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Abstract
In the marine environment, a new threat linked to plastic pollution relates to plastic additives. This threat 
encompasses multiple chemical compound groups with a high bioaccumulation potential for these chemical 
mixtures. Hence, informative biomarkers are needed to indicate the effects of environmentally realistic mixtures of 
these additives. This study proposes an in vitro approach using tissue homogenates of two marine fish, the 
European sea bass and hake, which are both of interest in aquaculture and fisheries. The selected biomarkers are 
B-esterase activities comprising acetylcholinesterase (AChE) and carboxylesterases (CEs). The physiological role 
of AChE in brain and muscle is mainly neural transmission, while CEs participate in liver detoxification processes. 
However, B-esterases are also widely distributed in other tissues/organs, where their role is yet to be determined, 
but their inhibition may have undesired biological consequences. Here, we compared the interaction of the plastic 
additives, bisphenol A and some of its derivatives, like tetrabromobisphenol A (TBBPA), with B-esterase activities. 
We particularly focused not only on the robust and broadly distributed CE enzymes in brain, gonad, liver, kidney, 
and plasma tissues of two marine fish, but also on the use of two commercial substrates, p-nitrophenyl butyrate 
and α-naphthyl butyrate, tentatively representing two CE isoforms. The results evidenced specific species and 
tissue responses that could be due to a diverse isoform composition. They identified sea bass as better protected 
against neurotoxic exposures, at least in terms of B-esterase composition. The flame retardant TBBPA was the 
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most reactive to B-esterases inhibition, although Bisphenol A bis (2,3-dihydroxy propyl) ether and Bisphenol F bis 
(3-chloro-2-hydroxypropyl) ether warrant further toxicology assessments.

Keywords: Acetylcholinesterase, carboxylesterase, marine fish in vitro. assessment, plastic additives, bisphenol A 
analogs

INTRODUCTION
Worldwide population growth boosts the demand for qualitative fish protein and, at the same time, the 
consequent enhanced anthropogenic discharges related to plastics in the marine environment may 
compromise fish quality and human health[1]. Among marine fish, European sea bass and hake are two very 
economically important species that face the widespread threat of worldwide ocean plastic pollution with 
high concentrations, particularly in the Mediterranean region[2,3]. Additionally, there may be some particular 
plastic inputs specifically associated with aquaculture practices[4,5]. Also, sea bass is easily cultured in 
captivity and is, therefore, adequate for aquaculture and laboratory experimentation[6], while hake is only 
available from extractive fisheries[7]. For pollution assessment purposes, fish samples obtained from 
laboratory or aquaculture facilities have some logistic advantages that facilitate sample preparation and 
storage as opposed to the fish coming from commercial fishing vessels with fewer logistics. Despite these 
limitations, some recent studies have targeted wild fish in terms of plastic pollution research, including hake 
and sea bass as sentinels[7-10]. Nonetheless, most research that has assessed plastic toxicity has been done on 
microplastic[11] or nanoplastic[12] exposures in sea bass under laboratory conditions. Less information is 
available about the threat posed by plastic additives, such as plasticizers like bisphenol A (BPA) which are 
purposely incorporated into plastic manufacturing and pose a risk to aquatic life and its consumers[13].

Biomarkers are measurable parameters at the suborganismal level capable of identifying the presence of 
environmental contaminants through changes in their responses or levels. Some biomarkers adopted in 
pollution monitoring are specific for particular chemical groups, such as metallothionein content for metals. 
Other non-specific ones inform about an oxidative stress condition, neurotoxicity and/or an imbalanced 
immunological status[14]. Chemicals associated with plastic pollution, such as those used as additives, can 
constitute a high percentage in the structural polymer and/or remain adhered to micro-/nanoplastic 
surfaces, from which they can easily leach to marine media[15]. Of the most frequently manufactured 
additives, TBBPA stands out for its use as a flame retardant. It results from the brominating of bisphenol A 
(BPA). BPA is a monomer used to form polycarbonate and epoxy resins. BPA itself and some of its analog 
derivatives exhibit endocrine disrupting properties[16-18], but also carcinogenicity and reproductive toxicity to 
humans and marine species[19,20]. Several studies, including those in fish, support the action of BPA as an 
endocrine disruptor, but also responsible for hepatotoxicity[21,22]. For this toxicity reason, chemically 
modified alternatives have been proposed, such as bisphenol A diglycidyl ether (BADGE), bisphenol F 
(BPF), and bisphenol S (BPS)[19]. Nevertheless, these BPA alternatives are not exempt from causing 
hepatotoxicity or acting as endocrine disruptors[23,24]. In NW Mediterranean Sea waters, plastic waste and 
associated additives such as BPA, BPS, and BPF have been reported to accumulate in relevant biota from 
fish to invertebrate groups[25]. Most of these BPA derivatives have also been detected in water, sediment, and 
several tissues of marine fish from the NW Mediterranean region[26]. Thus, there is a need to find 
biomarkers capable of integrating and reflecting exposures to environmentally relevant mixtures of 
chemicals of dissimilar nature, which are collectively considered plastic additives[27,28]. The main concern for 
the occurrence of BPA and its derivatives in marine seafood fish has been related to the migration from the 
cans in which they were preserved[29]. However, the concentrations naturally occurring in the muscle of wild 
fish are in the low ng/g dry weight (d.w) for TBBPA[30]. BPA and up to 6 analogs were found in three 
commercial Atlantic fish species at a maximum of 20 ng/g d.w[10], but a much higher concentration of BPA, 
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BPAF, and BADGE of about 20 µg/g d.w was detected in two wild fish species from the Persian Gulf[31]. BPA 
and two analogs (BPF and BPS) were present in the low µg/g d.w in Sparus aurata from the Spanish 
Mediterranean Sea[32]. BPA itself was detected in the low ng/g d.w in fish from the Tyrrhenian Sea of 
Italy[33]. Although these individual low concentrations may not represent an actual threat to wild 
populations of marine fish, higher concentrations occurring in liver, together with their combined action 
and the continuous release from plastics due to the weathering process at sea, alert the need to find 
biomarkers indicative of exposures.

