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Abstract
Aim: Surgeon’s intraoperative decisions significantly impact patient outcomes. In the reconciliation cycle, 
interoperative decisions are guided by probabilistic reasoning, which is informed by the evolving intraoperative 
features. This paper aims to compare the utility of a traditional logistic regression (LR) model for critical view of 
safety (CVS) achievement to Bayesian network (BN) maps using intraoperative features. It hypothesizes that BN 
mapping better integrates with surgeon heuristics.

Methods: Using prospectively gathered intraoperative data, BN maps were developed and tested to determine 
their ability to predict critical view of safety achievement. Performance was compared to traditional logistic 
regression models to consider their utility in practice.

Results: In total, 4,663 patients were identified. Of these patients, 2,837 (61%) presented acutely and 3,122 (67%) 
were female. CVS was achieved in 4,131 (92%) of patients. In total, four BN were developed. Optimal performance 
was seen in model 2 with an AUC of 0.879 (0.798-0.960) (P < 0.001). Selecting a cut-off of 0.6 gave an optimized 
sensitivity of 99% and a specificity of 45% for CVS achievement. In comparison to this, for the combined acute LR 
model, ROC curve analysis gave an AUC of 0.829 (0.787-0.872 ) (P < 0.001). A cut-off of 75% probability resulted 
in a sensitivity of 95% and a specificity of 38% for CVS achievement.

Conclusion: The present study illustrates how BN modeling can map to surgeon decision making to facilitate 
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reasoning in complex environments. Further work is needed to facilitate data capture and implementation. Despite 
this, they represent a promising avenue for intuitive decision support tools.

Keywords: Operative process, laparoscopic cholecystectomy, artificial intelligence, Bayesian networks

INTRODUCTION
Surgeon’s intraoperative decisions significantly impact patient outcomes. In the model described by 
Cristancho et al., interoperative decisions are guided by probabilistic reasoning, which is informed by the 
evolving intraoperative features[1]. Traditional decision support models using logistic regression analysis to 
generate odds ratios fail to capture these probabilistic accumulations and inter-related probabilities[2]. In 
contrast to this, Bayesian network (BN) maps generate conditional probabilities among a set of connected 
variables[3]. This mirrors the intraoperative decision-making process described by Cristancho et al.[1]. BN 
maps, therefore, have the potential as intraoperative decision support tools[4,5].

BNs are useful in probabilistic causal and risk modeling due to their transparency, as well as their ability to 
cope with missing observations and noisy data. The node probability tables required to inform BNs can be 
supplied via expert judgment, learned from training data, or a combination of expert judgment and 
empirical data. However, BNs are computationally intensive, and only recently have advances in computing 
power and the underlying algorithms made BNs more accessible to researchers in many domains, including 
medical research[6]. In a scoping review of BNs in healthcare, McLachlan et al. found BNs referencing 
twenty-one categories of medical condition. The four most common, in descending order, were (i) cardiac 
conditions, (ii) cancer, (iii) psychological and psychiatric disorders, and (iv) lung and breathing disorders. 
Of note, there has been little focus on intraoperative decision making[7]. A crucial decision in laparoscopic 
cholecystectomy arises if hostile intraoperative findings necessitate a bailout strategy where a critical view of 
safety (CVS) cannot be safely achieved[8]. Current clinical guidelines lack clear indications for this 
decision[9-11]. BN mapping providing updated real-time probabilities using salient intraoperative features 
may inform this decision, providing clearer indications for when to proceed with a CVS or to perform a 
bailout approach. This paper aims to compare the utility of a traditional logistic regression (LR) model for 
CVS achievement to BN maps using intraoperative features. It hypothesizes that BN mapping better 
integrates with surgeon heuristics.

METHODS
Data capture
Data were prospectively captured from patients presenting to Christchurch Hospital for laparoscopic 
cholecystectomy between 2016 and 2022 using “Solutions Committed to Operative Procedure Excellence” 
(scOPe) (Scope Solutions Ltd), a perioperative workflow solution[12]. Data capture was routinely completed 
by the attending clinical team throughout the patient’s operative journey. Specifically, intraoperative data 
were recorded by the primary surgeon at the time of the operation using synoptic operation reports. Data 
captured included demographics, time of booking, date of admission, and postoperative complications.

