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Abstract

MicroRNAs (miRNAs), a group of small regulatory noncoding RNAs, transformed our thinking on gene regulation. 
More than two thousand human miRNAs have been identified thus far. These bind imperfectly to the 3’-untranslated 
region of target mRNA and have been involved in several pathological conditions including cancer. In fact, major 
hallmarks of cancer, such as the cell cycle, cell proliferation, survival and invasion are modulated by miRNAs. 
Cancer drug resistance (CDR) has also been described as being modulated by miRNAs. CDR remains a burden 
for cancer therapy and patients’ outcome, often resulting in more aggressive tumours that tend to metastasize to 
distant organs. In this review we discuss the role of miRNAs influencing drug metabolism and drug influx/efflux, two 
important mechanisms of CDR.
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INTRODUCTION
Cancer drug resistance (CDR) is a burden in cancer therapy. It has social and economic consequences, and 
in most cases, it ends in patient death due to treatment failure. Roughly 90% of patients with metastatic 
cancers are confronted with treatment failure due to CDR. Drug resistance can be broadly classified 
into two types, intrinsic and acquired. Intrinsic drug resistance can be defined as a pre-existing genetic 
condition to a therapy approach that leads tumour cells to survive treatment, therefore contributing to 



therapy ineffectiveness from the beginning. This can be linked with drug breakdown, alteration of the 
drug target, resulting in a reduction of efficiency of targeted therapy, and altered drug transport. Acquired 
drug resistance is developed during therapy and usually due to adaptive processes, such as compensatory 
signalling pathways (reduced cell death and DNA damage response), drug inactivation, overexpression 
of drug targets, structural changes in drug targets, increased expression of drug eff lux pumps and 
epigenetics[1]. Whatever the mechanisms of drug resistance, it results in treatment failure and consequent 
proliferation of resistant tumour cells that may metastasize and end up in patient death. 

Combined actions of drug-metabolizing enzymes (DMEs) comprise Phase I and Phase II reactions of drug 
metabolism[2,3]. The former increases the polarity of drugs, followed by the conjugation reactions of Phase 
II that increase their polarity but block the reactivity of polar groups introduced in the earlier reaction. 
Subsequently, the resulting metabolite is effluxed through the membrane by ATP-binding cassette (ABC) 
transporters (Phase III reactions)[4]. Cancer cells tend to overexpress DMEs and transporters thus evading 
cancer treatment and becoming resistant to several drugs.

The term microRNAs (miRNAs) was first defined in 2001 by Lee and Ambros[5]. However, they were 
first described in 1993 when two independent groups[6,7] published experiments on the Caenorhabditis 
elegans lin-4 gene which codes for a pair of small RNAs with antisense complementarity to multiple sites 
on the 3’-untranslated region (UTR) of the lin-14 gene. Subsequently, they were shown to act on several 
key cellular processes, such as cell differentiation, cell cycle progression, and apoptosis. Thus, miRNAs 
can be defined as short (approximately 22 nucleotides) non-coding RNAs that regulate gene expression 
by binding to the 3’-UTR of messenger RNA. The small size of miRNAs and the pairing between a 
miRNA and a target site that does not need to be perfect results in a wide selection of genes that can be 
subject to regulation. Indeed, one miRNA can regulate the expression of multiple mRNAs with wide 
effects in the transcriptome[8], besides possible regulatory effects on other miRNAs, forming a circuitry of 
epigenomic regulation. However, the property that makes miRNAs versatile also hampers the prediction 
of putative targets and the conclusive mechanisms of regulation in the cell. Thus, the study of miRNAs 
can be very complex. Due to their characteristics and their broad inf luence in cell homeostasis, soon 
after their discovery, miRNAs were associated with cancer[9] and referred to as possible regulators of drug 
resistance[10]. More than two thousand human miRNAs have been identified thus far. To date, several 
studies have shown that drug resistance is influenced by miRNAs. This review intends to summarize the 
miRNAs that have been shown to regulate drug uptake proteins and Phase I, II and III drug metabolism in 
different tumours and the corresponding drugs for which the tumours are resistant.

