondary outcomes include cognitive and functional measures, as well as Aβ and tau PET. Results are
expected by 2026.

Lecanemab is a humanized IgG1 version of the mouse monoclonal antibody mAb158, which possesses a
specific affinity for soluble Aβ protofibrils[188]. mAb158 exhibited the ability to reduce Aβ protofibrils in the
brain and CSF in preclinical studies. Furthermore, mAb158 has the potential to protect neurons by
mitigating the toxic effects of Aβ protofibrils by reducing their pathological accumulation in astrocytes[189].
Lecanemab was granted accelerated approval in January 2023 and full approval in July 2023 by the US FDA
based on the results from phase II[190,191] and phase III trials (CLARITY AD)[192]. The CLARITY AD trial, a
large global clinical study involving 1,795 participants with early AD, demonstrated that lecanemab
successfully achieved its primary endpoints. The lecanemab treatment group exhibited a 27% slower clinical
deterioration compared to the placebo group after 18 months, which corresponded to a treatment difference
of -0.45 in the CDR-SB change in the intent-to-treat population. Additionally, all secondary endpoints,
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Figure 4. Different forms of amyloid-β (Aβ) targeted by different monoclonal antibodies. This figure illustrates the different Aβ forms 
targeted by current anti-Aβ monoclonal antibodies for Alzheimer’s disease. Agents with a “triangle” indicate that the agent 
preferentially targets the form of Aβ below. Aβ: amyloid-β.

including global cognition and activities of daily living, showed statistically significant improvement 
compared to placebo. Furthermore, lecanemab effectively reduced Aβ burdens measured by PET scans in a 
subset of 698 participants. Biomarkers related to tau pathology and neurodegeneration in CSF and plasma 
also favored lecanemab over placebo. These findings support the positive correlation between the extent of 
Aβ reduction and the degree of clinical benefit. Lecanemab treatment, like other Aβ-targeted monoclonal 
antibodies ,  had s ide ef fects  including ARIA-E and ARIA-H. ARIA-E incidence was 
12.6% (2.8% symptomatic) in the lecanemab group and 1.7% (no symptomatic cases) in the placebo group. 
ARIA-H incidence was 17.3% (0.7% symptomatic) in the lecanemab group and 8.7% (0.2% symptomatic) in 
the placebo group. Overall, ARIA events were less frequent with lecanemab compared with other 
monoclonal antibodies[193]. Fatal brain hemorrhage cases were reported with lecanemab and concomitant 
anticoagulant treatment[194,195], suggesting caution in treating participants on anticoagulants with anti-Aβ 
monoclonal antibodies until more safety data are available[196].

The recent approval of lecanemab is encouraging, particularly to clinicians, patients, and caregivers. 
However, the statistically positive results were considered well below the minimal clinically important 
difference, which could result from biases due to loss of follow-up or functional unblinding[197]. Therefore, it 
is too early to conclude since we expect more evidence from postmarketing trials. A phase III study of 
lecanemab called AHEAD 3-45 began in July 2020[198]. It is a four-year study consisting of two sub-studies, 
involving a total of 1,400 cognitively normal individuals with elevated brain Aβ. The A3 sub-study 
(400 participants) focuses on those with Aβ burden below the positivity threshold; they will receive 
lecanemab at a dose of 5 mg/kg titrated to 10 mg/kg or a placebo every four weeks for 216 weeks with a 
change in brain Aβ PET as the primary outcome. The A45 sub-study (1,000 participants) enrolls those with 
positive Aβ PET; they will receive lecanemab titrated to 10 mg/kg every two weeks for 96 weeks, followed by 
the same dose every four weeks until week 216 with a change in Preclinical Alzheimer Cognitive Composite 
5 score as the primary outcome. Notably, blood Aβ42/40 will be used to prescreen participants for elevated 
brain Aβ before PET imaging.

