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Abstract
Forging/additive hybrid manufactured Ti alloy parts suffer from relatively low fatigue life due to the existence of 
metallurgical defects in the transition zone, which also brings difficulty to fatigue life modeling. In this work, the 
synergistic effect of pore size and location on the rotating-bending fatigue life of hybrid manufactured Ti-5Al-2Sn-
2Zr-4Mo-4Cr (Ti-17) samples was systematically investigated with the combination of machine learning 
approaches and physical knowledge. A machine learning framework with a back propagation neural network and 
generative adversarial network (GAN) was constructed and employed on sparse and limited datasets. A general 
and interpretable model was obtained with a high level of 90% confidence. In general, the fatigue life of hybrid 
manufactured Ti-17 alloys decreases with pore size and increases with its distance to surface. Specifically, critical 
sizes were obtained for near-surface and in-depth pores that have negligible influence on fatigue life of hybrid 
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for the evaluation of the fatigue performance of hybrid manufactured titanium alloys.

Keywords: Hybrid manufacturing, fatigue, titanium, defect, machine learning

INTRODUCTION
Owing to their high strength, low density, and superior corrosion resistance[1], titanium alloys, such as Ti-
5Al-2Sn-2Zr-4Mo-4Cr (Ti-17), are widely used in aeronautical, nautical and biomedical applications, 
whereas such advantage is largely restricted due to the overall high manufacturing expense and long period 
of use. Forging/additive hybrid manufacturing is thus widely used on structural materials to extend service 
life with less expense, especially for the repair of aeroengine parts[2,3]. With the concern for both 
performance and efficiency, hybrid manufacturing combined with forging and wire arc additive 
manufacturing (WAAM) is currently popular for repairing Ti alloy parts, where the arc-fused wire is 
additively grown on the forged substrate. However, metallurgical defects, in particular pores, are still 
inevitable in additive manufactured titanium alloys, which results in significantly deteriorated fatigue 
performance compared with the wrought counterparts[4-7].

For the repaired parts, an appropriate performance decrease compared to brand-new parts is acceptable as 
long as their use remains economically viable; e.g., the overall service life of aeroengine blades that have 
experienced sudden failure may reach 80% of the original design after repair. However, such a decrease 
must be strictly evaluated and precisely predicted. Unfortunately, the randomness of the additive 
manufacturing defect features, e.g., size, shape, location, etc., leads to large sparsity in the fatigue test results, 
and the prediction of fatigue life remains a challenge for additive manufactured metallic materials[8-11]. With 
the development of artificial intelligence[12], machine learning[13,14], including deep learning[15], and relevant 
techniques have emerged as important tools for materials science[16-18]. Currently, machine learning is one of 
the most popular research directions, which uses computational methods to obtain knowledge from data 
through association, classification, clustering, and regression. Based on a given training sample, machine 
learning aims to estimate dependencies between inputs and outputs of the system so that future outputs can 
be predicted as accurately as possible. As a result, machine learning methods can be readily adapted to a 
wide range of processes with little or no assumptions[19-21]. Random forest, support vector regression, and 
artificial neural network models are three commonly used regression algorithms for predicting fatigue life. 
Artificial neural networks, particularly, which have long been used to predict S-N (S: fatigue stress, N: 
fatigue life) relations[22], have demonstrated excellent performance in mapping complex nonlinear 
relations[23,24]. When compared to traditional statistical methods, machine learning has higher computational 
accuracy and efficiency for small-sample prediction and nonlinear regression analysis[25,26]. Machine learning 
techniques are beneficial in solving engineering problems because of their ability to recognize patterns in 
complex data[27-31].

Concerning the fatigue property, the influence of defects on the fatigue behavior has been investigated in 
additive fabricated Ti-6Al-4V[32] and machine learning with was used to study fatigue life and performance 
of additive manufactured parts[33]. Despite the success of machine learning in predicting fatigue 
performance, the requirement of big data is usually unachievable for structural materials, in particular for Ti 
alloys, due to both time and cost. Hence, it is of great importance to establish a rational machine-learning 
approach to fatigue life prediction based on sparse and scattering datasets. Indeed, the idea of employing the 
machine learning approach is to benefit from its power on processing data, i.e., identifying data features and 
relationships between features, so as to guide the discovery of influencing factors. Previous studies have 
somewhat demonstrated the adverse effect of the location, size, and morphology of defects on the fatigue 

manufactured samples with respect to pore-free samples. The present work thus provides a systematic platform 
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properties of additive manufactured Ti-6Al-4V[32,34-38]. However, due to the characteristics of rotating-
bending fatigue, the relation between defect parameters, in particular pore location, is completely different 
from ordinary fatigue tests.

Therefore, in the present paper, employing forging/additive hybrid manufactured Ti-17 alloys, we focus on 
their rotating-bending fatigue life and further examine the methodology of dealing with small and sparse 
datasets. Incorporating the back propagation neural network, generative adversarial network (GAN), and 
physical knowledge, we aim to provide a systematic platform for the prediction of rotating-bending fatigue 
properties of hybrid fabricated titanium alloys. As such, we intend to stress the scientific importance of (1) 
the appropriate combination of various machine learning techniques on processing small datasets; (2) the 
use of physical knowledge to supervise the model; and (3) the application of the obtained physical model on 
evaluating the performance of forged/additively manufactured Ti-17 alloys.

MATERIALS AND METHODS
Specimen and fatigue test
Ti-17 segments were produced with WAAMed layers on a forged base [Figure 1A]. Standard bar samples of 
ϕ4 mm [Figure 1B] were taken from the hybrid regions and the rotating-bending fatigue tests were 
performed at ambient temperature in line with the GB/T 4337-2008. The effective stress at the narrowest 
point of the specimen was set as 500 MPa. The samples rotated at a speed of 5,000 r/min with a stress ratio 
R = -1.