B-esterases, such as acetylcholinesterase (AChE) and carboxylesterases (CEs), among others, are ester 
hydrolases that catalyze the hydrolysis of a carboxyl-ester substrate[34]. Both are susceptible to inhibition by 
organophosphorus (OP) pesticides, carbamates, and a larger number of environmental contaminants for 
which they unequivocally reflect neurotoxicity[35-38]. The physiological substrate for AChE is acetylcholine 
(ACh), a natural compound that participates in neural transmission, but is also a regulatory signaling 
molecule of immune responses in non-innerved organs, including in fish[39]. CEs constitute a family of 
enzymes of unknown physiological substrates because they have broad substrate specificity, including fatty 
acids, hormones, and many endogenous molecules with ester, amide, and thioester bonds[40-42]. They are 
often considered a first line of defense in the metabolism of drugs, xenobiotics, pesticides, insecticides, and 
plastics[43]. In fact, their promiscuous nature confers them the potential to reflect environmental exposures 
to a wide range of chemicals, including plastic additives[44]. To date, in vitro evidence exists based mostly on 
mammalian models, but also fish studies, which indicates that CEs respond to pharmaceutical drugs[45-47], 
per-polyfluorinated chemicals[48], flame retardants[37,49], and plastic additives, such as BPA and its 
derivatives[44]. In fish, there is also a large body of in vivo evidence for their inhibition by pesticides[50], with 
fewer data available on their modulation with plastic-related chemicals, such as the additive nonylphenol[51], 
triclosan[52,53], and BPA[54], microplastics[32,55], and nanoplastics[56,57].

Liver is the key metabolic organ where CE enzymes are more expressed and their physiological role is better 
understood. CEs also comprise several isoforms and the use of different commercial substrates is 
recommended for isoform estimation despite high overlapping specificities[38]. Of the available commercial 
substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB) are frequently used to relate 
in vitro CE activities[46,58] which, in conjunction with the inhibitor bis-(p-nitrophenyl) phosphate (BNPP)[59] 
can also help to identify CE activities in fish. From a methodological perspective, the inclusion of 
commercial purified human recombinant proteins (e.g., hCE1 and hCE2) in in vitro assays helps to identify 
the specificity of chemical-enzyme interactions and, at the same time, provides quality control assurance of 
the analytical protocols in less studied animal groups. Apart from liver, CEs are also expressed in many 
other tissues where their role is less obvious, including sea bass[60]. Despite this uncertainty, it is clear that 
any modulation of these enzymatic activities in a particular tissue/organ can disrupt its physiological role 
and, at the same time, act as a candidate biomarker of chemical exposure. Brain is particularly relevant 
because it regulates a vast range of physiological processes. Plastic additives, including BPA, have been 
detected in fish brains[61], which confirms that they can pass the blood-brain barrier and reach this organ 
with unpredicted toxicological consequences. The use of blood/plasma for B-esterase activity measurements 
is particularly valuable because it does not require sacrificing fish and can be easily withdrawn during 
laboratory experiments performed with anesthetics. However, fish obtained by commercial fishing arts do 
not allow for easy blood collection on board due to sampling constraints. Alternatively to the use of blood, 
and despite the scarification of the fish, the use of tissue homogenates is also a realistic approach because it 
considers the complete enzymatic/molecular load of the targeted tissue. The prospective application of B-
esterase activities for monitoring plastic additive exposures in either lab or field scenarios is based on their 
robustness in thermal stability and storage terms[62]. Moreover, in vitro tools estimate potential in vivo 
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outcomes with the advantage of being able to screen a wide range of chemicals in a fast and high-
throughput way.

The aim of this study was to characterize B-esterase activities in a species representative of aquaculture (sea 
bass) and one from traditional fisheries (hake) for bisphenols monitoring purposes. For this, we first 
determined: (i) baseline activities of B-esterases in selected tissues; (ii) their CE in vitro sensitivity to plastic 
additives of environmental concern nature; and (iii) hepatic cell distribution of CEs either in the soluble 
fraction of the cytosol or as a membrane bound in microsomes. The discussion is further focussed on the 
potential of B-esterases as candidate biomarkers of bisphenol pollution based on in vitro evidence in several 
tissues of two marine fish and commercially available purified proteins.