Ethics
Ethical approval was deemed out of scope by the National Health and Disability Ethics Committee. Locality 
approval was sought and granted through the Canterbury District Health Board low-risk pathway 
(RO22146).
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Outcomes
The primary outcome was critical view of safety achievement. Achievement of CVS was determined by the 
operating surgeon at the time of the operation. Achievement of CVS was defined using the SAGES 
consensus guidelines for safe cholecystectomy[8]:

1. The hepato-cystic triangle was cleared of fat and fibrous tissue. 
2. The lower one-third of the gallbladder was separated from the liver to expose the cystic plate. 
3. Two and only two structures are seen entering the gallbladder.

Univariate analysis and factor selection
A literature review in conjunction with expert review of the local data set was conducted to identify those 
factors impacting the likelihood of achieving the CVS[2,13-15]. In keeping with BN development best practice, 
the risk idiom was identified and used for network generation, as the research objective was to understand 
the relative influence of several risk factors, both individually and in temporal combinations. Factors shown 
to significantly impact the risk of not achieving a CVS were then included. Liver function tests were 
excluded due to variation in performance < 24 h preoperatively to ensure dataset completeness. Factors 
identified included:

● Admission: acute or elective 
● Patient sex: male or female 
● Patient age: quartiles 
● White cell count: quartiles 
● C-reactive protein (CRP): quartiles 
● Liver appearances: normal or cirrhotic, fibrotic, fatty 
● Rouviere’s sulcus: visible or not visible 
● Ease of gallbladder retraction: straightforward retraction or requiring dissection of adhesions 
● Operative grade: Straight forward as defined by North Shore Difficulty Grade 1 and 2 or challenging as 
defined by North Shore Difficulty Grade 3 and 4

To assess for the significance of these factors in predicting CVS achievement, statistical analysis was 
conducted using IBM SPSS for Windows version 22 (IBM Corp., Armonk, N.Y., USA). Factors were 
dichotomized or divided into quartiles for the purposes of the BN model. Contingency tables stratifying the 
impact of these factors on CVS achievement were generated and Chi-square testing performed.  Statistical 
significance was considered at P < 0.05.

For the development and assessment of the BN model, data were split, with 70% used for model training 
and 30% used for model testing. For the logistic regression, data were again split, allocating 70% for model 
training and 30% for model testing. Patients with missing data points were excluded.

BN model development
BNs are a method to formally represent conditional probability and causal relationships among a set of 
variables. Using Bayes’ theorem, BNs facilitate both causal and diagnostic (inverse) reasoning based on the 
probability distributions of the phenomena of interest[16]. A BN consists of a directed acyclic graph, where 
no node can be the parent of itself, with associated node probability tables (NPT) for each node within the 
graph. The nodes represent each variable and edges connect dependent variables. An edge from node A to 
node B represents a causal assumption that node A has a causal or influential function on node B. Node A is 
often described as a parent of node B. The NPT is the probability distribution of the node, given the parent 
nodes. For nodes without parents, the NPT is just the probability distribution of the node[6,16].
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The recommended best practice for constructing BNs is to build up small network fragments using 
appropriate reasoning idioms[17]. General reasoning idioms include notions such as cause-consequence, 
definition, and measurement[16]. Specific medical idioms have also been identified as helpful in building BN 
through medical reasoning[17]. Examples of medical reasoning idioms include manifestation, pathogenesis, 
risk, treatment, complications, and comorbidities. For the Critical View of Safety BN, the risk idiom was 
identified as the most appropriate, as the research objective was to understand the relative influence of 
several risk factors, both individually and in temporal combinations.

To construct the BN, expert judgment (SC and IT-E) and relevant literature were used to identify the risk 
factors[2,18]. The identified risk factors serve as the nodes of the BN. These nodes can be configured to suit 
category, Boolean, ordinal, continuous, or integer interval data. For this research, the use of Boolean nodes 
supported the underlying decision-making focus of the research. The information of interest is not a 
specific value, but whether that value has reached a threshold for a required action. Expert clinical input also 
recommended separating the data into acute and elective cohorts, given the differing presentation pathways. 
This decision was also influenced by the differences in the available data for these two cohorts.