Theoretical models
Back propagation neural network
The accuracy of the back propagation neural network prediction results is strongly influenced by the 
training process, as they are based on maximum likelihood algorithms inspired by neural networks in the 
brain. In engineering, back propagation neural networks are widely used to solve complex problems because 
of their faster and more accurate predictive power. In these networks, the mathematical equations for how 
inputs and outputs map together can be learned through training to get the best possible result. The 
schematic diagram of the back propagation neural network used is shown in Figure 2A.

The first and last layers of a neural network are called the input and output layers, respectively, while the 
middle layer is called the hidden layer. A neural network is trained by passing signals between the layers. 
The operation of a single neuron can be expressed as follows:

where yi represents the output, wij is the weights, xj is the inputs, ti is the inputs and fi is the activation 
function.

Sigmoid, Relu and Tanh functions are some of the commonly used activation functions[39,40]. With gradient 
descent, the back propagation neural network uses error back propagation to train its Multilayer feed-
forward network. It uses mathematical chain rules to calculate the gradient of each layer, and then returns 
to the input layer to adjust the weights. This algorithm calculates the error rate of the predicted data[41]. As 
the network’s actual output value compares with its desired output value, this step is repeated until the 
mean square error (MSE) is as small as possible. The coefficient of determination (R2) and MSE, which are 
used to assess the prediction accuracy, are expressed as

(1)
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Figure 1. (A) Forging/additive hybrid manufactured Ti-17 part and the microstructures of the additively manufactured and forged parts; 
(B) Schematic of the rotating bar bending fatigue sample (unit in mm). Ti-17: Ti-5Al-2Sn-2Zr-4Mo-4Cr.

where yi is the predicted value, and the rest of the parameters are the same as above.

The input variables are the defect size (pore size) and the distance to surface (pore location), while the 
output variable is the fatigue life. Using a random distribution, 70% of the dataset was employed for 
training, while 15% was allocated for validation and 15% for testing. The reference or hidden layer of a back 
propagation neural network model is generally determined without a uniform rule. This work uses back 
propagation neural networks with a topology of three, four and five neurons in the first hidden layer 
[Table 1]. According to the results, when the number of neurons in the first hidden layer is 4, the model has 

(2)

(3)
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Table 1. Predicted performance of the back propagation neural network models with different numbers of neurons in the first hidden 
layer

Number of neurons Metrics
R2 MSEBack propagation neural network

1st layer
Training Validation Testing Training Validation Testing

Model 1 3 0.835997 0.829817 0.837631 0.088284 0.657599 0.249147

Model 2 4 0.804974 0.098125 0.944086 0.161155 0.095284 0.275916

Model 3 5 0.807096 0.920224 0.921055 0.201762 0.210129 0.155929

R2: The coefficient of determination; MSE: mean square error.

Figure 2. (A) Back propagation neural network model structure diagram; (B) GAN model structure diagram. GAN: Generative 
adversarial network.

the best overall performance.

GAN
The primary idea of the GAN is the concept of a zero-sum game as applied to deep learning neural 
networks, where the generative network (generator) and the discriminator network (discriminator) play a 
continuous game while the generator learns the data distribution. Traditional neural network topological 
structures are constrained and typically are only able to predict numerical or categorical outcomes based on 
the input data. GANs, on the other hand, are an unsupervised learning technique, and trained GANs are 
capable of producing totally new data on their own with a wide range of possible applications.

The two neural networks that make up the GAN, a generator and a discriminator, are built to compete with 
one another [Figure 2B]. After training, the generator can produce data that can be faked to trick the 
discriminator, as the discriminator is trained to classify the data in the training set as real data and the data 
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generated by the generator as fake data. The standard GAN training loop contains three steps: 
(1) Use genuine training data to train the discriminator. 
(2) Train the discriminator using the created data. 
(3) Train the generator to generate data and trick the discriminator.

Physical knowledge model
The general relationship between the fatigue stress and the fatigue life[42-46], i.e., the S-N curve, is written as

In additive manufactured materials[47-50], the existence of pores produces additional stress concentration, 
which largely influence the fatigue performance[51-53]. Regarding the relationship between fatigue life and 
defect parameters[5,54,55], previous investigations have derived

where Nf refers to the fatigue life, with C as a constant, S the defect shape factor, σa the unified stress 
amplitude, areaeff the effective size of the defects, α and β the material dependent constants, r the radius of 
the fatigue fracture surface, and d1 and d2 the distances from defect to fatigue fracture surface. However, in 
rotating-bending fatigue tests, since the overall stress is related to the distance to sample surface, the above 
equations do not apply and the parameter of the distance of defects to the sample surface needs to be 
considered. In this study, the pore size ranges between 10 to 250 μm, and under the rotating-bending 
condition, stress concentration in the whole sample needs to be considered. We thus employ finite element 
analysis to evaluate stress concentration and reemploy the common fatigue model of Equation (4) in the 
subsequent model development.

We first evaluate the influence of pore size and location on stress distribution in the samples by simulating 
the bending of pore-free and pore-containing samples with different pore diameter and locations with the 
finite element method (FEM) employing the software ANSYS. Tetrahedral mesh partitioning method is 
used to build a mesh model for the three-dimensional solid model and mesh size is 0.05 mm for all parts. 
The minimum time step was set to 10-5 s. The left end of the sample was fixed and a 500 N torsional force 
was applied along the Y direction at the right end [Figure 3].

The equivalent stress distribution on the sample cross sections is systematically studied and Figure 4A-D 
exemplifies the cases for near-surface [Figure 4A], half-radius [Figure 4B], center [Figure 4C] pores of 
100 μm in radius and a pore-free case [Figure 4D]. To evaluate the stress concentration, the overall stress 
ratio at a fixed point P (0.05 mm from the surface) with respect to pore size and location is shown in 
Figure 4E and F. In general, by fitting the FEM results, the stress ratio increases with the pore size and 
decreases with pore distance to surface with the following relationship.

(4)

(5)

(6)

(7)
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Figure 3. Boundary conditions for finite element simulation.