MATERIAL AND METHODS
Chemicals and quality control assurance
Acetylthiocholine iodide (ATC), DTNB (5,5′-dithio-bis- 2-nitrobenzoate), p-nitrophenyl acetate (pNPA) 
and p-nitrophenyl butyrate (pNPB), α-naphthyl acetate (αNA), α-naphthyl butyrate (αNB), purified 
proteins: recombinant human CE isoforms: CE1 (ref. E0162) and CE2 (ref. E0412) and AChE from electric 
eel (CAS 9000-81-4. ref. C2888) as well as the model inhibitors and emerging chemicals targeted and their 
purity were all provided by Sigma-Aldrich [Table 1]. The use of purified proteins and model inhibitors of 
well-known action over the targeted enzymes was adopted as quality control of the analytical protocols as 
detailed in our former in vitro studies[62-65].

Fish sampling
European sea bass (Dicentrarchus labrax; n = 32) was employed for characterization of basal B-esterase 
activities in several tissues corresponding to the controls used in another experimental trial[60,66]. They were 
available from the aquaria experimental facilities (ZAE) at our institute (ICM-CSIC) and were treated 
according to Spanish (RDL 53/2013) and European regulations on vertebrate uses for animal 
experimentation (2010/63/UE). Procedures were approved by the Ethical Committee of the Generalitat de 
Catalunya (FUE-2018-00813667).

Hake (Merluccius merluccius; n = 30) were obtained from fishing sites on the Catalan coast (NW 
Mediterranean). Since fish were obtained by traditional fisheries, they were not subjected to ethical 
regulations. Nonetheless, all steps were taken to speed up the process and use the minimum amount of 
individuals to limit animal suffering.

Sample preparation for B-esterase determinations in several fish tissues
For the determinations of B-esterase activities in fish tissues, brain, liver, gonad, kidney, and plasma were 
selected for sea bass, and also for hake, except plasma. The post-mitochondrial S10 extracts were obtained 
after the centrifugation step of the respective tissue homogenates with specific buffers at a particular 
weight:buffer ratio [Supplementary Table 1]. The centrifugation performed to obtain tissue S10 extracts was 
10,000 g × 30 min. Plasma was obtained after blood centrifugation using heparinized syringes and a 
centrifugation of 3,000 g × 15 min. All these steps were conducted at 4 °C.

B-esterase activity measurements and protein content
For AChE activity, ATC was the employed substrate following Ellman’s protocol adapted to microplate 
conditions[67]. Samples (25 μL of S10), formerly diluted to ensure the linearity of measurements, were pre-
incubated with 150 µL of DTNB for 2 min to eliminate non-specific hydrolysis. Afterwards, the substrate 
was added (1 mM final concentration) and the reaction was monitored at 412 nm.

jeea3052-SupplementaryMaterials.pdf
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Table 1. List of the compounds used for the in vitro tests. All chemicals from Sigma-Aldrich were used at a single 50 μM concentration in the incubation mixture. Data from PubChem library

Acronym Full name CAS number Purity Log kow Molecular mass Formula

Diagnostic inhibidors

BW284c51 1-5-Bis-(4-allydyimethyl)-ammoniumphenyl)pentan-3-one dibromide 402-40-4 ≤ 100% 3.91 406.6 C27H38Br2N2O 

BNPP Bis(4-nitrophenyl) phosphate 645-15-8 99% 2.51 340.2 C12H9N2O8P

Eserine Physostigmine 57-47-6 ≤ 100% 1.33 275.4 C15H21N3O2

Iso-OMPA Tetraisopropyl pyrophosphoramide 513-00-8 ≤ 100% 1.22 342.4 C12H32N4O3P2

Plastic additives

TBBPA 3,3',5,5'-tetrabromobisphenol A 79-94-7 97% 4.50 543.9 (CH3)2C[C6H2(Br)2OH]2

BADGE Bisphenol A diglycidyl ether 1675-54-3 ≤ 100% 3.84 340.4 C21H24O4

BPA Bisphenol A 80-05-7 97% 3.32 228.3 C15H16O2

BPA-E Bisphenol A bis (2,3-dihydroxypropyl) ether 5581-32-8 2.10 376.4 C21H28O6

BPA-P Bisphenol A bis (3-cloro-2-hydroxypropyl) ether 4809-35-2 ≤ 100% 4.60 413.3 C21H26Cl2O4

BPF Bisphenol F bis (3-cloro-2-hydroxypropyl) ether SIAL-15139 ≤ 100% 3.98 385.3 C19H22Cl2O4

CE activities were measured using the hydrolysis rates of pNPA and pNPB as substrates as a proxy. They resulted from adding 25 µL of appropriately diluted 
tissue S10 to 200 µL of phosphate buffer, 100 mM, pH 7.4, containing a final concentration of 1 mM pNPA or pNPB. Nitrophenol formation was recorded at 
405 nm[68]. CE activities were also measured in the UV mode with substrates αNA and αNB, each at 0.25 mM of the final concentration. Metabolite naphthol 
formation was recorded at 235 nm[69] .