Donanemab is a humanized IgG1 monoclonal antibody derived from the mouse mE8-IgG2a. It specifically 
targets N-truncated pyroglutamate Aβ peptide (AβpE), a form of Aβ that aggregates in amyloid plaques[199]. 
Therefore, donanemab aims to eliminate existing plaques rather than prevent their formation. In a phase II 
trial (TRAILBLAZER-ALZ) involving 257 participants with early symptomatic AD who had brain tau and 
Aβ deposition, donanemab showed positive effects on delaying the clinical progression, as evidenced by a 
better composite score for cognition and functional ability (change from baseline in the Integrated 
Alzheimer’s Disease Rating Scale [iADRS] score at 76 weeks: -6.86 in the treatment group vs. -10.06 in the 
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placebo group)[200]. The slowing in clinical decline was accompanied by a considerable reduction in amyloid 
plaques, with a mean change difference of 85 centiloids between donanemab and placebo at 76 weeks. This 
led to approximately two-thirds of the participants receiving donanemab becoming Aβ-PET negative by 
week 76[200,201]. A subsequent post hoc analysis[201] revealed that individuals with higher baseline Aβ 
experienced greater plaque reduction in the first six months but were less likely to achieve complete 
clearance compared to those with lower Aβ levels. The degree of Aβ reduction was correlated with changes 
on the iADRS clinical endpoint only in APOE ε4 carriers. The slowing of tau accumulation was more 
prominent in individuals who achieved complete Aβ clearance and in brain regions affected later in the 
disease progression. The remarkable clearance of amyloid plaques is attributed to the exclusive presence of 
AβpE within cerebral Aβ plaques[202]. The specific targeting of plaques by the antibody is expected to 
minimize the risk of ARIA by not affecting normal neurons. However, the occurrence of ARIA was 
significantly higher in the treatment group compared to the placebo group (ARIA-E:26.7% vs. 0.8%; 
ARIA-H: 8.4% vs. 3.2%). Furthermore, 7.6% of participants in the treatment group experienced infusion-
related reactions, whereas no such reactions were observed in the placebo group. Approximately 90% of the 
participants treated with donanemab tested positive for antidrug antibodies[200].

Recently, the results for the phase III trial (TRAILBLAZER-ALZ2)[203] of donanemab were released, in which 
the treatment group demonstrated a significant slowing in cognitive decline (35.1% difference on iADRS 
measures in the low/medium tau population and 22.3% in the overall population) and showed 
improvements in all secondary clinical endpoints. The incidence of ARIA in the study was higher in the 
treatment group (ARIA-E:24.0% donanemab vs. 2.1% placebo and ARIA-H: 31.4% donanemab vs. 13.6% 
placebo). A series of trials are underway to explore its effect and safety in diverse populations[204-207].

Following donanemab, remternetug (LY3372993) is another monoclonal antibody targeting AβpE[208]. This 
agent is designed to share similar properties with donanemab while addressing some of the safety concerns 
related to antidrug antibodies and infusion reactions reported in donanemab[209]. Investigation of the agent 
started with a phase I trial in 2018 but was prematurely terminated for undisclosed reasons[210]. Another 
phase I trial[211] was initiated in 2020 involving multiple escalating doses(250-2,800 mg) in healthy subjects 
and participants with MCI or AD. Interim analysis[209] (41 participants) of the trial showed a dose-
dependent reduction in amyloid plaque, with all participants in the 2,800 mg group dropping below the 
amyloid positivity threshold within three months. Although safety data remained blind, the study reported 
10 cases of ARIA-E and 7 cases of ARIA-H, with no apparent connection to the dosage. No antidrug 
antibodies or systemic infusion reactions were detected. A phase III trial of remternetug (TRAILRUNNER-
ALZ 1)[212] is ongoing to evaluate its safety, tolerability, and efficacy on participants with early symptomatic 
AD and is expected to be completed in 2025. Similarly, another monoclonal antibody, ABBV-916, also 
targets AβpE and is recently under investigation in a phase II trial[178].