Figure 4. Equivalent stress distribution on the cross sections of the pore-containing (A-C) and pore-free (D) samples, pores are 100 um 
in radius. Equivalent stress distribution of pore size and location on the Y axis negative direction from the edge to the center of the circle 
at 0.05 mm from the fixed point; (E) black dots are equivalent stress and (F) data were fitted using Equation (7). Blue dots are finite 
element simulation data, red dots are equation fitting data.

where S is the pore size and x is the pore location.

Regarding the above stress concentration ratio and considering the potential size and location limit in this 
work, the effective stress after can be written as:
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where σ0 is the fatigue stress during the test (500 MPa in the present work), with a, b, c, m, S0, and x0 being 
constants.

The relationship between σeff and fatigue life (Nf) is:

where d is the material constants, and the rest of the parameters are the same as above.

Overall strategy
In this work [Figure 5], 34 sets of defect size, defect to distance and fatigue life data were obtained from 
fracture photos after forging/additive components experienced rotating-bending fatigue fracture. The sparse 
and limited data set then prevented further analysis of the work. In order to overcome the influence of data 
quality, the corresponding fatigue life equation is established on the basis of physical knowledge, and it is 
applied to data processing and model interpretation. In order to overcome the influence of data quantity, a 
GAN based on Pytorch deep learning framework is constructed that conforms to the laws of defect size, 
distance to surface and fatigue life. Finally, a machine learning framework with physical knowledge predicts 
the fatigue life to be smooth by defect size and defect to distance.

RESULTS AND DISCUSSION
Fracture morphology
The fracture morphology was observed under scanning electron microscopy for spherical crack sources. 
Typical fractographs are shown in Figure 6 with the fatigue cycles to failure and defect characters. Generally, 
samples with larger defects and shorter distance to surface exhibit shorter fatigue life. The sample with a 
pore size of Φ127.5 μm closest to the surface displays the shortest life of 29,700 cycles [Figure 6A]. Samples 
with intermediate pore size and distance to surface demonstrate intermediate lives of 254,000 [Figure 6B] 
and 545,000 cycles [Figure 6C]. The sample with the smallest pore size and largest distance to surface 
presents the longest fatigue life of 6,410,000 cycles [Figure 6D].

Data preprocessing
Owing to the existence of pores, a majority of the fatigue samples fail at the hybrid regions. Due to the lack 
of data for arbitrarily shaped pores, only that from spherical pores is collected. The original 34 sets of 
experimental data with the fatigue life against the pore size and location are shown in Figure 7A and B. For 
data preprocessing, we have operations such as logging the fatigue life. We find that the fatigue life 
processed by log can better find the relationship with the defect parameters [Figure 7C and D]. However, 
remarkable sparsity is readily observed, which hinders the immediate employment of machine learning 
algorithms. Therefore, preprocessing of the raw data is necessary for the successful and accurate prediction 

(8)

(9)

(10)
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Figure 5. The overall flow chart of the present work. A total of 34 sets of defect size, defect to distance and fatigue life data were 
obtained from fracture photos after forging/additive components experienced rotating-bending fatigue fracture. The sparse and limited 
data set then prevented further analysis of the work. In order to overcome the influence of data quality, the corresponding fatigue life 
equation is established on the basis of physical knowledge, and it is applied to data processing and model interpretation. In order to 
overcome the influence of data quantity, a GAN based on Pytorch deep learning framework is constructed that conforms to the laws of 
defect size, distance to surface and fatigue life. Finally, a machine learning framework with physical knowledge predicts the fatigue life to 
be smooth by defect size and defect to distance.

of fatigue life.

Then, outlier rejection was performed using statistical methods, employing two distinct approaches. Values 
that do not fall within the interval, i.e., mean ± 2× standard deviation, are considered outliers. Outliers are 
defined as values that are not within the interval, i.e., lower four medians -1.5× median deviation, upper 
four medians +1.5× median deviation. Figure 8A and B shows the box line plots of defect size, distance to 
surface and fatigue life. After discrete value rejection of the raw data, the data quality has been greatly 
improved. Finally, the data of defect size, distance to surface and fatigue life are in the vicinity of 50, 100 and 
5.8 intervals, respectively. Figure 8C and D shows the heatmaps of defect size, distance to surface and fatigue 
life from the raw data and the data after discrete value rejection. With such data processing, the relationship 
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Figure 6. Fatigue fractographs with the size and location of the spherical pores after cycles of (A) 29,700, (B) 254,000, (C) 561,000 
and (D) 6,410,000.

between the independent and dependent variables gradually improves and is more conducive to subsequent 
model training. After preprocessing, there are 30 groups of data.

Of course, operations such as feature selection, data cleaning, cross-validation and splitting and their 
specific effects on the model are described in turn in Section “Model performance and remarks”, in Section 
“Data filtering” and in Section “Fatigue life model”. It is important to note that these operations are formally 
different from data processing in regular machine learning models, and we have incorporated them into 
every step of the process in this work.

Data filtering
When Equation (10) was fitted to the initial datasets with S0 = 100 and x0 = 2,000 (the sample radius), the 
resulting R2 was found to be 0.5527 with d = 6.7106, m = 0.8087, a = 185.1749, b = 3.3880 and c = 15.2355. 
The unacceptably small R2 indicates the deviation of certain data points from the physical knowledge model, 
which leads to catastrophic results during the fitting and implies the necessity of data filtering. To avoid 
arbitrariness, we combine d, m, a, b and c parameters in the range of 0.1, so as to reasonably select the data 
with the largest deviation to all possible models. The parameter combination of d, m, a, b, c and 
corresponding R2 for the 243 physical knowledge models are listed in Table 2.
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Table 2. The parameter combination of d, m, a, b, c and corresponding R2 for the 243 physical knowledge models

Model d m a b c R2 Model d m a b c R2

1 6.6106 0.7087 185.0749 3.2880 15.1355 0.5532 123 6.7106 0.8087 185.1749 3.3880 15.3355 0.5525