The linearity of measurements was maintained during the 5-min kinetic readings in the TECAN Infinite 200 microplate spectrophotometer. Activities are 
expressed as nmol/min/mg prot.

The total protein content (mg/mL), to which to express enzyme activities, was determined by the Bradford method using the Bio-Rad Protein Assay 
reagent[70]. In parallel to samples, a standard of bovine serum albumin (0.05-0.5 mg/mL) was included for comparison and readings were at 495 nm.

Sample preparation for in vitro inhibitory tests
Three additional adult sea bass fish (mean weight of 2.02 ± 0.37 kg and size of 52.5 ± 3.97 cm) were used to assess the in vitro responses to plastic additives in 
brain, gonad, liver, and plasma. Similarly, three pools corresponding to six hake individuals (mean weight of 151.26 ± 69.25 g and size of 27.39 ± 4.07 cm) were 
made to obtain sufficient sample volumes to run tests under the same in vitro conditions as sea bass. Blood could not be obtained from hake due to sampling 
constraints. Instead, kidney was used for the in vitro comparisons.
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In vitro inhibition tests of carboxylesterases in several fish tissues
The residual activity (RA) for the measurements of AChE (RA in %) and CE (using pNPB and αNB as 
substrates) was determined after 15-min incubations at room temperature with either the carrier (control) 
or the targeted chemicals from Table 1. For the in vitro tests, 5 µL of the carrier or test compound was 
incubated in a final reaction mixture of 100 µL with stocks at 20 mM (1 mM final incubation) or 1 mM 
(50 µM final incubation), depending on the targeted test. The amount of solvent (carrier) employed was 
previously confirmed to not interfere with B-esterase measurements, and it was also included in the 
controls. RA is expressed as a percentage of the hydrolysis rate of the respective carrier controls (100%) and 
it corresponds to three independent measurements for purified proteins, three distinct individuals (sea 
bass), or three pooled samples (hake) tissues (Section "Sample preparation for B-esterase determinations in 
several fish tissues"). The recombinant human CE isoforms hCE1 and hCE2, and the purified AChE from 
electric eel, were used to validate the in vitro protocol and for comparative purposes. It must be noted that 
the in vitro tests with the model compounds were conducted at two distinct concentrations: at the excess of 
1 mM to confirm enzyme identity and at 50 µM to gain physiological relevance, as detailed later.

Cellular distribution of liver carboxylesterases (S10, microsomes and cytosol)
In both fish species, the S10 fraction obtained from the liver (n = 30-32) was further centrifuged at 
100,000 g × 60 min and 4 °C, and used for analyzing CEs distribution either in the bulk S10 fraction or in the 
cytosol and microsomes fractions, as detailed elsewhere[66].

Statistical analysis
A non-parametric statistical analysis was done using the Kruskal-Wallis and Dunn post hoc test for the 
comparisons in the in vitro tests (n = 3). Modifications of activities greater than 20% were considered 
significant as adopted elsewhere in this type of study in the case of purified proteins[41]. The bivariate 
correlations between the CE measurements in the different liver fractions were done using Spearman test. 
The IBM SPSS system software, v27, was used as the statistical package.

RESULTS AND DISCUSSION
The fish species considered in this study are discussed as potential sentinels of bisphenols exposures during 
either laboratory experimentation (sea bass) or field monitoring (hake). The comparative in vitro approach 
herein taken refers mainly to the B-esterase enzymes encompassing AChE activities using the physiological 
substrate ATC and CEs by means of unnatural commercial substrates (pNPA, pNPB, αNA, and αNB).

Baseline B-esterase activities in several sea bass and hake tissues
In Table 2, AChE and CE activities per species and tissue are indicated according to the five independently 
assayed substrates due to the non-specificity and/or cross-reactivity of many of these substrates. For 
instance, it is known that butyrylcholinesterase (BuChE) and/or other carboxylesterases are also able to 
hydrolyze ATC[71,72]. The hydrolysis rates with ATC (mean ± SEM in nmol/min/mg protein) differed in the 
five compared sea bass tissues from 68.4 ± 4.0 (brain) to 3.8 ± 0.6 (kidney). The particular contribution of 
AChE activity in tissues in relation to the sum of the total B-esterases (based on the hydrolysis rates for all 
five substrates) in descending order in sea bass was brain (57%) > muscle (26%) > gonad (7%) ≈ liver (7%) 
> kidney (3%), which reflect their physiological role in neural transmission as formerly indicated in this 
species[60,73]. This trend has also been followed in other fish: Haemulon plumieri[74], Sparus aurata[75], 
Anguilla anguilla[76], and Solea spp.[77-79]. In contrast, the AChE hydrolysis rates in hake (in nmols/min/mg 
prot) were altered and ranged from 77.5 ± 5.6 (kidney) to 10 ± 0.9 (gonad) in this contribution order: kidney 
(33%) ≈ liver (26%) > muscle (20%) ≈ brain (17%) > gonad (4%). CE activities (also expressed as mean ± SEM 
in nmol/min/mg prot) were measured using four commercial substrates as being tentatively informative of 
diverse isoforms. In both fish species, the highest hydrolysis rates were reached in liver using αNB 
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Table 2. Enzymatic activities (in nmol/min/mg protein) based on the hydrolysis rates (mean ± SEM) using the listed commercial 
B-esterase substrates assayed in the S10 fraction of several tissues from sea bass and hake. Coefficient of variation indicated in 

brackets as a percentage (%). The ratio AChE/CE is considered a marker of susceptibility, as proposed elsewhere[73]