DRUG UPTAKE PROTEINS AND MIRNAS
Several cancer drugs are absorbed by intestinal epithelial cells which express a variety of inf lux 
transporters that are specific for drugs, amino acids, peptides, organic anions and cations, and other 
nutrients. These transporters are differentially expressed in different regions in the intestine. Peptide 
transporter 1 (PEPT1/ SLC15A1), organic cation/carnitine transporter 2 (SLC22A5), organic anion 
transporting polypeptide 2B1 (SLCO2B1), and monocarboxylate transporter 1 (MCT1/SLC16A1) are 
expressed at the brush-border membrane, whereas organic cation transporter 1 (SLC22A1) is mainly 
expressed at the basolateral membrane in the small intestine[11]. Recent studies have indicated that miRNAs 
contribute to the differentiation and viability of the intestinal epithelium, and the regional differences 
in the expression of these transporters in the intestine are dependent on the differentiation of intestinal 
epithelial cells[12]. Thus, abnormal expression of miRNAs can have a clear impact on absorption of several 
drugs. We summarize in Table 1 the miRNAs that regulate uptake proteins in cell membranes. Figure 1 
shows a schematic representation of the regulation of influx and efflux proteins by miRNAS.
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SLC15A1, SLC16A1 and SLC34A2
SLC15A1 was shown to be regulated by miR-92b, causing a decrease in the expression of the uptake 
transporter[13]. Pullen et al.[14] showed that miR-29a, miR-29b, and miR-124 regulate SLC16A1, without 
being its main regulator. The authors refer that these miRs might be a complement mechanism in SLC16A1 
expression. Unfortunately, both authors failed to associate these mechanisms with specific drugs and 
consequent drug resistance. SLC34A2 was shown to be regulated by miR-939 in gastric cancer cell lines 
and tissues and miR-939 was associated with CDR in gastric cancer patients[15]. miR-939 inhibited gastric 
cancer metastasis and enhanced the sensitivity of gastric cancer cells to 5-fluorouracil treatment, although 
uptake of 5-fluorouracil is known to be predominantly by diffusion. Nevertheless, by using multivariate 
analysis, the authors could show that the combination of both miR-939 and SLC34A2 are indicators of poor 
prognosis and tumour recurrence in gastric cancer patients, pointing that miR-939 inhibits the SLC34A2/
Raf/MEK/ERK pathway, which is activated in gastric cancer.

SLC35F5
Hao et al.[16] showed that miR-369-3p may regulate cisplatin chemoresistance by directly targeting the 3’-UTR 
of SLC35F5. miR-369-3p acts as an oncogenic miRNA since it is highly expressed in non-small cell lung 
cancer cells and consequently negatively regulates SLC35F5. Thus, cisplatin is not internalized by the cell and 
consequently its therapeutic action fails.
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Target miRNA Model Drug Reference
SLC15A1 miR-92b Caco2-BBE cells NS Dalmasso et al .[13], 2011
SLC16A1 miR-29b mhAT3F, MIN6, and HEK293 cells Pullen et al .[14], 2011

miR-29a Pullen et al .[14], 2011
miR-124 Pullen et al .[14], 2011

SLC34A2 miR-939 gastric cancer cell lines and tissue 5-fluorouacil Zhang et al .[15], 2017
SLC35F5 miR-369-3p NSCLC cells, 16HBE, and HEK293T cisplatin Hao et al .[16], 2017
GLUT1 miR-128 bladder cancer cells (T24 and EJ) cisplatin Li et al .[17], 2017

Table 1. Drug uptake proteins and miRNAs that regulate their expression

NS: not stated

Figure 1. A schematic representation of the regulation of influx and efflux proteins by miRNAS



GLUT1
Regarding GLUT1 our search only retrieved one study where miR-128 regulates GLUT1[17]. The authors 
showed that the overexpression of miR-128 lowered the rate of glucose uptake and the total level of GSH. It 
also enhanced the sensitivity of bladder cancer to cisplatin.

PHASE I PROTEINS AND miRNAs
Various studies have been performed on transcriptional and translational regulation of the DMEs[18-20]. 
However, these studies have not elucidated the mechanisms of their post-transcriptional regulation. MiRNAs 
are regulators of DMEs, however, few studies have shown a direct involvement of this regulation in CDR[21].

One of the key players of drug metabolism are cytochrome P450 (CYP) enzymes that catalyse oxidation 
reactions of xenobiotics[22]. More than 90% of the reactions involved in the metabolism of all endobiotics 
and xenobiotics are catalysed by P450s[23]. The majority of CYP reactions are catalysed by a set of four CYP 
families: 1A, 2C, 2D, and 3A, with the largest fraction of the CYP reactions being catalysed by CYP3A 
enzymes. One of the most important CYPs is CYP3A4, which metabolizes from 13% of general chemicals 
to 27% of drugs[23]. Consequently, regulation of DMEs is crucial to drug efficacy and is associated with drug 
failure and/or drug resistance. In Table 2 we show the known miRNAs that regulate CYPs and influence 
CDR.

CYP1A2
CYP1A2 is an important DME since it represents 13% of all CYPs expressed in the liver and metabolizes 
about 5% of currently used drugs. CYP1A2 is also important in the metabolism of endobiotics like steroids 

Target miRNA Model Drug Reference
CYP1A2 miR-132-5p HepaRG cells Lansoprazole Chen et al .[26], 2017

Huh-7 cells
HepG2 cells
HepG2 cells Flutamide

CYP1B1 miR-187-5p NSCLC NS Mao et al .[35], 2016
A549
SPC-A-1

miR-27b HeLa cells NS Tsuchiya et al .[31], 2006
MCF-7 cells
Jurkat cells
HepG2 cells Fumonisin B1 Chuturgoon et al .[33], 2014

miR-200c Caki-1 cells Docetaxel Chang et al .[34], 2015
Caki-2 cells
A498 cells
ACHN cells
786-O cells
769-P cells