2 6.6106 0.7087 185.0749 3.2880 15.2355 0.5530 124 6.7106 0.8087 185.1749 3.4880 15.1355 0.5522

3 6.6106 0.7087 185.0749 3.2880 15.3355 0.5528 125 6.7106 0.8087 185.1749 3.4880 15.2355 0.5520

4 6.6106 0.7087 185.0749 3.3880 15.1355 0.5529 126 6.7106 0.8087 185.1749 3.4880 15.3355 0.5518

5 6.6106 0.7087 185.0749 3.3880 15.2355 0.5527 127 6.7106 0.8087 185.2749 3.2880 15.1355 0.5532

6 6.6106 0.7087 185.0749 3.3880 15.3355 0.5525 128 6.7106 0.8087 185.2749 3.2880 15.2355 0.5530

7 6.6106 0.7087 185.0749 3.4880 15.1355 0.5522 129 6.7106 0.8087 185.2749 3.2880 15.3355 0.5528

8 6.6106 0.7087 185.0749 3.4880 15.2355 0.5520 130 6.7106 0.8087 185.2749 3.3880 15.1355 0.5529

9 6.6106 0.7087 185.0749 3.4880 15.3355 0.5518 131 6.7106 0.8087 185.2749 3.3880 15.2355 0.5527

10 6.6106 0.7087 185.1749 3.2880 15.1355 0.5532 132 6.7106 0.8087 185.2749 3.3880 15.3355 0.5525

11 6.6106 0.7087 185.1749 3.2880 15.2355 0.5530 133 6.7106 0.8087 185.2749 3.4880 15.1355 0.5522

12 6.6106 0.7087 185.1749 3.2880 15.3355 0.5528 134 6.7106 0.8087 185.2749 3.4880 15.2355 0.5520

13 6.6106 0.7087 185.1749 3.3880 15.1355 0.5529 135 6.7106 0.8087 185.2749 3.4880 15.3355 0.5518

14 6.6106 0.7087 185.1749 3.3880 15.2355 0.5527 136 6.7106 0.9087 185.0749 3.2880 15.1355 0.5532

15 6.6106 0.7087 185.1749 3.3880 15.3355 0.5525 137 6.7106 0.9087 185.0749 3.2880 15.2355 0.5530

16 6.6106 0.7087 185.1749 3.4880 15.1355 0.5522 138 6.7106 0.9087 185.0749 3.2880 15.3355 0.5528

17 6.6106 0.7087 185.1749 3.4880 15.2355 0.5520 139 6.7106 0.9087 185.0749 3.3880 15.1355 0.5529

18 6.6106 0.7087 185.1749 3.4880 15.3355 0.5518 140 6.7106 0.9087 185.0749 3.3880 15.2355 0.5527

19 6.6106 0.7087 185.2749 3.2880 15.1355 0.5532 141 6.7106 0.9087 185.0749 3.3880 15.3355 0.5525

20 6.6106 0.7087 185.2749 3.2880 15.2355 0.5530 142 6.7106 0.9087 185.0749 3.4880 15.1355 0.5522

21 6.6106 0.7087 185.2749 3.2880 15.3355 0.5528 143 6.7106 0.9087 185.0749 3.4880 15.2355 0.5520

22 6.6106 0.7087 185.2749 3.3880 15.1355 0.5529 144 6.7106 0.9087 185.0749 3.4880 15.3355 0.5518

23 6.6106 0.7087 185.2749 3.3880 15.2355 0.5527 145 6.7106 0.9087 185.1749 3.2880 15.1355 0.5532

24 6.6106 0.7087 185.2749 3.3880 15.3355 0.5525 146 6.7106 0.9087 185.1749 3.2880 15.2355 0.5530

25 6.6106 0.7087 185.2749 3.4880 15.1355 0.5522 147 6.7106 0.9087 185.1749 3.2880 15.3355 0.5528

26 6.6106 0.7087 185.2749 3.4880 15.2355 0.5520 148 6.7106 0.9087 185.1749 3.3880 15.1355 0.5529

27 6.6106 0.7087 185.2749 3.4880 15.3355 0.5518 149 6.7106 0.9087 185.1749 3.3880 15.2355 0.5527

28 6.6106 0.8087 185.0749 3.2880 15.1355 0.5532 150 6.7106 0.9087 185.1749 3.3880 15.3355 0.5525

29 6.6106 0.8087 185.0749 3.2880 15.2355 0.5530 151 6.7106 0.9087 185.1749 3.4880 15.1355 0.5522

30 6.6106 0.8087 185.0749 3.2880 15.3355 0.5528 152 6.7106 0.9087 185.1749 3.4880 15.2355 0.5520

31 6.6106 0.8087 185.0749 3.3880 15.1355 0.5529 153 6.7106 0.9087 185.1749 3.4880 15.3355 0.5518

32 6.6106 0.8087 185.0749 3.3880 15.2355 0.5527 154 6.7106 0.9087 185.2749 3.2880 15.1355 0.5532 
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33 6.6106 0.8087 185.0749 3.3880 15.3355 0.5525 155 6.7106 0.9087 185.2749 3.2880 15.2355 0.5530 

34 6.6106 0.8087 185.0749 3.4880 15.1355 0.5522 156 6.7106 0.9087 185.2749 3.2880 15.3355 0.5528 

35 6.6106 0.8087 185.0749 3.4880 15.2355 0.5520 157 6.7106 0.9087 185.2749 3.3880 15.1355 0.5529 

36 6.6106 0.8087 185.0749 3.4880 15.3355 0.5518 158 6.7106 0.9087 185.2749 3.3880 15.2355 0.5527 

37 6.6106 0.8087 185.1749 3.2880 15.1355 0.5532 159 6.7106 0.9087 185.2749 3.3880 15.3355 0.5525 