The options for the structural relationship of the nodes began with the simplest hypothesis, with all the 
predictor variables treated as independently influencing the outcome predictor variable - the critical view of 
safety being achieved (CVSA). A second hypothesis proposed by the surgeons was the role of the gall 
bladder visible inflammation grade as a mediating variable between the patient history risk factors and the 
outcome. Identifying such a mediating variable would provide an early warning indicator that CSVA was at 
risk. White cell count and CRP were hypothesized as directly influencing the inflammation grade, without 
additional causal paths to the outcome variable. Age and Gender were considered to have this mediating 
path while also retaining a direct path to the CVSA outcome. To assess these two different causality 
hypotheses for two patient cohorts, four BN models were built using the AgenaRisk software application 
(https://www.agena.ai/). The four BN models tested are summarized in Table 1, and the structural 
relationships between variables for each model are shown in Figures 1-4.

Having constructed the BN graphs, the NPTs for each model were trained by importing the relevant 
training data set. The BN uses the empirical data to define the NPT parameters for each node, by 
determining a joint probability distribution that best explains the relationships between the predictor and 
outcome variables in the data. The data contained some null values. For data with missing values, the 
AgenaRisk software runs an expectation maximization algorithm to achieve maximum likelihood 
estimation[16]. Simply put, maximum likelihood estimates the parameters of an assumed probability 
distribution to give the highest likelihood of the observed data[16].

The authors followed the recommendations of Kyrimi et al. (2021) for aiding the reproducibility and 
usefulness of the BN models[3]. Specifically: (i) the potential clinical benefits have been explained; (ii) the BN 
structure and variables have been provided, with the data sets and AgenaRisk models available on 
reasonable request; (iii) an assessment of accuracy has been provided, and (iv) consideration of the model 
use in practice.

Logistic regression model
Significant features (P < 0.05) from the univariate analysis were included in the logistic regression model 
developed using IBM SPSS Data Modeller v18.4 (IBM Corp., Armonk, N.Y., USA). Models were considered 
for the combined, acute, and elective data sets.

https://www.agena.ai/


Tranter-Entwistle et al. Art Int Surg 2024;4:77-91 https://dx.doi.org/10.20517/ais.2024.04                                             Page 81

Table 1. Differences between the four critical view of safety BN models developed

BN model ID Causality assumption Population

Model 1 No parent-child dependency amongst predictor variables Acute presentations

Model 2 No parent-child dependency amongst predictor variables Elective presentations

Model 3 Causal chain for inflammation grade Acute presentations

Model 4 Causal chain for inflammation grade Elective presentations

BN: Bayesian network.

Figure 1. Critical view of safety: model 1 (acute presentations only).

Figure 2. Critical view of safety: model 2 (elective presentations only).

Validation
Internal validation for both the BN and LR models was performed on the partitioned test set. For the LR 
model, AUC testing performance was assessed by generating receiver operating characteristic (ROC) curves 
to determine the area under the curve (AUC) and optimal sensitivities and specificities[19]. This 
methodology is in keeping with literature comparing BN and LR models[4,5].
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Figure 3. Critical view of safety: model 3 (acute presentations only).

Figure 4. Critical view of safety model 4 (elective presentations only).

RESULTS
In total, 4,663 patients were identified. Of these patients, 2,837 (61%) presented acutely and 3,122 (67%) 
were female. CVS was achieved in 4,131 (92%) patients. Data set characteristics following division of the 
data into training and test sets are provided in Table 2 and the univariate analysis in Table 3.
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Table 2. Demographic factors

Factors Training set % Test set %

Number of patients 3,072 (70) 1,551 (30)

0-41 769 (25) 633 (41)

42-55 791 (26) 324 (21)

56-67 671 (22) 227 (15)

67+ 810 (26) 345 (22)

Median quartiles

Missing 31 (1)

Male 959 (31) 573 (37)Gender

Female 2,113 (69) 978 (63)

Acute 1,835 (60) 978 (63)Admission

Elective 1,227 (40) 573 (37)

Easy 2,306 (82) 1,162 (75)

Hard 493 (16) 242 (16)

Grade

Missing 272 (9) 147 (10)

Normal 1,691 (55) 949 (61)

Fatty, cirrhotic fibrotic 1,136 (37) 472 (30)

Liver appearances

Missing 245 (8) 130 (8)

Easy 2,559 (83) 1,228 (79)

Difficult 420 (14) 217 (14)

Retraction

Missing 93 (3) 106 (7)

Quartile 1 336 (11) 175 (11)

Quartile 2 309 (10) 158 (10)

Quartile 3 319 (10) 150 (10)

Quartile 4 319 (10) 181 (12)

CRP

Missing 1,281 (42) 887 (57)

Quartile 1 389 (13) 211 (14)

Quartile 2 392 (13) 200 (13)

Quartile 3 377 (12) 179 (12)

Quartile 4 382 (12) 205 (13)

WCC

Missing 1,532 (50) 756 (49)

Yes 2,774 (90) 1,233 (85)

No 195 (6) 115 (7)

CVS

Missing 103 (3) 114 (7)

CRP: C-reactive protein; WCC: white cell count; CVS: critical view of safety.