CYP2E1 miR-552 PLC/PRF/5 cells NS Miao et al .[40], 2016
HepG2 cells
C57/BL6 mice

miR-378 HEK293 Mohri et al .[38], 2010
miR-132 Primary Rat 

Hepatocytes
Rapamycin Shukla et al .[39], 2013

miR-212
CYP3A4 miR-27b Human liver tissue Atorvastatin Liu et al .[43], 2016

miR-206
miR-27b [C1 cells LS-180 cells Cyclophosphamide Pan et al .[42], 2009

Table 2. Phase I DMEs and miRNAs that regulate their expression

NS: not stated; DMEs: drug metabolizing enzymes
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and environmental pollutants like polycyclic aromatic hydrocarbons. Several genetic polymorphisms have 
been associated with increased activity and linked with lung cancer[24,25]. Regarding post-translational 
regulation of CYP1A2, one study reported that miR-132-5p decreases CYP1A2 gene expression and 
influences hepatic cells in the metabolisation of lansoprazole and flutamide[26]. The authors showed direct 
targeting of miR-132-5p to CYP1A2 and also demonstrated that the decreased expression of CYP1A2 
attenuates lansoprazole- and flutamide mediated toxicity.

CYP1B1
CYP1B1 is highly expressed in oestrogen target tissues and catalyses the metabolic activation of 
several procarcinogens (e.g., heterocyclic amines, polycyclic hydrocarbons) and the 4-hydroxylation of 
17β-oestradiol[27,28]. It is also abundant in tumour tissues. It was already shown that polymorphisms in 
CYP1B1 can influence its activity and thus are associated with cancer, namely breast cancer[29]. CYP1B1 
gene expression can also be modulated by aryl hydrocarbon receptor, an important mediator of toxic 
response and consequently drug efficacy[30]. In what concerns post-transcriptional regulation, a few authors 
have shown that miRNAs can influence CYP1B1 gene expression. One of the first authors showing this 
association was the group of Tsuchiya et al.[31] who validated miR-27b as a regulator of CYP1B1 in cervical 
and breast cancer cell lines, and also reported an inverse association of miR-27b expression and CYP1B1 
protein expression in breast tissue samples. These authors showed through immunohistochemistry that 
miR-27b decreased gene expression together with strong CYP1B1 tissue staining. However, the authors did 
not show an association of this pattern with common breast CDR. Nevertheless, since biotransformation 
of tamoxifen, a widely used drug in breast cancer treatment, occurs via CYP1B1[32], the mis-expression 
of CYP1B1 in breast cancer cells due to miR-27b could influence the efficacy of tamoxifen. Interestingly, 
Chuturgoon et al.[33] also reported the involvement of miR-27b in the metabolisation of fumonisin B1, a 
known mycotoxin, through direct targeting of CYP1B1 and hepatic neoplastic transformation, reinforcing 
the idea that miRNAs and CYPs interact in the metabolisation of drugs and environmental and food 
contaminants. Recently, miR-200c was also predicted to be involved in CYP1B1 regulation in renal cell 
cancer and resistance to docetaxel[34]. The authors used several renal cancer cell lines to show this association 
and proved that miR-200c directly targets CYP1B1 and the low expression of miR-200c in these cell lines 
is correlated with an increased expression of CYP1B1. More recently, Mao et al.[35] showed that miR-187-5p 
is decreased in non-small lung cancer and regulates CYP1B1, a direct target of miR-187-5p. The authors used 
lung cancer cell lines to demonstrate the negative correlation of both miR-187-5p and CYP1B1 and show its 
direct targeting. They also showed a correlation between the low expression of miR-187-5p with TNM stage 
and postoperative survival, and high expression of miR-187-5p with growth and metastasis. However, the 
authors failed to associate these results with drug resistance.

CYP2E1
CYP2E1 represents approximately 7% of total CYPs in the human liver. CYP2E1 catalyses the metabolism 
of several low molecular weight xenobiotics, such as organic solvents (e.g., ethanol, acetone, and 
chloroform), and several procarcinogens (e.g., N-nitrosodimethylamine and N-nitrosomethylethylamine). 
Interestingly, CYP2E1-induced ROS generation inf luences migration in breast cancer cells, thus may 
be involved in breast cancer metastasis[36]. Genetic polymorphisms have been associated with CYP2E1 
efficiency and inf luence lipid metabolism and nicotine clearance in the blood[37]. Regarding epigenetic 
regulation, miR-378 was confirmed as a CYP2E1 regulator in kidney cell lines by Mohri et al.[38]. The 
authors showed that the overexpression of miR-378 significantly decreased CYP2E1 protein levels and 
enzyme activity. An interesting detail is that miR-378 did not enable the degradation of the CYP2E1 
mRNA. Additionally, an inverse association of the expression levels of miR-378, CYP2E1 mRNA and 
protein as well as enzyme activity were revealed using a panel of 25 human livers. Unfortunately, the 
authors did not show any association with cancer drug failure. However, other authors showed an 
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association of an increased expression of CYP2E1, low expression of miR-132 and miR-212 with rapamycin 
resistance in cultured rat hepatocytes[39]. More recently, miR-552 was shown to regulate CYP2E1[40]. 
This study had the meticulousness of showing that miR-552 can inf luence CYP2E1 expression in a 
transcriptional and post-transcriptional manner. In fact, the authors showed that a non-seed region 
regulation by miR-552 can occur, thus influencing transcription and translation independently. However, 
the authors did not show any association with cancer drugs.