Gantenerumab is a fully human IgG1 monoclonal antibody that targets both the amino-terminal and 
central regions of Aβ[213]. Gantenerumab preferentially binds to aggregated Aβ, with limited affinity to 
soluble Aβ. The antibody works by activating microglial phagocytosis and degrading the plaque[213-215]. 
Despite undergoing development for over a decade and being tested in 9 clinical trials involving 4,135 
participants, gantenerumab has not demonstrated significant clinical benefits [214]. In November 2022, the 
results of the GRADUATE 1 and 2 trials[216-218] were released, revealing that gantenerumab missed its 
primary endpoint of a 20% reduction in clinical disease progression. The pooled analysis demonstrated an 
approximately 8% slowing of clinical decline by gantenerumab. Biomarkers of tau pathology and 
neurodegeneration favored gantenerumab over placebo, suggesting its potential for modifying the disease. 
However, further results demonstrated that gantenerumab cleared less plaque (46.8-57.6 centiloids at week 
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116) and had fewer participants achieving Aβ negativity on PET scans compared to previous trials. The 
incidence of ARIA was relatively high (ARIA-E: 23.9%-25.8% vs. 1.7%-3.8%; ARIA-H: 22.0%-23.7% vs. 
12.2%-12.4%). Notably, gantenerumab was assessed in a phase II/III trial conducted by the Dominantly 
Inherited Alzheimer Network Trials Unit (DIAN-TU)[219]. The trial aims to prevent dementia in individuals 
at risk for autosomal-dominant AD. During the trial, gantenerumab dosage was increased by fivefold. 
However, the completed trial in November 2019 did not achieve its primary endpoint. Given the dismal 
failure of the agent, studies of gantenerumab have been discontinued.

Several other monoclonal antibodies targeting Aβ did not show promising results. Bapineuzumab was the 
first passive immunotherapy to be tested in late-phase clinical trials for mild to moderate AD. It binds to Aβ 
oligomers and monomers with similar affinity[220,221]. While it showed a reduction in Aβ accumulation in AD 
participants based on PET scans, the clinical trials did not demonstrate significant changes in CSF Aβ levels 
or meaningful clinical benefits for participants with mild to moderate AD[222-225]. Further, bapineuzumab 
raised safety concerns due to an increased incidence of ARIA at higher doses[222,226,227]. Consequently, further 
research on bapineuzumab was discontinued.

Solanezumab is a humanized IgG1 monoclonal antibody that targets the central region of Aβ (Aβ16-24). It 
works by stabilizing Aβ monomers and preventing the formation of Aβ oligomers, but it does not target 
fibrils[228,229]. Solanezumab demonstrated a safer profile with a lower frequency of ARIA occurrence[230-235]. 
However, it did not show significant improvements in cognitive and functional outcomes in phase III trials 
in mild or mild to moderate AD, including the aforementioned phase II/III trial conducted by DIAN-
TU[219,236-238]. Recently updated results from the A4 study showed solanezumab failed to slow cognitive 
decline in preclinical AD or reduce the risk of progression to symptomatic AD[239,240].

Crenezumab, an IgG4 antibody, targets the mid-region of Aβ and can bind to various forms of Aβ, 
including monomers, oligomers, fibrils, and plaques, particularly oligomers[241-244]. It reduces the activation 
of microglia and minimizes adverse effects such as vasogenic edema and brain microhemorrhage[243,245]. 
Clinical trials showed that crenezumab reduced CSF levels of Aβ oligomers[246] and increased CSF Aβ42[247]. 
However, larger trials were discontinued as interim analysis indicated that cognitive decline was unlikely to 
be slowed, and the drug was unlikely to meet its primary endpoint[248]. API Colombian prevention trial[249-251] 
results, released in June 2022, were negative on the primary and secondary endpoints but showed positive 
trends for crenezumab. Crenezumab showed a 20% decline slowing in primary outcomes with variability, 
and some measures including CDR-SB, FDG-PET, CSF and plasma biomarkers had a trend towards 
improvement but did not reach statistical significance. Therefore, the development of crenezumab has been 
stopped.