38 6.6106 0.8087 185.1749 3.2880 15.2355 0.5530 160 6.7106 0.9087 185.2749 3.4880 15.1355 0.5522 

39 6.6106 0.8087 185.1749 3.2880 15.3355 0.5528 161 6.7106 0.9087 185.2749 3.4880 15.2355 0.5520 

40 6.6106 0.8087 185.1749 3.3880 15.1355 0.5529 162 6.7106 0.9087 185.2749 3.4880 15.3355 0.5518 

41 6.6106 0.8087 185.1749 3.3880 15.2355 0.5527 163 6.8106 0.7087 185.0749 3.2880 15.1355 0.5532 

42 6.6106 0.8087 185.1749 3.3880 15.3355 0.5525 164 6.8106 0.7087 185.0749 3.2880 15.2355 0.5530 

43 6.6106 0.8087 185.1749 3.4880 15.1355 0.5522 165 6.8106 0.7087 185.0749 3.2880 15.3355 0.5528 

44 6.6106 0.8087 185.1749 3.4880 15.2355 0.5520 166 6.8106 0.7087 185.0749 3.3880 15.1355 0.5529 

45 6.6106 0.8087 185.1749 3.4880 15.3355 0.5518 167 6.8106 0.7087 185.0749 3.3880 15.2355 0.5527 

46 6.6106 0.8087 185.2749 3.2880 15.1355 0.5532 168 6.8106 0.7087 185.0749 3.3880 15.3355 0.5525 

47 6.6106 0.8087 185.2749 3.2880 15.2355 0.5530 169 6.8106 0.7087 185.0749 3.4880 15.1355 0.5522 

48 6.6106 0.8087 185.2749 3.2880 15.3355 0.5528 170 6.8106 0.7087 185.0749 3.4880 15.2355 0.5520 

49 6.6106 0.8087 185.2749 3.3880 15.1355 0.5529 171 6.8106 0.7087 185.0749 3.4880 15.3355 0.5518 

50 6.6106 0.8087 185.2749 3.3880 15.2355 0.5527 172 6.8106 0.7087 185.1749 3.2880 15.1355 0.5532 

51 6.6106 0.8087 185.2749 3.3880 15.3355 0.5525 173 6.8106 0.7087 185.1749 3.2880 15.2355 0.5530 

52 6.6106 0.8087 185.2749 3.4880 15.1355 0.5522 174 6.8106 0.7087 185.1749 3.2880 15.3355 0.5528 

53 6.6106 0.8087 185.2749 3.4880 15.2355 0.5520 175 6.8106 0.7087 185.1749 3.3880 15.1355 0.5529 

54 6.6106 0.8087 185.2749 3.4880 15.3355 0.5518 176 6.8106 0.7087 185.1749 3.3880 15.2355 0.5527 

55 6.6106 0.9087 185.0749 3.2880 15.1355 0.5532 177 6.8106 0.7087 185.1749 3.3880 15.3355 0.5525 

56 6.6106 0.9087 185.0749 3.2880 15.2355 0.5530 178 6.8106 0.7087 185.1749 3.4880 15.1355 0.5522 

57 6.6106 0.9087 185.0749 3.2880 15.3355 0.5528 179 6.8106 0.7087 185.1749 3.4880 15.2355 0.5520 

58 6.6106 0.9087 185.0749 3.3880 15.1355 0.5529 180 6.8106 0.7087 185.1749 3.4880 15.3355 0.5518 

59 6.6106 0.9087 185.0749 3.3880 15.2355 0.5527 181 6.8106 0.7087 185.2749 3.2880 15.1355 0.5532 

60 6.6106 0.9087 185.0749 3.3880 15.3355 0.5525 182 6.8106 0.7087 185.2749 3.2880 15.2355 0.5530 

61 6.6106 0.9087 185.0749 3.4880 15.1355 0.5522 183 6.8106 0.7087 185.2749 3.2880 15.3355 0.5528 

62 6.6106 0.9087 185.0749 3.4880 15.2355 0.5520 184 6.8106 0.7087 185.2749 3.3880 15.1355 0.5529 

63 6.6106 0.9087 185.0749 3.4880 15.3355 0.5518 185 6.8106 0.7087 185.2749 3.3880 15.2355 0.5527 

64 6.6106 0.9087 185.1749 3.2880 15.1355 0.5532 186 6.8106 0.7087 185.2749 3.3880 15.3355 0.5525 

65 6.6106 0.9087 185.1749 3.2880 15.2355 0.5530 187 6.8106 0.7087 185.2749 3.4880 15.1355 0.5522 

66 6.6106 0.9087 185.1749 3.2880 15.3355 0.5528 188 6.8106 0.7087 185.2749 3.4880 15.2355 0.5520 
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67 6.6106 0.9087 185.1749 3.3880 15.1355 0.5529 189 6.8106 0.7087 185.2749 3.4880 15.3355 0.5518 

68 6.6106 0.9087 185.1749 3.3880 15.2355 0.5527 190 6.8106 0.8087 185.0749 3.2880 15.1355 0.5532 

69 6.6106 0.9087 185.1749 3.3880 15.3355 0.5525 191 6.8106 0.8087 185.0749 3.2880 15.2355 0.5530 

70 6.6106 0.9087 185.1749 3.4880 15.1355 0.5522 192 6.8106 0.8087 185.0749 3.2880 15.3355 0.5528 

71 6.6106 0.9087 185.1749 3.4880 15.2355 0.5520 193 6.8106 0.8087 185.0749 3.3880 15.1355 0.5529 

72 6.6106 0.9087 185.1749 3.4880 15.3355 0.5518 194 6.8106 0.8087 185.0749 3.3880 15.2355 0.5527 

73 6.6106 0.9087 185.2749 3.2880 15.1355 0.5532 195 6.8106 0.8087 185.0749 3.3880 15.3355 0.5525 

74 6.6106 0.9087 185.2749 3.2880 15.2355 0.5530 196 6.8106 0.8087 185.0749 3.4880 15.1355 0.5522 