Logistic regression model training
Combined data set
Dividing the data into a training set comprising 70% and a remaining 30% yielded a final training set of 
2,636 patients, excluding those with missing variables. Logistic regression modeling produced a McFadden’s 
pseudo R-squared of 0.206 (P < 0.001) [Table 4]. The single most significant factor in predicting whether 
CVS was achieved was the operative grade with an Exp(B) of 4.2764 (P < 0.001). Other significant factors 
included the youngest age quartile, easy liver retraction, and elective procedures [Table 4].

Acute data set
When considering the acute data set separately, 1,102 patients were included in the training set once 
patients with missing data points were excluded. Logistic regression modeling produced a McFadden’s 
pseudo R-squared of 0.185 (P < 0.001). CRP was the most significant factor in predicting the likelihood of 
CVS achievement, with a CRP in the first quartile having an Exp(B) of 10.87 (P < 0.001). Other significant 
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Table 3. Univariate analysis

CVS achieved CVS not achieved P-value

0-41 728 (98) 18 (2)

42-55 728 (95) 38 (5)

56-67 579 (90) 66 (10)

Median quartiles

67+ 709 (91) 72 (9)

P < 0.001

Male 828 (89) 98 (11)Gender

Female 1,946 (95) 97 (5)

P < 0.001

Acute 1,631 (92) 148 (8)Admission

Elective 1,143 (96) 47 (4)

P < 0.001

Easy 2,200 (96) 83(4)Grade

Hard 380 (78) 108 (22)

P < 0.001

Normal 1,593 (95) 82 (5)Liver appearances

Fatty, cirrhotic fibrotic 1,019 (91) 102 (9)

P < 0.001

Easy 2,419 (96) 114 (4)Retraction

Difficult 337 (81) 80 (19)

P < 0.001

Quartile 1 331 (100) 1 (0)

Quartile 2 284 (95) 16 (5)

Quartile 3 277 (90) 32 (10)

CRP

Quartile 4 245 (80) 60 (20)

P < 0.001

Quartile 1 261 (95) 18 (5)

Quartile 2 366 (96) 16 (4)

Quartile 3 335 (91) 32 (9)

WCC

Quartile 4 318 (86) 51 (14)

P < 0.001

CVS: Critical view of safety; CRP: C-reactive protein; WCC: white cell count.

factors included operative grade, the visibility of Rouviere’s sulcus, and ease of gallbladder retraction 
[Table 4].

Elective data set
When considering the elective data set separately, 1,005 patients were included in the training set once 
patients with missing data points were excluded. Logistic regression modeling produced a McFadden’s 
pseudo R-squared of 0.314 (P < 0.001). Age was the most significant factor in predicting the likelihood of 
CVS achievement, with an age in the second quartile having an Exp(B) of 12.09 (P < 0.001). Other 
significant factors included operative grade, the visibility of Rouviere’s sulcus, and ease of gallbladder 
retraction [Table 4].

Logistic regression model testing
For the combined regression model, the final 30% test split resulted in 1,207 patients in the test data set. 
ROC curve analysis gave an AUC of 0.829 (0.787-0.872 ) (P < 0.001). A cut-off of 75% probability resulted in 
a sensitivity of 95% and a specificity of 38%. The significant class imbalance seen in the rate of CVS 
achievement precluded ROC curve analysis for the acute and elective subsets.