RNA-BASED THERAPIES
The rationale behind inhibiting APP expression for AD stems from its ability to decrease the amount of 
available APP for processing, thereby reducing the production of Aβ peptides. This can be achieved through 
a gene-silencing technique that employs intrathecal injection of small interfering RNA (siRNA) designed to 
target APP mRNA[252]. ALN-APP, the first siRNA therapy tested for CNS diseases, combines synthetic 
siRNA with a lipophilic conjugate called 2'-O-hexadecyl (C16), which enhances its ability to penetrate the 
CNS[253,254]. In nonhuman primate studies, a single intrathecal injection of ALN-APP reduced APP mRNA in 
the spinal cord and brain, resulting in a 75% decrease in sAPPα and sAPPβ levels. These reductions persisted 
for 2-3 months, returning to normal after 9 months. In an APP transgenic mouse model for AD, ALN-APP 
treatment resulted in a 50% decrease in APP mRNA and sAPPα, along with a reduction in Aβ40 deposition 
and inflammation. Furthermore, it normalized glutamate levels and improved behavioral outcomes[254]. A 
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phase 1 trial of ALN-APP[255] is ongoing on participants with MCI or early-onset AD to evaluate its safety, 
tolerability, pharmacokinetics, and pharmacodynamics. In April 2023, preliminary results[256] from single-
dose data on 20 participants were released, indicating that ALN-APP dose-dependently reduced CSF sAPPα 
and sAPPβ, with the highest dose achieving a median reduction of over 70% in both biomarkers for at least 
three months. Adverse events were mild to moderate. Multiple-dose evaluation is on hold in the US but 
approved in Canada.

CURRENT CHALLENGES AND FUTURE DIRECTIONS OF Aβ-TARGETED THERAPIES
In recent years, substantial progress has been made in developing Aβ-targeted therapies for AD. Although
previous studies have largely not led to success, valuable experiences have been learned and used to
optimize the following research.

Numbers of negative clinical trials with Aβ-targeted therapy for AD have led to the questioning of this long-
held hypothesis. Many studies propose that the accumulation of Aβ may be a downstream phenomenon or
a compensatory protective mechanism, rather than the central trigger for the onset of the disease[257-259]. AD
is a complicated disease with many unanswered questions. Further studies are warranted to uncover the
pathophysiology of AD and to find novel effective therapeutic targets for the disease. The development of
effective therapies is hampered by a lack of appropriate models. AD is a disease specific to humans, and no
animal model can fully recapitulate the manifestations and mechanisms of the disease[260], which may
explain why most of the encouraging results in animal models fail to be replicated in clinical trials. One key
to bridging the gap is developing more reliable translational animal models to better explicate the disease.

For Aβ-targeted strategies, the correlation between Aβ clearance and clinical benefit is undetermined.
Pooled evidence from clinical trials suggests that Aβ reduction strategies do not substantially enhance
cognition[261], while some researchers insisted that complete clearance of plaques is necessary for the brain to
respond gradually[262,263]. In this context, early initiating treatment might be important for Aβ reduction
strategies to be effective[264,265]. Most trials recruit participants with mild to moderate AD, in which the
disease could already be too advanced since neuropathological changes of AD have occurred decades before
clinical manifestations[266]. Alternatively, recruiting asymptomatic participants with causal mutations of
familial AD may be a future trend to meet the full potential of therapies as a preventative treatment, as
shown in the DIAN-TU[267].