75 6.6106 0.9087 185.2749 3.2880 15.3355 0.5528 197 6.8106 0.8087 185.0749 3.4880 15.2355 0.5520 

76 6.6106 0.9087 185.2749 3.3880 15.1355 0.5529 198 6.8106 0.8087 185.0749 3.4880 15.3355 0.5518 

77 6.6106 0.9087 185.2749 3.3880 15.2355 0.5527 199 6.8106 0.8087 185.1749 3.2880 15.1355 0.5532 

78 6.6106 0.9087 185.2749 3.3880 15.3355 0.5525 200 6.8106 0.8087 185.1749 3.2880 15.2355 0.5530 

79 6.6106 0.9087 185.2749 3.4880 15.1355 0.5522 201 6.8106 0.8087 185.1749 3.2880 15.3355 0.5528 

80 6.6106 0.9087 185.2749 3.4880 15.2355 0.5520 202 6.8106 0.8087 185.1749 3.3880 15.1355 0.5529 

81 6.6106 0.9087 185.2749 3.4880 15.3355 0.5518 203 6.8106 0.8087 185.1749 3.3880 15.2355 0.5527 

82 6.7106 0.7087 185.0749 3.2880 15.1355 0.5532 204 6.8106 0.8087 185.1749 3.3880 15.3355 0.5525 

83 6.7106 0.7087 185.0749 3.2880 15.2355 0.5530 205 6.8106 0.8087 185.1749 3.4880 15.1355 0.5522 

84 6.7106 0.7087 185.0749 3.2880 15.3355 0.5528 206 6.8106 0.8087 185.1749 3.4880 15.2355 0.5520 

85 6.7106 0.7087 185.0749 3.3880 15.1355 0.5529 207 6.8106 0.8087 185.1749 3.4880 15.3355 0.5518 

86 6.7106 0.7087 185.0749 3.3880 15.2355 0.5527 208 6.8106 0.8087 185.2749 3.2880 15.1355 0.5532 

87 6.7106 0.7087 185.0749 3.3880 15.3355 0.5525 209 6.8106 0.8087 185.2749 3.2880 15.2355 0.5530 

88 6.7106 0.7087 185.0749 3.4880 15.1355 0.5522 210 6.8106 0.8087 185.2749 3.2880 15.3355 0.5528 

89 6.7106 0.7087 185.0749 3.4880 15.2355 0.5520 211 6.8106 0.8087 185.2749 3.3880 15.1355 0.5529 

90 6.7106 0.7087 185.0749 3.4880 15.3355 0.5518 212 6.8106 0.8087 185.2749 3.3880 15.2355 0.5527 

91 6.7106 0.7087 185.1749 3.2880 15.1355 0.5532 213 6.8106 0.8087 185.2749 3.3880 15.3355 0.5525 

92 6.7106 0.7087 185.1749 3.2880 15.2355 0.5530 214 6.8106 0.8087 185.2749 3.4880 15.1355 0.5522 

93 6.7106 0.7087 185.1749 3.2880 15.3355 0.5528 215 6.8106 0.8087 185.2749 3.4880 15.2355 0.5520 

94 6.7106 0.7087 185.1749 3.3880 15.1355 0.5529 216 6.8106 0.8087 185.2749 3.4880 15.3355 0.5518 

95 6.7106 0.7087 185.1749 3.3880 15.2355 0.5527 217 6.8106 0.9087 185.0749 3.2880 15.1355 0.5532 

96 6.7106 0.7087 185.1749 3.3880 15.3355 0.5525 218 6.8106 0.9087 185.0749 3.2880 15.2355 0.5530 

97 6.7106 0.7087 185.1749 3.4880 15.1355 0.5522 219 6.8106 0.9087 185.0749 3.2880 15.3355 0.5528 

98 6.7106 0.7087 185.1749 3.4880 15.2355 0.5520 220 6.8106 0.9087 185.0749 3.3880 15.1355 0.5529 

99 6.7106 0.7087 185.1749 3.4880 15.3355 0.5518 221 6.8106 0.9087 185.0749 3.3880 15.2355 0.5527 

100 6.7106 0.7087 185.2749 3.2880 15.1355 0.5532 222 6.8106 0.9087 185.0749 3.3880 15.3355 0.5525 
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101 6.7106 0.7087 185.2749 3.2880 15.2355 0.5530 223 6.8106 0.9087 185.0749 3.4880 15.1355 0.5522 

102 6.7106 0.7087 185.2749 3.2880 15.3355 0.5528 224 6.8106 0.9087 185.0749 3.4880 15.2355 0.5520 

103 6.7106 0.7087 185.2749 3.3880 15.1355 0.5529 225 6.8106 0.9087 185.0749 3.4880 15.3355 0.5518 

104 6.7106 0.7087 185.2749 3.3880 15.2355 0.5527 226 6.8106 0.9087 185.1749 3.2880 15.1355 0.5532 

105 6.7106 0.7087 185.2749 3.3880 15.3355 0.5525 227 6.8106 0.9087 185.1749 3.2880 15.2355 0.5530 

106 6.7106 0.7087 185.2749 3.4880 15.1355 0.5522 228 6.8106 0.9087 185.1749 3.2880 15.3355 0.5528 

107 6.7106 0.7087 185.2749 3.4880 15.2355 0.5520 229 6.8106 0.9087 185.1749 3.3880 15.1355 0.5529 

108 6.7106 0.7087 185.2749 3.4880 15.3355 0.5518 230 6.8106 0.9087 185.1749 3.3880 15.2355 0.5527 

109 6.7106 0.8087 185.0749 3.2880 15.1355 0.5532 231 6.8106 0.9087 185.1749 3.3880 15.3355 0.5525 

110 6.7106 0.8087 185.0749 3.2880 15.2355 0.5530 232 6.8106 0.9087 185.1749 3.4880 15.1355 0.5522 