CYP3A4
CYP3A4 represents 30% of the CYP expression in the liver and metabolizes approximately 27% of all 
commercial drugs. For that reason, it is one of the most studied CYPs. As with the other CYPs, it has 
several isoforms that results from genetic polymorphisms[41]. Some authors showed that CYP3A4 can 
be regulated post-transcriptionally by miR-27b[42]. These authors also showed that an overexpression of 
miR-27b in the PANC1 cell line led to a lower sensitivity to cyclophosphamide, showing the impact on 
drug response and resistance. Other authors also showed that miR-27b can influence the metabolism of 
atorvastatin in the liver, a known statin used to low cholesterol levels in the blood[43]. Moreover, these 
authors also showed in the same study that miR-206 can regulate CYP3A4 and inf luence atorvastatin 
metabolism. This study was important to understand the mechanism of atorvastatin resistance, since it 
can affect 60% of the patients. Although statin is not a common cancer drug, a recent study performed in 
ovarian cancer[44] showed that atorvastatin has a role in proliferation and metastasis. In fact, the authors 
showed that atorvastatin inhibited cell proliferation of ovarian cancer cells in a dose-dependent manner 
and that its anti-proliferative activity was linked with induction of apoptosis, autophagy, cellular stress 
and cell cycle arrest via AKT/mTOR and MAPK pathways. Also, atorvastatin changed cell adhesion and 
invasion and decreased expression of VEGF and MMP9, known important proteins in epithelial-to-
mesenchymal transition[44].

PHASE II ENZYMES AND miRNAs
Regarding Phase II DMEs, although these enzymes are important players in cancer drug detoxification, 
few studies have linked them with miRNAs regulation and CDR. A summary of the miRNAs that regulate 
Phase II enzymes can be seen in Table 3. Figure 2 shows a schematic representation of the regulation of 
DMEs by miRNAS.

SULT1A1
SULT1A1 is a member of the sulfotransferase (SULT) family, which catalyse the transfer of the sulfonyl 
group from 3’-phosphoadenosine 5’-phosphosulfate (PAPS) to nucleophilic groups of a variety of xenobiotic 

Target miRNA Model Drug Reference
UGT1A1 miR-21-3p NS NS Papageorgiou et al .[53], 2017

miR-141-3p
miR-200a-3p

UGT2B4 miR-216b-5p HepG2 Epirubicin Dluzen et al .[51], 2016
miR-135a NS NS Wijayakumara et al .[54], 2017
miR-410

UGT2B7 miR-3664
UGT2B10 miR216b-5p Liver cancer Epirubicin Dluzen et al .[51], 2016
UGT2B17 miR-376c NS NS Margaillan et al .[52], 2016
GSTP1 miR-133a Head and neck, oesophageal, bladder Cisplatin and carboplatin Moriya et al .[50], 2012
SULT1A1 miR-631 Breast cancer Actinomycin D Yu et al .[47], 2010

Table 3. DMEs of Phase II and miRNAs that regulate their expression

NS: not stated; DMEs: drug metabolizing enzymes
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and endogenous compounds, thus increasing their solubility and excretion[45]. SULT1A1 is the most highly 
expressed SULT in the liver, and several therapeutic agents, such as 4-hydroxytamoxifen, are substrates 
of SULT1A1. Variability in the activity levels of SULT1A1 can influence the efficacy of some drugs and 
consequently induce drug resistance[46]. Interestingly, genetic polymorphisms in SULT1A1, such as copy 
number variation and single nucleotide polymorphisms (SNPs), are associated with altered enzymatic 
activity. In fact, some authors[47] studied SNPs in the 3’-UTR region of SULT1A1 and in silico analyses 
predicted that the 973C→T SNP could influence the binding of miR-631. Taking this into account, in vitro 
luciferase reporter assays and overexpression of miRNAs inhibitors in ZR75-1, MCF7, and MCF10A breast 
cell lines confirmed that SULT1A1 is a direct target of miR-631[47].