Many Aβ-targeted therapies with distinct rationales have exhibited enhanced efficacy among APOE ε4
carriers, suggesting that APOE ε4 may play a pivotal role in Aβ-targeted therapies, as evidenced by a pooled
analysis[268]. Several hypotheses have been postulated to explain the phenomenon. First, the greater
treatment response in carriers could be ascribed to the imbalance in the occurrence of ARIA-E and
potential functional unblinding[269]. Additionally, the more favorable therapeutic outcomes observed among
APOE ε4 carriers could be partially attributed to accelerated decline within this subgroup. However, the
pooled analysis revealed that APOE ε4 non-carriers displayed a non-significantly faster rate of clinical
progression[268]. Furthermore, differential reduction of APOE-mediated tau pathology between carriers and
non-carriers may account for the disparate effects observed in Aβ-targeted therapies, given the association
of APOE ε4 with tau pathology[268]. Moreover, APOE ε4 non-carriers may have additional coexisting
pathologies[270], or their cognitive impairment may be influenced to a lesser extent by the underlying
amyloidosis[268]. To sum up, the mechanisms underlying the phenomenon are undetermined and these
hypotheses warrant further focused investigations.
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In addition to Aβ, other factors also contribute to the pathophysiology of AD and are potential targets for 
disease-modifying therapies, including tau, neuroinflammation, and metabolism[7]. Furthermore, tau 
pathology is demonstrated to be more correlated with cognitive decline and clinical progression than Aβ[271]. 
As AD is a multifactorial disorder with various types of interrelated neuropathology[6], single-targeted 
agents might be insufficient to delay progression. Combined treatment and multitargeted agents have 
gained more attention in recent years and might be a rational direction. Multitargeted pharmacotherapies 
under clinical investigation for AD include Ginkgo biloba[272] and AD-35[273]. The DIAN-TU has initiated a 
concurrent trial[274] combining anti-Aβ and anti-tau therapies. In this study, 168 individuals with familial AD 
mutations will receive lecanemab, with half of them also receiving the anti-tau antibody E2814, while the 
other half will receive a placebo.

Passive anti-Aβ immunotherapy is currently regarded as the most promising direction for anti-Aβ 
treatment. However, there remain many pressing issues that must be addressed to fully harness its potential. 
Firstly, it is still debatable which form, isoform, or epitope is appropriate to target for clearance. Growing 
evidence indicates that soluble Aβ oligomers, rather than fibrillary aggregates, are more neurotoxic and 
better associated with AD clinical symptoms[13,275-277]. Research has demonstrated that selective antibodies 
targeting soluble Aβ oligomers can block synaptotoxicity and restore memory deficits in animal models[13]. 
However, some researchers have raised concerns regarding the therapeutic role of Aβ oligomer-specific 
antibodies, suggesting that they might increase the toxicity of Aβ oligomers[278]. Apart from Aβ40 and Aβ42, 
additional Aβ isoforms, including pyroglutamate Aβ3-42 and Aβ4-42, have been recognized as significant 
factors in the development of AD[199]. Treatment targeting these isoforms include donanemab, remternetug, 
ABBV-916, and ACI-24, and some of them have shown promising outcomes in clinical trials. Novel 
findings from the pseudo β-hairpin conformation of the N-terminal region of pyroglutamate Aβ monomers 
also have implications for active and passive immunization strategies in AD[279]. Additionally, ARIA is a 
common adverse effect of anti-Aβ monoclonal antibody treatment. The exact biological mechanisms 
underlying ARIA are still not fully understood, but they may result from increased permeability of 
cerebrovascular structures due to enhanced clearance of Aβ plaques, a saturation of perivascular drainage, 
direct interaction of monoclonal antibodies with vascular Aβ deposits, and weakening of blood vessel 
walls[263]. Although most cases of ARIA are transient, it is essential to closely monitor participants for ARIA, 
particularly after treatment initiation, and consider additional MRI scans if they develop new symptoms 
suggestive of ARIA[227,280]. Brain atrophy following anti-Aβ immunotherapies has also been overlooked[281]. 
Considering their association with cognitive decline and AD pathology, it is important to ensure that these 
changes do not indicate worsening neurodegeneration after treatment.  Finally, as these recent trials use 
biomarkers for enrollment, monitoring, and outcome assessment, healthcare systems must be prepared for 
this disease-modifying treatment. Blood-based biomarkers appear to be a low-invasive and cost-effective 
approach for large-scale screening and primary care centers[282]. However, further validation by larger and 
more diverse populations and the establishment of relevant cut-offs are necessary before they can be 
implemented into regular usage.

With evolving experience, the development strategies and recommendations for the appropriate use of these 
Aβ-targeted therapies are continuously updated[184,196]. Recent approvals of the two monoclonal antibodies as 
the first disease-modifying therapy for AD are encouraging. However, it is too early to draw a conclusion 
and there is still a long way to go. In conclusion, we expect many results from trials in the next few years. 
With further research, effective treatment and prevention for AD are possible and anticipated.
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