111 6.7106 0.8087 185.0749 3.2880 15.3355 0.5528 233 6.8106 0.9087 185.1749 3.4880 15.2355 0.5520 

112 6.7106 0.8087 185.0749 3.3880 15.1355 0.5529 234 6.8106 0.9087 185.1749 3.4880 15.3355 0.5518 

113 6.7106 0.8087 185.0749 3.3880 15.2355 0.5527 235 6.8106 0.9087 185.2749 3.2880 15.1355 0.5532 

114 6.7106 0.8087 185.0749 3.3880 15.3355 0.5525 236 6.8106 0.9087 185.2749 3.2880 15.2355 0.5530 

115 6.7106 0.8087 185.0749 3.4880 15.1355 0.5522 237 6.8106 0.9087 185.2749 3.2880 15.3355 0.5528 

116 6.7106 0.8087 185.0749 3.4880 15.2355 0.5520 238 6.8106 0.9087 185.2749 3.3880 15.1355 0.5529 

117 6.7106 0.8087 185.0749 3.4880 15.3355 0.5518 239 6.8106 0.9087 185.2749 3.3880 15.2355 0.5527 

118 6.7106 0.8087 185.1749 3.2880 15.1355 0.5532 240 6.8106 0.9087 185.2749 3.3880 15.3355 0.5525 

119 6.7106 0.8087 185.1749 3.2880 15.2355 0.5530 241 6.8106 0.9087 185.2749 3.4880 15.1355 0.5522 

120 6.7106 0.8087 185.1749 3.2880 15.3355 0.5528 242 6.8106 0.9087 185.2749 3.4880 15.2355 0.5520 

121 6.7106 0.8087 185.1749 3.3880 15.1355 0.5529 243 6.8106 0.9087 185.2749 3.4880 15.3355 0.5518 

122 6.7106 0.8087 185.1749 3.3880 15.2355 0.5527

R2: The coefficient of determination.

For example, the parameter combination is performed with the step interval of 0.1. With d = 6.6106/6.7106/6.8106, m = 0.7087/0.8087/0.9087, a = 185.0749/
185.1749/185.2749, b = 3.2880/3.3880/3.4880 and c = 15.1355/15.2355/15.3355, a total of 243 combinations of d, m, a, b, c and corresponding R2 are obtained.

Generally, R2 of 0.5-0.6 is reached after the 243 physical knowledge models [Table 2], but still far from satisfactory. Figure 9 shows the experimental data and 
one of the fitted surfaces with d = 6.7106, m = 0.8087, a = 185.1749, b = 3.3880 and c = 15.2355 with R2 = 0.5527. Remarkable deviation from the fitted models 
exists for a number of data points. We thus gathered the mean absolute percentage deviation (MAPE) of the 30 groups of experimental data to all 243 physics 
knowledge models. The MAPE is defined according to
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Figure 7. (A and B) Relationship between fatigue life with and without log treatment and defect parameters. The experimental data with 
the fatigue life of the bending samples against (C) the size and (D) location of the spherical pores.

where n is the total number of data, and yi and yi the actual and fitted values of the ith data, respectively. The 
MAPE for each group of data is shown in Figure 10. A general criterion of 10% is set to filter the data and 
groups 11, 24, 25, 30 are thus filtered. However, despite the relatively large deviation of data group 2 
(10.5%), it is retained due to relatively small deviation on certain models. After filtering, there are 26 groups 
of data.

Data augmentation
Subsequently, a GAN is built. The GAN learns to generate values that match patterns in the defect size, the 
distance to surface, and the fatigue life. The generator, a neural network with three output values, is trained 
to provide data that matches the defect size, the distance to surface, and the fatigue life pattern. On the other 
hand, the discriminator tries to determine whether it is from the real data source or from the generator, 
based on these three values. The steps for constructing and training the GAN in this paper are as follows:

(11)
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Figure 8. Box line plots of the independent and dependent variables. (A) Raw data (B) Data after discrete value rejection. Heatmaps of 
defect size, distance to surface and fatigue life. (C) Raw data (D) Data after discrete value rejection.

(1) Previewing data from a real dataset; (2) Determining whether the discriminator can at least distinguish 
between actual data and random noise; (3) Determining whether an untrained generator can produce data 
in the required format; (4) Displaying the observed loss values to understand the training progress; (5) 
Producing fresh data; (6) Repeat the data filtering process.

The loss values of the GAN, the discriminator and the generator are shown in Figure 11A-C, respectively. 
When the discriminator is ineffective at telling the authentic data from the fake data, it cannot decide 
whether to output 0 or 1, and instead outputs 0.5, and the loss value is 0.52 = 0.25. The GAN advances 
gradually as the training goes on since the loss value reduces gradually and perceivably. The loss value 
increases again to 0.25 later in the training. This indicates that the generator has mastered the art of 
producing data in a predictable fashion, rendering the discriminator ineffective. In other words, the 
discriminator’s output is 0.5 and the loss value jumps to 0.25. Note that due to the initially limited number 
of experiment data with large sparsity, GAN was able to produce only two qualified groups of data. After 
augmentation, there are 28 groups of data.
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Figure 9. The fatigue life against the defect size and distance to surface for the experimental data (red dots) and one of the fitted 
surfaces with d = 6.7106, m = 0.8087, a = 185.1749, b = 3.3880 and c = 15.2355 with R2 = 0.5527. R2: The coefficient of determination.

Figure 10. The overall deviation of the 30 groups of experimental data to all 243 physics knowledge models.

Fatigue life model
Finally, after data filtering and augmentation [Figure 12], the prediction surface becomes increasingly 
smooth. A total of 28 groups of data were employed to predict the fatigue life with only the back 
propagation neural network, as shown in Figure 13A and B, with a confidence interval of nearly 90% in 
Figure 13C. The predicted surface is close to the physical knowledge model (e.g., Figure 9) with the fatigue 
life decreasing with the defect size and increasing with the distance to surface. However, without physical 
knowledge, the resulting model is overfitted without interpretability.
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Figure 11. Loss value. (A) GAN; (B) Discriminator; (C) Generator. GAN: Generative adversarial network.