Bayesian models
To assess for the impact of different variables on network performance, four network models were 
developed and assessed [Figures 1-4]. The relative importance of each feature can be seen in Figure 5.
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Table 4. Logistic regression models

Factor Combined model Exp(B) (CI) Significance Acute model Exp(B) (CI) Significance Elective model Exp(B) (CI) Significance

1 and 2 4.274 (3.044-6.001) P < 0.001 2.224 (1.344-3.680) P = 0.002 8.421 (3.995-17.754) P < 0.001Grade

3 and 4 Reference Reference Reference

1 2.644 (1.577-4.433) P < 0.001 1.830 (0.852-3.927) P = 0.121 2.484 (0.833-7.4) P = 0.102

2 1.401 (.907-2.164) P = 0.128 0.911 (0.502-1.654) P = 0.759 12.095 (1.55-94.071) P = 0.017

3 0.913 (0.605-1.378) P = 0.666 0.770 (0.436-1.359) P = 0.367 0.739 (0.327-1.669) P = 0.466

Age quartile

4 Reference Reference Reference

Normal liver appearances 1.320 (0.956-1.823) P = 0.91 1.162 (0.740-1.825) P = 0.515 1.237 (0.601-2.544) P = 0.564Liver appearances

Cirrhotic, fibrotic or fatty liver Reference Reference Reference

Easy 3.012 (2.139-4.234) P < 0.001 2.091 (1.289-3.393) P = 0.003 4.069 (1.943-8.520) P < 0.001Liver retraction

Difficult Reference Reference Reference

Rouviere’s visible Reference Reference Reference

Rouviere’s not visible 0.311 (0.216-0.448) P < 0.001 0.414 (0.240-0.713) P = 0.002 0.350 (0154-0.797) P = 0.012

Male Reference Reference ReferenceGender

Female 1.334 (0.958-1.859) P = 0.088 1.757 (1.113-2.773) P = 0.016 1.011 (0.911-4.008) P = 0.086

Acute 0.609 (0.417-0.890) P = 0.010Admission

Elective Reference

NA NA NA NA

Quartile 1 10.767 (3.105-37.339) P < 0.001

Quartile 2 2.518 (1.275-4.972) P = 0.008

Quartile 3 1.431 (0.818-2.505) P = 0.209

CRP

Quartile 4

NA NA

Reference

NA NA

Quartile 1 0.866 (0.416-1.802) P = 0.700

Quartile 2 0.949 (0.462-1.948) P = 0.886

Quartile 3 0.801 (0.447-1.434) P = 0.455

WCC

Quartile 4

NA NA

Reference

NA NA

CRP: C-reactive protein; WCC: white cell count; NA: not applicable.

Model 1
Model 1 is seen in Figure 1, with an AUC of 0.780 (0.726-0.833) (P < 0.001) [Figure 2]. An optimal cut-off of 0.69 gave an optimized sensitivity of 96% and a 
specificity of 30%. Comparing model 1 to model 3 gave a Bayes factor of 1.026 [Table 5].
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*Comparing the predictive models using Bayes factors. The same assumptions apply to the prior probability distribution for each model (H1 and 
H2), so the prior probabilities are set to 1. The probability for the evidence (E) from the test data set is also the same for each model. In these 
circumstances, the Bayes factor is simply the likelihood ratio. The results in Table 1 show Bayes factors ranging from 1.0 to 1.13 which is regarded 
as very weak evidence. There is no basis to favour one hypothesis (model) over the other. Risk scenario R12 is an example with multiple risk 
factors. Further Risk scenarios are included in the Supplementary Material. CVS: Critical view of safety.

Model 2
Model 2 is seen in Figure 2, with an AUC of 0.879(0.798-0.960) (P < 0.001). Selecting a cut-off of 0.6 gave an 
optimized sensitivity of 99% and a specificity of 45%. Comparing model 2 to model 4 gave a Bayes factor of 
1.001 [Table 5].

Model 3
Model 3 is seen in Figure 3, with an AUC of 0.785 (0.734-0.836) (P < 0.001). Selecting a cut-off of 0.77 gave 
an optimized sensitivity of 96% and a specificity of 30%.

Model 4
Model 4 is seen in Figure 4, with an AUC of 0.879 (0.798-0.960) (P < 0.001). Selecting a cut-off of 0.6 gave an 
optimized sensitivity of 99% and a specificity of 45%.

DISCUSSION
BN performance was comparable to the logistic regression models, with AUCs ranging from 0.780 to 0.879 
(P < 0.001). This is in keeping with prior literature showing comparable performance between regression 
and Bayesian models[3]. Performance across all BN models was comparable, as evidenced by the Bayes 
factors [Table 5][20]. Across both acute and elective models, operative grade was the most consistent factor 
predicting CVS achievement [Figure 5 and Table 4]. This is in keeping with earlier work reaffirming the 
importance of considering operative technical difficulty when assessing operative process[13,21,22]. The 
performance of elective models was most likely superior due to reduced operative process variance. To the 
authors’ knowledge, this is the first study illustrating the utility of BN using intraoperative features to 
predict an intraoperative outcome. The comparable performance across both LR and BNs depicts the 
potential utility of BN mapping to support intraoperative decision making. For clinical utility, higher 
sensitivity and specificity are needed. Achieving this will require both a better understanding of operative 
processes and variable capture. If improved data performance is achieved, prospective model testing in an 
offline manner is required before multicentre validation.