GSTP1
GSTP1 is a member of the GST enzyme superfamily, that catalyses the conjugation of electrophiles with 
glutathione in Phase II reactions, including platinum drugs such as cisplatin and carboplatin[48]. GSTP1 
plays several roles in cells, such as in stress responses, signalling, and apoptosis. GSTP1 knockdown 
selectively inf luenced cisplatin and carboplatin chemosensitivity, cell invasion and migration[49]. 
Overexpression of GSTP1 has been observed in many types of cancer and cell lines either inherently or 
made resistant to chemotherapy drugs, including cisplatin and various alkylating agents. As other DMEs, 
GSTP1 can be regulated by miRNAs and Moriya et al.[50] showed that reduced expression of miR-133a 
leads to an increased expression of GSTP1, contributing to drug resistance. The authors showed that the 
transfection of miR-133a repressed GSTP1 expression at both mRNA and protein levels in several different 
cell lines. Thus, the functional significance of miR-133a was investigated using head and neck squamous 
cell carcinoma (SCC), oesophageal SCC, and bladder cell lines. These authors could show that restoration of 
miR-133a expression inhibited cancer cell proliferation, invasion, and migration, suggesting that miR-133a 
may function as a tumour suppressor.

More recently, some studies were published showing the importance of miRNAs in the regulation of UDP-
glucuronosyltransferases (UGTs) enzymes[51-54]. The UGTs are critical for the efficient elimination of several 
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drugs, including cancer drugs. 

UGT1A
The UGT1A subfamily is involved in the metabolism of more than half of the drugs eliminated by 
glucuronidation. Among other examples, we can refer irinotecan, raltegravir and muycophenolic acid, 
drugs involved in cancer therapy, HIV and organ rejection, respectively. Recently, some authors showed 
that UGT1A1 can be regulated by miR-21-3p, miR-141-3p and miR-200a-3p[53]. Although the authors did not 
show any association with drug resistance, they demonstrated that polymorphisms on the 3’-UTR region 
of UGT1A1 can influence the targeting of these miRNAs and consequently its activity, namely, rs10929303, 
rs1042640, and rs8330 polymorphisms.

UGT2B
The UGT2B subfamily is responsible for metabolic clearance of several endobiotics, such as bile acids and 
steroid hormones, and xenobiotics, such as cancer drugs[55]. In fact, Dluzen et al.[51] showed that miR-216b-5p 

Table 4. Drug transporters and miRNAs that regulate their expression

Target miRNA Model Drug Reference
ABCB1 miR-129 ovarian paclitaxel Wang et al .[68], 2018

gastric cancer cisplatin Lu et al .[69], 2017
miR-145 colon carcinoma, kidney NS Ikemura et al .[73], 2013
miR-200c Breast Cancer doxorubicin Chen et al .[76], 2012
miR-218-5p gallbladder gemcitabine Wang et al .[74], 2017
miR-27a Ovarian cancer doxorubicin Zhu et al .[79], 2008
miR-298 Breast Cancer doxorubicin Bao et al .[77], 2012
miR-361 gastric cancer oxaliplatin Wu et al .[70], 2018
miR-381 Breast Cancer cisplatin Yi et al .[80], 2019

K562 cell line adriamycin Xu et al .[81], 2013
miR-451 Breast Cancer doxorubicin Kovalchuk et al .[78], 2008
miR-491-3p hepatocellular carcinoma doxorubicin & vinblastin Zhao et al .[71], 2017
miR-495 ovarian cancer & gastric cancer doxorubicin & taxol Zou et al .[83], 2017

K562 cell line adriamycin Xu et al .[81], 2013
miR-506 colorectal cancer oxaliplatin Zhou et al .[72], 2017
miR-873 ovarian cancer cisplatin & paclitaxel Wu et al .[75], 2016
miR-9 chronic myelogenous leukemia adriamycin Li et al .[82], 2017

ABCC1 miR-1291 pancreatic cancer, lung cancer, kidney doxorubicin Pan et al .[88], 2013
miR-145 gallbladder cisplatin Zhan et al .[89], 2016

Breast Cancer doxorubicin Gao et al .[90], 2016
miR-185-5p non-small cell lung cancer cisplatin Pei et al .[91], 2016
miR-326 MCF-7 cells VP-16 and doxorubicin Liang et al .[87], 2010
miR-345 MCF-7 cells cisplatin Pogribny et al .[86], 2010
miR-7 MCF-7 cells cisplatin Pogribny et al .[86], 2010

ABCC10 let-7g/i esophageal carcinoma cisplatin Wu et al .[75], 2016
ABCC2 miR-297 HCT116 cells oxaplatin and vincristine Xu et al .[92], 2012
ABCG2 mi-199a/b colorectal cancer cisplatin Chen et al .[102], 2017

miR-132 gastric cancer cisplatin Zhang et al .[103], 2017
miR-181a Breast Cancer MX Jiao et al .[98], 2013
miR-3163 Retinoblastoma Cancer cisplatin, carboplatin, vincristine, 

doxorubicin, and etoposide
Jia et al .[104], 2016

miR-328 Breast Cancer MX Li et al .[99], 2011
kidney, breast cancer MX Pan et al .[100], 2009

miR-487a MCF-7 cells MX Ma et al .[101], 2013
miR-495 non-small cell lung cancer cisplatin Guo et al .[105], 2018
miR-519c kidney, breast cancer MX Li et al .[99], 2011

NS: not stated; MX: mitoxantrone
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can influence epirubicin treatment efficacy by targeting UGT2B4 and UGTB10 in liver cancer. Interestingly, 
the approach of these authors was similar to the previous one that studied UGT1A1, studying the 3’-UTR 
region of UGT2B isoforms and associating these variants with miRNAs hybridization to messenger RNA. 
Other authors also showed that UGT2B4 can be regulated by miR-216b-5p and miR-135a[54], although not 
necessarily associated with CDR. Another isoform of UGT2B, UGT2B7, was shown to be regulated by 
miR-3664[54]. Finally, miR-376c was showed to regulate UGT2B17[52]. Once more, the authors failed to show 
an association with drug resistance but showed a possible association with steroid metabolism and prostate 
cancer.