Figure 12. In the process of model selection, the progress of the model is reflected in an increasingly smooth prediction surface.

In order to achieve a precise model with physical knowledge, the 28 groups of data are again employed 
together with the physical knowledge models in Section “Physical knowledge model”. The lsqcurvefit 
function in MATLAB is utilized and the optimal constants are obtained as: d = 13.1254, m = 8.5685, a = 
7.6417, b = 0.2401, c = 1.3565, S0 = 51.0409 and x0 = 564.6523 [Equation (12)]. The final fatigue life model 
after Equation (10) is as follows, which is visualized in Figure 13D-F.
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Figure 13. Third prediction of experimental data after augmentation of GAN model using back propagation neural network. (A) 3D 
surface; (B) Contour map; (C) 2D confidence interval. The final physical model optimized with the lsqcurvefit function in MATLAB. (D) 
3D surface; (E) Contour map; (F) 2D confidence interval. GAN: Generative adversarial network.

The present model thus indicates the influence of the two main factors, i.e., pore radius and location, on the 
fatigue life. At a fixed pore location, the fatigue life decreases with pore radii, while at a fix pore radius, the 
fatigue life decreases with pore distance to surface. In particular, pores located near the surface will be 
detrimental to fatigue life even if they are very small, while pores located at the central axis of the sample 
will be remarkably safer. More subtle relationship between S and x can thus be evaluated under the 
circumstance of rotating-bending fatigue. With Nf ≥ 107 as a criterion, the following expression holds,

which thus indicates the mutual relationship between x and S; i.e., to have a satisfactory fatigue life, the 
pores should be smaller as their location approaches the surface. Specifically, for near-surface pores with 
x → 0, only very small pores with S ~ 4 μm are allowed without significant reducing fatigue life, while for 
typical pores under current additive manufacturing techniques with S ~ 1,000 μm, they can be located at 
least ~ 1,000 μm from the surface.

Model performance and remarks
We have also compared the methods used and the results obtained with the existing work. Since machine 

(12)

(13)
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learning is a data-driven algorithm, the data itself has a significant effect on the model performance. 
Therefore, researchers have used different methods to prepare data before training a model. Li et al. 
developed a database for machine learning models using the Monte Carlo method[56]. Zhan et al.[57,58] 
proposed a continuous damage mechanics[59,60] model that also incorporates the additive manufacturing 
effect with theoretical calculations for data augmentation. It was estimated that the R2 for the training, 
validation and test sets are 0.9854, 0.9857 and 0.9854, respectively, with the overall R2 = 0.9855. Nevertheless, 
it is unclear whether the high dispersion of fatigue data leads to a localized distribution of data, and whether 
the so-called theoretical models consider all the factors that influence fatigue data. In this paper, we propose 
a completely new approach for processing data combining GAN and physical knowledge models. The R2 
values for the training, validation and test sets are 0.8338, 0.9975 and 0.8912, respectively, while the total R2 
= 0.8701. A well-developed theoretical system and novel ideas underpin the GAN in deep learning. To 
overcome the limitations of localization of traditional methods, a continuous game of generative and 
discriminative networks can be used to learn the characteristics of data distribution.

The most essential activity in the model, i.e., feature engineering, influences the model performance. To 
estimate the fatigue life, Bao et al.[13] have used ten sets of experimental data with three independent 
variables of defect size, defect location and defect type appearance, while Li et al.[56] have used 22 sets of 
experimental data with five independent variables, i.e., flaw depth, defect size, defect-to-surface distance, 
maximum stress and construction direction. It can be shown that the geometric parameters of the critical 
flaws have a considerable influence on the fatigue life. As a result, in this paper, the fatigue life is predicted 
using two independent variables: defect size and distance to surface. We also provide a physical knowledge 
method for data processing based on these two variables. Lastly, it is worth mentioning that the present 
work has the largest data to variable ratio, i.e., 34 to 2, among the published work.

It is worth mentioning that, first, the present model only considers spherical pores, while in the hybrid 
manufacture samples, pores with other shapes also exist; second, the present model has not explicitly 
considered microstructure features, while pores located at grain/phase boundaries may have detrimental 
influence on fatigue life; third, the present model omits other metallurgical defects, e.g., lack of fusion, 
microcrack, etc., which is supposed to distinguish with appropriate additive manufacturing process and 
subsequent post-processing. While the above issues are covered in ongoing investigations, the results will be 
reported in forthcoming publications.

CONCLUSION
A thorough investigation was conducted on the prediction of fatigue life against defect parameters for 
forging/additive hybrid manufactured Ti-17 alloys, with the combination of machine learning and physical 
knowledge to deal with sparse and limited data. The following conclusions are drawn.

(1) Strong and reliable physical supervision enhances the power of machine learning to deal with sparse and 
limited datasets. Specifically for fatigue life prediction, a machine learning framework with a back 
propagation neural network and GAN can thus achieve a relatively high level of 90% confidence.

(2) Pore-induced stress concentration influences the fatigue life of hybrid manufactured Ti-17 alloys. The 
resulting physical model indicates that the rotating/bending fatigue life decreases with pore size and 
increases with its distance to surface.
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(3) Specifically for rotating/bending fatigue tests, near-surface pores with size ~ 4 μm or in-depth pores with 
size ~ 1,000 μm have negligible influence on fatigue life with respect to pore-free samples.

The present model thus aids in evaluating rotating/bending fatigue life of forging/additive hybrid 
manufactured Ti-17 alloys, and contributes to the general understanding of metal fatigue regarding the 
influence of pores. In the future, when enough data, including other pore characteristics, other types of 
defects and defect-microstructure coupling, is available, a comprehensive model for fatigue life prediction 
can be expected with the help of machine learning.
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