Table 5. Model comparison*

Marginal probability of CVS achieved - acute

Test data set [Evidence] Model 1 [Hypothesis 1] Model 3 [Hypothesis 2] P(E|H1) 
P(E|H2)

Bayes factor

0.903 0.897 0.920 (0.903*0.897) 
(0.903*0.920)

0.975 (H2 performs 1.026× better than H1)

Marginal probability of CVS achieved - elective

Test data set [Evidence] Model 2 [Hypothesis 1] Model 4 [Hypothesis 2] P(E|H1) 
P(E|H2)

Bayes factor

0.950 0.970 0.969 (0.950*0.970) 
(0.950*0.969)

1.001 (no difference between hypotheses)

Risk scenario R12: probability CVS achieved (acute, male, 55-67+, straightforward retraction, complex grade)

Test data set [Evidence] Model 1 [Hypothesis 1] Model 3 [Hypothesis 2] P(E|H1) 
P(E|H2)

Bayes factor

0.774 0.712 0.810 (0.774*0.712) 
(0.774*0.810)

0.879 (H2 performs 1.138× better than H1)

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/ais4004-SupplementaryMaterial.xlsx
OAE
线条

OAE
线条

OAE
线条

OAE
线条

OAE
线条
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Figure 5. Tornado graph for models 1-4.
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The persistent rate of common bile duct injury in the era of laparoscopic cholecystectomy has led to 
concerted efforts to increase the rate of CVS achievement[8]. A significant amount of this work has focused 
on surgeon education and improved documentation as a means of increasing achievement rates[11,23]. This 
has been achieved at the authors’ local institution through the implementation of a standard process, 
resulting in a high rate of CVS achievement and excellent outcomes[24]. Increasingly, it is recognized that 
intraoperative factors significantly impact the ability of surgeons to achieve CVS[2,18]. This is reflected in the 
present study, which shows the significant impact of operative grade, gallbladder retraction and ability to 
identify Rouviere’s sulcus on the likelihood of CVS achievement [Table 4 and Figure 5]. When looking at 
the tornado graphs in figure 5 for patients undergoing acute laparoscopic cholecystectomy, the ability to 
retract the liver had the most impact on the likelihood of CVS achievement. For elective patients, the 
predominant driver was inflammation grade. These findings suggest a systematic difference in the reasons 
for not achieving a CVS between elective and acute operations. Consequently, different operative processes 
might be needed to optimize the rates of achievement. These findings evidence how specific operative 
features impact decision making and outcomes. Generalization of this approach across different operations 
may lead to broader insights into optimizing operative techniques.

The clinical utility of BN models in operative decision-making lies in their ability to mirror the operative 
thought process of surgeons. This is in contrast to traditional LR models that provide fixed probabilities that 
do not integrate intuitively with clinical workflow. Additionally, given that associations between predictor 
variables are accounted for by BN models, they are not subject to the same issues with multicollinearity 
encountered in regression models[25]. Furthermore, their ability to incorporate patients with missing data 
further facilitates their application in clinically uncertain environments. Cristancho et al.’s model breaks 
intraoperative decision making into the steps of assessing the information, reconciling this with known 
information, and implementing a plan of action[1]. In this model, the surgeon proceeds with the plan of 
action that has the highest probability of success. This is currently implicit, but by mirroring this process, 
BN can make these probabilities explicit, with probabilities at each step of the operation updated as more 
information becomes available, as illustrated in the Supplementary Material. This stepwise process also 
illustrates the significance of each factor [Supplementary Material]. For senior surgeons, these probabilities 
would supplement the current decision-making process, while for surgical trainees, BNs could act as 
prompts to consider all available evidence and facilitate reasoning in an uncertain environment. This is 
likely to be highly beneficial to trainees who have not yet had the procedural experience to develop the rich 
process maps and high-level heuristics of surgical consultants[26,27]. Alternatively, post-procedure reflection 
could be informed using counterfactual probabilities generated from the BN. These could provide prompts 
for discussing the possible impact of different steps taken during the operation.