B-esterase 
substrate Sea bass (n =32) Ratio AChE/CE Hake (n = 30) Ratio AChE/CE

Brain

ATC 68.4 ± 4.0 (32.7) 41.0 ± 1.6 (21.8)

pNPA 37.7 ± 1.9 (27.9) 1.8 12.7 ± 0.4 (17.1) 3.2

pNPB 41.9 ± 2.1 (28.0) 1.6 19.0 ± 1.2 (34.7) 2.2

αNA 51.5 ± 3.1 (32.7) 1.3 23.0 ± 0.9 (20.5) 1.8

αNB 48.0 ± 2.6 (29.8) 1.4 22.6 ± 1.6 (38.2) 1.8

Gonad

ATC 8.24 ± 1.4 (96.2) 10.0 ± 0.9 (48.0)

pNPA 21.5 ± 3.0 (64.4) 0.4 5.8 ± 0.2 (17.3) 1.7

pNPB 19.4 ± 1.7 (39.5) 0.4 17.7 ± 0.9 (28.2) 0.6

αNA 15.0 ± 2.3 (71.2) 0.6 13.9 ± 0.6 (22.1) 0.7

αNB 11.3 ± 0.9 (35.8) 0.7 30.4 ± 1.6 (28.1) 0.3

Liver

ATC 8.7 ± 0.7 (42.5) 60.4 ± 60. (54.2)

pNPA 122.2 ± 8.7 (41.0) 0.1 10.3 ± 0.29 (15.6) 5.9

pNPB 196.9 ± 6.7 (19.4) < 0.1 81.6 ± 7.0 (47.1) 0.7

αNA 186.7 ± 8.2 (25.0) 0.1 70.6 ± 4.4 (34.0) 0.9

αNB 291.0 ± 8.7 (16.9) < 0.1 72.4 ± 3.4 (25.6) 0.8

Kidney

ATC 3.8 ± 0.6 (85.2) 77.5 ± 5.6 (39.4)

pNPA 77.3 ± 3.2 (23.6) 0.1 14.9 ± 0.6 (22.4) 5.2

pNPB 54.3 ± 1.5 (16.0) 0.1 41.2 ± 2.5 (33.1) 1.9

αNA 23.2 ± 1.3 (31.0) 0.2 42.4 ± 2.6 (33.7) 1.8

αNB 26.8 ± 1.2 (24.6) 0.1 49.6 ± 2.4 (26.6) 1.6

Muscle

ATC 31.2 ± 1.7 (29.9) 48.3 ± 2.0 (22.7)

pNPA 7.4 ± 0.4 (29.2) 4.2 3.2 ± 0.1 (16.1) 15.1

pNPB 12.9 ± 0.5 (23.5) 2.4 4.8 ± 0.2 (19.3) 10.1

αNA 19.0 ± 1.1 (31.4) 1.6 24.6 ± 1.2 (25.8) 2.0

αNB 21.3 ± 1.0 (26.2) 1.5 17.5 ± 0.7 (23.4) 2.8

(291.0 ± 8.7) in sea bass and pNPB (81.6 ± 7.0) in hake. CE contribution according to tissue is depicted in 
Figure 1. Noticeable differences were seen between the liver pNPA-CE contributions in sea bass (46%) and 
hake (22%). The naphthyl-derived substrates were also more represented in the liver of both species, with a 
similar distribution in most organs, except in gonads.

As CEs show higher affinity than AChE for OP pesticides and other xenobiotics, they play a protective role 
in preventing AChE inhibition in several marine fish species[75,78]. In line with this, some authors have 
proposed the AChE/CEs ratio as a marker of susceptibility to chemical exposures[80]. Our results showed 
that liver, followed by kidney, was the organ that revealed the biggest species differences and indicated that 
sea bass was better protected because it displayed higher basal CE activities and the lowest AChE/CEs ratios. 
Likewise, hake muscle and, to a lesser extent, brain can be regarded as more susceptible tissues and species 
to neurotoxic substances, at least in B-esterases terms, since they display lower CE hydrolysis rates and a 
higher susceptibility ratio [Table 2].
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Figure 1. Percentage in contribution of the selected B-esterases: (A) Acetylcholinesterase (AChE), (B) pNPA-Carboxylesterase 
(pNPA-CE), and (C) αNB-Carboxylesterase (αNB-CE) in several tissues of the two fish species: sea bass and hake. The contribution in 
each tissue is based on the hydrolysis rates using the three commercial substrates independently.