PHASE III PROTEINS AND miRNAs
Phase III proteins are known to be responsible for drug transport through cell membranes. It is a critical 
step in allowing access of some compounds to intracellular targets. For this reason, the involvement 
of drug transport is one of the most studied mechanisms in CDR[56]. Multidrug resistance (MDR) is 
frequently linked to overexpression of one or more of drug transporters. One of these phase III proteins 
are the ABC transporters, which have an important cellular role in the efflux of several endobiotics and 
xenobiotics[57]. Approximately 50 different ABC transporters have been identified and classified in seven 
families from ABCA through ABCG[58]. The relevance of miRNAs in the regulation of ABC transporters 
has been reviewed before[11,59,60], and probably are the most studied drug metabolism proteins in what 
concerns miRNAs regulation. In Table 4 we summarize all miRNAs described as being involved in drug 
resistance by regulation ABC transporters.

ABCB1
ABCB1 is probably the most studied ABC transporter. It is also known as MDR1 or P-gp transporter and 
is often overexpressed in tumour cells with chemotherapeutic resistance, as well as in resistant cancer 
cell lines[61]. An overexpression or altered function due to genetic polymorphisms of ABCB1 increases 
resistance to taxanes (e.g., paclitaxel and docetaxel)[62], epipodophyllotoxin derivatives (e.g., etoposide and 
teniposide)[63], anthracyclines (e.g., doxorubicin)[63,64], antibiotics (e.g., actinomycin D)[63,65], vinca alkaloids 
(e.g., vinblastine and vinorelbine)[66], and tyrosine kinase inhibitors (e.g., imatinib and dasatinib)[67].

To date, several studies have been published reporting a correlation between miRNAs expression and 
ABCB1. Wang et al.[68] showed that ABCB1 was a direct target of miR-129 and that urothelial carcinoma 
associated 1 (UCA1) de-repressed ABCB1 expression by sponging miR-129. Thus, the authors revealed 
an interesting regulatory axis UCA1/miR-129/ABCB1 that sensitizes ovarian cancer cells to paclitaxel. In 
another study, it was shown that miR-129 also sensitizes cancer cells to cisplatin, namely in gastric cancer, 
by regulating ABCB1[69]. The confirmation of direct targeting was done in BGC823/DDP and MKN45/DDP 
cell lines resistant to cisplatin that presented low expression of miR-129. The authors also confirmed that 
miR-129 expression was significantly downregulated and ABCB1 upregulated in gastric cancer tissues of 
cisplatin-resistant patients. Other authors also reported this sponging activity by another long non-coding 
RNA, BLACAT1, which regulates miR-361 expression and consequently increases ABCB1 expression. 
This regulatory axis BLACAT1/miR-361/ABCB1 can influence resistance to oxaliplatin[70]. Albeit indirectly, 
miR-491-3p was shown to regulate Sp3, a transcription factor of ABCB1, in hepatocellular carcinoma and 
consequently doxorubicin and vinblastine resistance. The authors observed this regulatory axis miR-491-3p/
Sp3/ABCB1 in cell lines and tissue from cancer patients[71]. Similarly, miR-506 seems to enter a regulatory 
axis with the Wnt/β-catenin pathway which regulates ABCB1. This was demonstrated in colorectal cancer 
cell lines and helped clarify the resistance mechanism of oxaliplatin[72].

Ikemura et al.[73] showed that miR-145 regulates ABCB1 expression in intestinal epithelial cells and kidney 
cells. The authors did not show any association with chemotherapeutics but instead showed an increased 
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eff lux activity with rhodamine 123. In another study[74] miR-218-5p was shown to indirectly regulate 
ABCB1 by inhibiting the translation of PRKCE, a member of the protein kinase C family, which is known 
as an ABCB1 activator. The authors used an in vitro and in vivo approach to show these results and in fact, 
were capable of inducing gemcitabine sensitization in gallbladder cancer in both models. With the same 
approach, other authors[75] could show that miR-873 can mediate resistance to paclitaxel and cisplatin in 
ovarian cancer.