To achieve this, however, high-accuracy models using well-validated, broad data sets will be required. 
Currently, models have a high sensitivity and low specificity for CVS achievement. This is reflective of the 
significant class imbalance in the present data set, with a 92% chance of achieving a CVS. This contrasts 
with the broader literature which shows a variable rate of CVS achievement, especially when this is 
externally reviewed[10,11]. In the present data set, a subtotal cholecystectomy was frequently performed when 
a CVS could not be achieved. This, coupled with the low McFadden’s pseudo R-squared values seen in the 
regression models, would suggest that a considerable number of factors influencing decision making have 
not been captured in the current models. This is more marked in the acute setting with an R-squared of 
0.185 compared to 0.314 for the elective patients. It is likely that this is due to elective patients representing a 
more homogenous range of pathophysiological status and a smaller amount of variation in process 
compared to acute patients[22]. This is driven by operative technical difficulty with previous work identifying 
a higher proportion of grade 3 and 4 operative findings in acute patients[13,24]. Taken together, these findings 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/ais4004-SupplementaryMaterial.xlsx
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202406/ais4004-SupplementaryMaterial.xlsx
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suggest that the significant class imbalance seen could be addressed through subgroup analysis of subtotal 
cholecystectomy. Focused video analysis of these patients may identify significant factors driving 
intraoperative decision making. Given the lack of clear indications for subtotal cholecystectomy included in 
current guidelines, this would contribute significantly to standardizing practice and improving patient care.

Despite a significant clinical interest in the study of BNs, there is no literature concerning their 
implementation into practice or gold standard for model development[3]. Early work has demonstrated their 
utility in personalized risk prediction for malignancy in patients with Barrett’s oesophagus. This reflects 
both challenges in development, data set requirements, and the significant barriers around testing and 
implementation. In the present study, BN models were developed by reviewing existing literature and expert 
opinion of features predicting CVS achievement. These were then arranged hierarchically using an iterative 
improvement process. Initial model development concerned the impact of setting an observation on a 
causal path. By creating a causal pathway as soon as the inflammation grade value was defined in an 
observation, the parent nodes such as age and gender were blocked. To correct this, a revised model was 
developed, including a direct and indirect path between the parent nodes, and the outcome variable (CVSA) 
was generated. A more effective means of developing BN maps may be using cognitive task analysis. Work 
by Hashimoto et al. has illustrated that surgeon knowledge can be made explicit through process 
mapping[26]. Such an approach may increase model performance by enabling the capture of a wider variety 
of data points.

A weakness of the present study was the lack of granularity seen across the network maps. Initially ranked 
nodes were felt to offer more granular insight than Boolean nodes. However, even with a large data set, the 
number of possible combinations resulted in insufficient procedures among the training and test data. 
Converting all nodes to Boolean helped but did not completely eliminate this problem. For eight Boolean 
predictor variables, there are 256 possible combinations that subdivide the data. This precluded the 
inclusion of specific surgeons as factors in predicting the likelihood of CVS achievement. In the present 
study, over 40 surgeons undertook one of the documented operations. The inclusion of each surgeon in the 
BN would have resulted in a vast number of probability pathways. This highlights a problem in BNs in 
general and is representative of a broader issue in applying machine learning techniques to healthcare. 
Given the huge volume of data generated by healthcare, the bottleneck lies not in its generation but rather in 
its capture and organization. This is further reflected in the scant examples of ML-based decision support 
tools in clinical practice in contrast to the rapidly increasing literature touting their potential utility. 
Integration of these tools into practice will require a re-imagining of the clinical workflow to enable data to 
be captured as part of workflow. Doing so will allow for the development, application, and validation of 
these novel tools.

In keeping with AI model development, the current paper represents a proof of concept. Further clinical 
work, along with more refined data sets, is imperative to enable better prediction. Upon achieving this 
offline, prospective validation is needed to ensure the safety of application. Following confirmation, real-
time risk prediction becomes feasible. However, model development should progress using multicentre data 
to ensure generalizability. Subsequent local testing is then necessary to validate the model’s applicability 
within its specific environment.

The present study illustrates how BN modeling can map surgeon decision making to facilitate reasoning in 
complex environments. Additional efforts are required to facilitate data capture and implementation. 
Nevertheless, they present a promising avenue for intuitive decision support tools.
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