Of the five B-esterases, two were responsible for species particularities: AChE and pNPA-CE measurements 
in gonad, liver, and kidney. Recently, a close association between AChE and pNPA-CE activities and 
immunological status in S. aurata has been proposed[81,82]. Therefore, while searching for their physiological 
role, it is necessary to characterize the true nature of their baseline activities in relevant tissues/organs. The 
confirmation of hake’s singularities in the ATC and pNPA hydrolysis rates in gonad, liver, and kidney was 
possible with the help of specific inhibitors at an excess 1 mM concentration to ensure that the hydrolysis 
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rates truly corresponded to the targeted enzymes. The baseline activities of the individuals used for these 
additional in vitro tests are available as [Supplementary Table 2].

The hydrolysis rates in gonad for pNPA-CE and AChE activities were confirmed because poor inhibition 
was achieved after incubation with BNPP (5%) or BW284c51 (13%) as selective CE and AChE inhibitors, 
respectively. The extent of pNPA-CE inhibitions of 94.4% (hCE1) and 52.4% (hCE2) with BNPP assured the 
quality of the protocol. In contrast, when using substrate pNPB, the gonadal activity of the controls was 
markedly inhibited with BNPP (59.5%), but not with BW284c51 (7.5%). Likewise, the inclusion of hCE1 and 
hCE2 in the assay confirmed the adequacy of this substrate, with 95% and 100% inhibitions with BNPP. As 
expected, BW284c51 caused no inhibition of any CE measurements with either substrate (pNPA or pNPB). 
In contrast, AChE activity was inhibited by 86% after BW284c51 incubations, and not as much after BNPP 
(23.3%) and, thus, supports the fact that ATC can also be metabolized by enzymes other than AChE. The 
unexpected low hydrolysis rates attained for pNPA in hake liver were confirmed because BNPP caused no 
inhibition of basal pNPA-CE activity, whereas significant inhibitions were accomplished with the carbamate 
eserine (28.9%), the BuChE inhibitor iso-OMPA (15.5%), and BW284c51 (51.9%). Thus, the measurements 
taken with this broad-spectrum substrate (pNPA) likely corresponded to cholinesterases (AChE and 
BuChE) rather than to CEs. The third tissue in hake to present unexpected hydrolysis rates was kidney. In 
this case, BNPP led to lesser pNPA-CE inhibition (4.5%) than pNPB-CE (78.5%), while AChE activity was 
almost completely suppressed by BW284c51 (99%). Nonetheless, employing BNPP in the incubation 
mixture also yielded 19.4% inhibition of AChE, which suggests that a fraction of CEs can also hydrolyze 
ATC, as previously outlined[71,72]. Purified eel-AChE was included to confirm the suitability of the selected 
substrates and inhibitors. In this case, AChE activity was fully inhibited with BW284c51, while BNPP caused 
only 8% inhibition. These findings evidence poor cross-reactivity when using ATC as a substrate.

B-esterases inhibition of purified AChE and recombinant CEs by plastic additives
Additional in vitro tests were performed with environmentally relevant plastic additives (BPA and its 
derivatives) based on former pieces of evidence obtained in mammalian models at a lower 50 µM 
concentration to fit concentrations used in these types of in vitro approaches in other animal groups 
[Table 1]. To fulfill this goal, substrates ATC (for AChE) and pNPB (for the CE-related measurements) and 
purified proteins were used. Almost complete inhibitions occurred in AChE activity when using purified 
eel-AChE and BW284c51 or in the pNPB-CE activity of recombinant hCE1 or hCE2 and BNPP [Figure 2]. 
The flame retardant TBBPA caused greater AChE activity inhibition of purified eel-AChE at 65.6% and of 
pNPB-CE activity of hCE1 (95.6%) than hCE2 (51.5%). This high in vitro binding capacity of TBBPA has 
also been evidenced within a range of aquatic marine species, including zooplankton[49], several invertebrate 
and fish species[47,49,83,84], dolphins[64], and sea turtles[62]. In particular, TBBPA binds to CE, but also to 
plasmatic albumin[64] and could, therefore, be easily transported through the blood to all organs, and even 
cross the blood-brain barrier and interfere with many endocrine and physiological processes that are 
regulated in the brain. The BPA analogs BPA-E caused a significant and similar 20% inhibition of pNPB-CE 
activity for hCE1, hCE2, and eel-AChE activity, while BPF affected pNPB-CE activity with hCE2 (30%) and 
AChE activity on purified eel-AChE (40%). BADGE inhibited the AChE activity of purified eel-AChE and 
the pNPB-CE activity of hCE1, and both by 25%. The inhibitions of purified proteins hCE1, hCE2, and 
eel-AChE after the BPA and BPA-P incubations were not significant [Figure 2]. So, despite the reported 
endocrine disrupting properties for BPA and most of its analogs, no clear interaction with this purified 
eel-AChE and recombinant hCE1 and hCE2 was herein evidenced. However, the ability of BPA-E and BPF 
to interfere with this enzymatic system using purified proteins warrants further study. Other in vitro 
approaches using fluorometric probes have reported an interaction with CE2 activities (from human liver 
microsomes), which resulted in a conformational change and higher hydrolysis rates[39]. To the best of our 
knowledge, this is the only reported study to provide in vitro evidence for the interaction of BPA derivatives 

jeea3052-SupplementaryMaterials.pdf
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Figure 2. Percentage of remaining activity (RA) with respect to controls (representing 100% activity) after in vitro incubation with a 
single 50 µM concentration of several BPA derivatives and model inhibitors: BNPP for recombinant human carboxylesterases using 
pNPB as substrate and BW284c51 for AChE measurement with purified electric eel-AChE. Full names are shown in Table 1. The 
inhibition rate corresponds to 100-RA. All inhibitions > 20% are considered significant, as recommended elsewhere[41].