In one study with breast cancer, a correlation of miR-200c with poor response to neoadjuvant 
chemotherapeutics could be shown[76]. Unfortunately, the authors did not follow ABCB1 mRNA and protein 
expression in the patients. Instead, they used a doxorubicin-resistant breast cancer cell line (MCF7/ADR) 
to prove that miR-200c regulates ABCB1 by directly targeting its 3’-UTR. Curiously, miR-200c expression 
was observed to be downregulated over 800-fold in this resistant cell line. In two other studies[77,78] the 
importance of miRNAs in the resistance of doxorubicin in breast cancer was shown, namely, miR-298 
and miR-451. Kovalchuk et al.[78] showed that the ABCB1 is highly expressed in the MCF-7-resistant breast 
tumour cell line when compared with wild type MCF-7, and that a negative correlation exists between 
ABCB1 and miR-451 expression. Transfection of miR-451 re-established the sensitivity of the MCF-7-resistant 
cells to doxorubicin. Conversely, a decreased expression of miR-451 is correlated with higher expression of 
ABCB1 in other drug resistant cells, more precisely in a human ovarian cancer cell line and a human cervix 
carcinoma cell line. Here, the expression of miR-27a and miR-451 were upregulated in multidrug resistant 
cells compared with their parental lines, downregulating expression of the ABCB1 gene[79]. These results 
suggest that the involvement of specific miRNAs in drug resistance should be taken cautiously, since the 
results could depend on various factors, including the cell lines under study. Bao et al.[77] used a different 
breast tumour cell line, MDA-MB-231, to show that miR-298 regulates ABCB1 gene expression and increases 
resistance to doxorubicin. Remarkably, the authors also showed that miRNAs processing is altered in the 
resistant cell lines, since DICER is weakly expressed and higher levels of miR-298 precursor was detected 
instead of the mature form. Also in breast cancer, miR-381 overcomes cisplatin resistance by targeting 
ABCB1[80]. Their results showed that miR-381 was down-regulated in cisplatin resistant breast cancer tissues 
and cell lines, and ABCB1 expression is inversely correlated. The authors observed an interaction between 
miR-381/ABCB1 and showed that inhibition of miR-381 reduced sensitivity of MCF-7 and MDA-MB-231 
cells to cisplatin. MDR1 knockdown could overcome cisplatin resistance in MCF-7 and MDA-MB-231 
cisplatin resistant cells, while MDR1 overexpression led to DDP resistance in MCF-7 and MDA-MB-231 
cells. Thus, a biological interaction between both was demonstrated. miR-381 seems also to regulate 
adriamycin resistance in chronic myelogenous leukaemia K562 cell lines[81]. Functional analysis indicated 
that restoring expression of miR-381 and also miR-495 in K562 adriamycin-resistant cells was associated 
with an inverse expression of ABCB1 and consequently increased drug accumulation in the cells and drug 
sensitisation. Other authors[82] also showed that miR-9 can have the same effect in adriamycin resistance. 
Another study[83] showed that miR-495 can sensitize ovarian and gastric cancer cell lines to a mixture 
of taxol and doxorubicin. The authors started showing that resistant cell lines can tolerate a high dosage 
of this drug mixture and have increased levels of ABCB1. Later, they showed that miR-495 is inversely 
correlated with ABCB1 and miR-495 expression induction lowered ABCB1 expression levels and sensitized 
cells to taxol and doxorubicin. This pattern was also shown in vivo.

ABCC1, ABCC2 AND ABCC10
The ABCC transporter family needs the presence of glutathione for its activity and ABCC1 and ABCC2 (also 
known as MRP1 and MRP2) share 49% amino acid residues. Altered ABCC1 activity is known to confer 
resistance to vincristine, etoposide, anthracyclines (doxorubicin, daunorubicin, epirubicin), mitoxantrone 
(MX), f lutamide, and methotrexate[84]. ABCC2 can mediate resistance to methotrexate, cisplatin, 
irinotecan, paclitaxel, and vincristine. Both ABCC1 and ABCC2 are mainly expressed in solid tumours 
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from the kidney, colon, breast, lung, ovary, and as well as in cells from patients with acute myelogenous 
leukaemia[85]. ABCC10 (also known as MRP7) is genetically more distant (33%-36%) and is also expressed 
in several tissues. It can modulate resistance to paclitaxel, docetaxel, vincristine, vinblastine, Ara-C, 
gemcitabine and epothilone-B[85].

Regarding ABCC1, various studies were published showing a regulation by miRNAs. Pogribny et al.[86] 
showed that miR-345 and miR-7 increase sensitivity to cisplatin in breast cancer cells. The authors used a 
MCF-7 cell line resistant to cisplatin which expresses high levels of ABCC1 and lower levels of miR-345 and 
miR-7. Also in breast cancer, other authors showed that miR-326 represses ABCC1 expression and sensitizes 
VP-16 resistant MCF-7 cells to VP-16 and doxorubicin[87]. Another study reported that miR-1291 is originated 
from a nucleolar RNA, SNORA34, and influences doxorubicin resistance in pancreatic cancer, lung cancer, 
kidney cancer[88]. More recently, miR-145 was shown to regulate cisplatin resistance in gallbladder cancer 
cell lines by targeting ABCC1. Lower miR-145 and higher ABCC1 expression levels in gallbladder tissue 
predicted poor prognosis of gallbladder cancer patients who received chemotherapy[89]. Another microRNA, 
miR-145, was also reported to modulate doxorubicin resistance by targeting ABCC1 in an in vitro and 
in vivo study[90]. miR-185-5p was shown to control cisplatin resistance via ABCC1 in non-small cell lung 
cancer. This inverse association was only demonstrated in lung cancer cell lines A549 resistant to cisplatin, 
thus, lacking data in lung cancer tissue[91].