on CE enzymes using a unique screening concentration of 100 µM, which falls in line with the 50 µM
concentration herein adopted. In NW Mediterranean waters, BPA derivatives have been detected at all
levels of the marine trophic web, from zooplankton[85] to invertebrates and fish[25,26]. However, the
toxicological consequences of environmental mixtures have only been recently explored in fish from this
region[7,32,86-88]. Due to the complexity and high cost of comprehensive chemical analyses, using in vitro tools
in early screening biomarker(s) tests is highly recommended.

CEs inhibition by plastic additives using several sea bass and hake tissues
In view of the stronger modulation of CEs by the BPA analogs, we extended the same in vitro protocol to
tissue homogenates in sea bass and hake at the same 50 µM concentration. This concentration commonly
used in pharmacology was applied as a first approach here as in mammalian models[41,85] and in fish exposed
to pharmaceuticals and other environmental contaminants[42,68,72]. The selected tissues expressed pNPB and  
αNB activities to varying but measurable extents, and their interaction with the BPA derivatives 
could indicate the affinity of the enzyme for the chemical of concern, its buffering capacity, but also a 
potential disruptive action on the tissue.

Using the post-mitochondrial fraction (S10) of fish tissue homogenates, CE-related activities were
significantly, but not completely, reduced in both sea bass and hake, and the extent of these inhibitions was
tissue-dependent [Figure 3]. Note that plasma was available only for sea bass, and kidney was instead used
in hake for comparative purposes. The inhibitory action of TBBPA on pNPB-CE activity was evident in all
the sea bass organs in the liver > brain > gonad order, while only ≈20% inhibition was seen in plasma. In
hake, the inhibitions after TBBPA incubation were around 80%, regardless of the tested tissue, and were
greater in kidney. The use of the substrate αNB also revealed significant inhibition of its associated CE
activity by TBBPA in sea bass and hake. However, the inhibitions in the latter were around 40% in all
tissues, but lower than with pNPB (≈80%). The BPA analog, BPA-E, caused similar inhibition (40%-50%) of
plasmatic pNPB- and αNB-CE basal activities in sea bass. pNPB-CE activity in the brain of sea bass was
inhibited by 50%, but only by 25% in hake. pNPB-CE activity was also modified in sea bass liver (40%
inhibition) and gonads (30%), but not in hake. Another BPA analog, BPF, only caused a significant
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Figure 3. Percentage of remaining activity (RA) with respect to controls (representing 100% activity) after in vitro incubation with a 
50 µM concentration of several BPA derivatives and the model inhibitor BNPP in several tissues of sea bass and hake using (A) pNPB 
and (B) αNB as substrates. Due to methodological constraints, plasma was only analyzed in sea bass and instead kidney in indicated 
hake. Full names are shown in Table 1. All inhibitions > 20% were seen as significant.

inhibition of pNPB-CE activity by 30% in sea bass liver. The inclusion of model CE inhibitor BNPP in the 
in vitro assay confirmed substrate-, species- and organ-/tissue-dependent differences. In sea bass, the BNPP 
modulation of pNPB-CE activity exhibited the inhibition gradient plasma > brain > liver > gonad, but it was 
of similar magnitude (about 50%) in all the tissues in the αNB-CE measurements. In hake, however, both 
substrates displayed a similar response, and liver was the least affected organ, while brain was the most 
affected one with a 73% inhibition.

In liver, CEs play a clear metabolic role, while a more protective task to prevent AChE inhibition has been 
appointed in plasma[75]. In other tissues, their role is still under study, but their modulation by BPA 
derivatives could have physiological consequences because they can bioaccumulate in several fish tissues[26]. 
In turn, a strong correlation of enzymatic measurements using diverse substrates is indicative of high 
overlapping specificity and, therefore, denotes the same isoform. Thus, a particular action of a chemical on a 
particular isoform is likely to alter this correlation and, consequently, be seen as a sign of disturbance. The 
present in vitro approach did not consider the analysis of isoforms, but used different substrates as a proxy 
of diverse isoforms[38]. From our results, it can be speculated that the two species showed a different isoform 
profile that, in turn, was tissue-dependent. This is not surprising because sea bass belongs to the Sparidae 
family (O. gadiformes) and hake to the Merluciidae family (O. perciforms), which are two very distant 
phylogenetic groups.