Regarding ABCC2, only one study has been published showing an inverse correlation of miRNA with 
ABCC2. Xu et al.[92] reported the validation of ABCC2 as a target of miR-297 and consequently the 
downregulation of its expression. An inverse correlation was demonstrated in colorectal carcinoma cell 
lines resistant to oxaliplatin and vincristine. After transfection of miR-297-mimics, in vitro and in vivo, 
these cancer cells overcame resistance to oxaliplatin.

Regarding ABCC10 also one article has reported its modulation by miRNAs. In this study, miR-let-7g/i was 
shown to hinder ABCC10 translation in oesophageal carcinoma and thus influencing cisplatin resistance. 
The authors also refer a regulation of proliferation and apoptosis possibly through interaction with BAG3, 
a protein involved in several cellular processes. However, this assumption needs confirmation with further 
studies[93].

ABCG2
ABCG2 is mainly expressed in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers. 
ABCG2 is responsible for the transport of several cancer therapeutic drugs. In cancer cells, as with other 
ABC transporters, ABCG2 is highly expressed, resulting in reduced drug concentrations inside the cell 
and consequent drug resistance[94]. Increased ABCG2 expression has been linked to resistance to MX, 
topotecan, 7-ethyl-10-hydroxycamptothecin, anthracycline and tamoxifen in breast cancer[95-97]. In a 
microarray analysis approach Jiao et al.[98] showed that miR-181a is significantly downregulated while 
ABCG2 is overexpressed in MCF-7 cells resistant to MX. Using the same cells, the authors transfected 
them with miR-181a which abrogated ABCG2 expression and sensitized MCF-7 MX-resistant cells to MX. 
Furthermore, in an in vivo approach, an intra-tumoral injection of miR-181a mimics inhibited ABCG2 
expression, and enhanced the antitumor activity of MX. Other authors have also shown that ABCG2 is 
regulated by miR-328[99,100], miR-519c[99] and miR-487a[101] in breast cancer and influences MX resistance. 
Li et al.[99] also showed that differences in expression of miR-519c and miR-328 are evident in stem cell-
like ABCG2+ cells and their ABCG2- counterparts. Thus, new insights about drug resistance can be 
discovered by investigating miRNAs regulation in stem cells. In fact, more recently, several studies have 
been published showing the effect of some miRNAs in cisplatin resistance by modulating the ABCG2 
transporter in stem cells, more precisely, miR-199a/b in colorectal cancer stem cells through the Wnt/
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β-catenin pathway (by directly targeting Gsk3β), and the authors showed that miR-199a/b is over-expressed 
in ALDHA1+ (primary colorectal cancer stem cells) and contribute to cisplatin resistance. Thus, here the 
authors showed that the effect on ABCG2 is not direct[102]. Other authors reported that miR-132 modulates 
cisplatin resistance by targeting the SIRT1 gene in gastric cancer stem cells[103]. SIRT1 is a known upstream 
regulator of ABCG2 and the authors showed an inverse correlation between miR-132 and SIRT1 in gastric 
cancer tissues. Jia et al.[104] showed that miR-3163 inhibits cisplatin resistance in retinoblastoma cancer stem 
cells. The authors validated ABCG2 as a target of miR-3163 and ABCG2 expression decreased significantly 
after ectopic overexpression of miR-3163. Finally, Guo et al.[105] reported a miR-495/UBE2C/ABCG2/ERCC1 
axis as modulator of cisplatin resistance in non-small cell lung cancer cells. Once again, miR-495 is not 
a direct regulator of ABCG2 but instead regulates UBE2C that has ABCG2 and ERCC1 as downstream 
targets.

CONCLUSION
The intricate circuitry of miRNAs, the post-transcriptional regulation they mediate and their possible 
role in CDR is still far from being clarified in all its aspects and consequences. Epigenetic regulation, 
particularly by miRNAs, besides DNA methylation or histone acetylation, apparently has an important role 
not only in carcinogenesis but also in cancer treatment. The more than 2000 different human microRNA 
species identified thus far are part of an intertwined network of concurrently regulated proteins that 
mediate cell survival upon a challenge by cancer drugs by controlling the levels of expression of genes 
coding for metabolizing enzymes and transporter proteins as outlined above, being thus connected 
with drug resistance. Besides miRNAs, also long non-coding RNAs may regulate mRNAs’ levels of 
expression correlated with CDR. The fine tuning of the non-coding-RNAs system is also regulated by 
hypermethylation making the whole of the epigenetics a self-regulated system whose overall implications 
in CDR are yet to be fully uncovered but can hardly be considered as non-players in CDR and cancer 
therapy failure[1].
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