Out of the two assayed CE substrates, pNPB proved more sensitive to inhibition, as revealed by model 
pesticide BNPP, but also after TBBPA incubations, particularly in sea bass. The apparent lack of inhibition 
by TBBPA in plasma could be due to the presence of albumin, as seen in humans[89], and as supported 
herein when comparing sea bass (plasma) and hake (kidney). That is, in sea bass plasma, a high inhibition 
by BNPP (> 90%) contrasted with only a 20% one with TBBPA, while in hake kidney, the inhibition by 
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Table 3. Subcellular distribution of hepatic carboxylesterases (CE) based on the hydrolysis rates reached with each commercial 
substrate independently (in %). The sum of all hydrolysis rates in the 3 fractions for each measurement corresponds to 100 % and 
each specific CE activity represents its contribution to the total

S10 Cytosol Microsomes
Sea bass Hake Sea bass Hake Sea bass Hake

pNPA-CE 17.3 29.6 5.9 30.7 76.8 39.6

pNPB-CE 24.4 16.3 26.1 13.5 49.5 70.2

αNA-CE 26.5 15.5 14.8 6.4 58.8 78.2

αNB-CE 24.7 10.5 26.5 8.8 48.8 80.2

BNPP and TBBPA was of a similar magnitude (about 80%). In sea bass, inhibition of pNPB-CE activity after 
the BPA-E incubations occurred in plasma but also in brain, liver, and gonad. Our results alert for CE 
modulation of BPA derivatives in the tissues of two commercial species with unknown in vivo 
consequences. This work also highlights the potential of CE as biomarkers to reflect exposure to bisphenols, 
particularly in sea bass.

CE subcellular distribution in liver of sea bass and hake
Pursuing the hypothesis that different substrates may inform about distinct isoforms, further separation of 
subcellular fractions was attempted in liver to discriminate between more soluble (cytosolic) and 
membrane-bound (microsomes) isoforms against the bulk S10 fraction[41]. Moreover, due to the 
aforementioned potential overlapping substrate specificity, the sum of the hydrolysis rates was calculated in 
the three subcellular fractions for all four substrates independently. In Table 3, the particular substrate 
contribution in the three factions is indicated relative to the total (sum of the 3 fractions; 100%). In sea bass, 
pNPA-CE activities predominated in microsomes (76.8%) but not cytosol (5.9%), while in hake contribution 
of this substrate in cytosol was 30.7% and microsomes were equally represented by the other three substrates 
(70.2%-80.2%). A balanced contribution was observed when considering the bulk S10 fraction (cytosol and 
microsomes) in sea bass (17.3%-26.5%) and hake (10.5%-29.6%). The preferential microsomal location in 
fish CEs coincides with the endoplasmic reticulum location in several mammalian tissues[41].

The Spearman correlation coefficients between the CE measurements in liver using different substrates were 
suggested as indicative of the degree of overlapping substrate specificities, and were also revealed to be 
species-dependent [Supplementary Table 3]. In sea bass liver, the Spearman correlation coefficients of the 
CE measurements in the S10 (ρ = 0.419-0.886), the cytosol (ρ = 0.787-0.953), and microsomes 
(ρ = 0.507-0.824) were all significant and positive with lower values on those involving S10 and the cytosolic 
measurements with pNPA. The number of positive and significant correlations was even smaller when 
considering all the substrates, except pNPA, in microsomal and cytosolic fractions. In hake, the correlations 
between the CE measurements in S10 (ρ = 0.370-0.609), the cytosol (ρ = 0.497-0868), and microsomes 
(ρ = 0.444-0.818) were lower and not all significant, particularly when the cytosol was included. As seen for 
sea bass, in liver of hake, the correlations were lower when including the cytosol.

Altogether, the subcellular hepatic distribution and the correlation coefficients observed suggest that in the 
two fish, CEs are mostly membrane-bound, but they may correspond to diverse isoforms. Thus, further 
studies into in vitro interaction with CE enzymes using the microsomal fraction may guarantee more 
sensitivity to bisphenols and be regarded as a first screening step in toxicity assessments.

jeea3052-SupplementaryMaterials.pdf
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CONCLUSION
B-esterase activities were characterized in the brain, gonad, liver, plasma, and kidney of two marine fish. 
Based on greater CE activities and lower AChE/CE ratios, sea bass seemed more protected from chemical 
inputs. However, other protective mechanisms that are not addressed in this study should be considered. 
The adopted in vitro protocol assessed the interaction of BPA and its derivatives, with B-esterase activities. 
It revealed that TBBPA and, BPA-E and BPF to a lesser extent, could interfere with CE enzymes in several 
relevant marine fish tissues, with hake being particularly sensitive to TBBPA and pNPB the most adequate 
substrate. The subcellular distribution of the associated CE activities and their correlations suggested that 
the liver of the two studied fish likely reflects a diverse isoform composition with preferential membrane-
bound distribution in microsomes. Given the complexity of tissues and species, former baseline 
characterization and in vitro screening are recommended before validating CEs as biomarkers of bisphenols 
exposures. Any interactions of these chemicals of concern with CE enzymes could alter brain, reproductive 
organs, and xenobiotic metabolism functioning, and even prevent the transporting role of plasmatic 
proteins, such as albumin.
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