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Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play pivotal roles in nervous 
development, homeostasis, and various neurological diseases. Most of the previous understanding of microglia 
came from rodents or a limited number of postmortem microglia. However, as significant differences between 
murine and human microglia have been verified, it has become increasingly apparent that rodents cannot 
accurately recapitulate human genetics and pathology, thus hindering the translation of microglial findings from 
rodents to humans. In addition, primary human microglia are notoriously difficult to obtain and lack the scalability 
required for many high-throughput assays. Fortunately, recent advances in microglia generation from human 
pluripotent stem cells (hPSCs) have enabled exciting new avenues to decipher or revisit microglial biology in the 
human context. Given the complex interactions between microglia and other CNS cells, hPSC-derived microglia-
like cells (MGLs) were further engrafted within hPSC-derived brain organoids (BOs), which largely lack microglia 
due to their different embryonic origins, to study human microglial functions in either health and disease state 
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closer to brain microglia. This is a rapidly evolving field, especially in the last five years, that has begun to yield 
novel insights into the genetics of human microglia and their unique role in neurological diseases. In this review, we 
will summarize the versatile applications of hPSC-derived MGLs and microglia-containing BOs. Specifically, we will 
discuss their applications in disease modeling, omics and systematic analysis, interaction with other CNS cell types, 
as well as transplantation-based human-mouse chimerism.

Keywords: Pluripotent stem cells, neurodegenerative disease, neuroinflammation, microglia, brain organoids, 
disease modeling

INTRODUCTION
Microglial ontogeny and basic functions
Microglia, which reside in the brain, are the major innate immune cells of the central nervous system 
(CNS), first described and subsequently delineated by Pio del Rio-Hortega et al. more than a century ago. In 
the last three decades, the understanding of microglia has rapidly expanded due to the development of a 
series of murine models and the application of new techniques such as genetic manipulation, chemical 
ablation, fluorescent labeling, lineage tracing and multi-photon microscopy. Specifically, the ontogeny of 
microglia was elegantly revealed in 2010 by tracing the development of microglia[1]. Microglia originate from 
yolk sac progenitors generated during the first wave of primitive hematopoiesis and migrate through the 
bloodstream to the neural tube early in embryonic development[1,2]. Once the blood-brain barrier is formed, 
the flow of yolk sac progenitor cells into the CNS stops[3] and the early microglia population is homeostatic 
and maintained throughout adulthood by local self-renewal[4].

After colonization and maturation in the developing CNS[1,5], microglia play key roles in development, 
homeostasis, and multiple neurological diseases. Microglia in the developing neocortex actively interact 
with neural precursor cells and regulate their number[4,6,7]. Microglia shape synaptic connections and 
neuronal circuits through synapse pruning that engulfs and removes axons and dendritic spines and 
provide nutritional support[5,8,9]. Aberrant pruning has been associated with neurodevelopmental 
disorders[10], including schizophrenia[11] and autism spectrum disorder (ASD)[12]. Microglia also keep the 
CNS under constant surveillance by responding to a spectrum of stimuli, including various pathogen-
associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and also neural 
tissue damages in the form of neurodegeneration-associated molecular patterns (NAMPs)[13,14].

It is now well established that microglia and associated neuroinflammation are the shared hallmark of 
multiple neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and 
Amyotrophic lateral sclerosis (ALS)[15-18], while the pivotal role of microglia in sculpturing synapses is tightly 
associated with several neurodevelopmental disorders including ASD and schizophrenia. The field has 
recently been driven by single-cell RNA sequencing (scRNA-seq) and multi-omics studies that have 
revealed numerous genes and variants/mutations identified as risk factors for neurodegenerative diseases, 
with a considerable number of which are preferentially expressed by microglia. Likewise, the phenotype of 
microglia activation is recognized to be highly heterogeneous, especially in the last five years, accompanied 
by the development of scRNA-seq[19].

Murine vs. human microglia
So far, the majority of microglial functions and their heterogeneity have been understood through elegant 
studies on animal models and mouse microglia[20]. Nevertheless, interspecies differences often hinder the 
translation of microglia-related findings from rodent models to humans, especially in age-related 
neurodegenerative diseases. Rodent and human microglia differ markedly in proliferation rates, adhesion 
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properties, and preservation of the key gene[21,22]. It is becoming increasingly apparent that rodents do not 
accurately recapitulate human genetics[23-25]. For example, more than half of the AD risk genes, such as CD33 
or CR1, in microglia are below 70% identity between human and mouse[26,27].

Differences in expression profiles between species have also been documented. For instance, several studies 
of microglial transcriptomes have reported vast expression differences in brain development-related genes, 
inflammatory factors, complement genes, and risk genes associated with neurodegenerative diseases[22,28,29]. 
Overall, these species-specific differences may result in mouse models that do not faithfully mimic human 
diseases, thus hindering the clinical translation of previous findings[30]. These differences, therefore, 
highlight the need for faithful human models to delineate the cellular and molecular machinery associated 
with homeostatic, neuroprotective, and neurotoxic microglia.

Human samples
Primary human microglia from postmortem human brain tissue or diseased neurosurgical specimens have 
long been notoriously difficult to obtain, the limited number of which cannot be applied for many high-
throughput applications. However, given that microglia are quite sensitive to environmental changes, the 
properties of available human microglia may vary considerably due to the different disease states of patients 
and the multi-step purification procedure, which may dampen the accuracy of in vivo models[28,31,32]. 
Furthermore, isolated microglia do not warrant studies to determine whether they exhibit phenotypically 
normal characteristics under disease-affected conditions, or whether they gain aberrant phenotypes due to 
their environmental origin.

Novel tool: human pluripotent stem cells and organoids
To study homeostatic human microglia, researchers have turned to human pluripotent stem cells (hPSCs), 
including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), which 
can differentiate into all three germ layer cell types [Figure 1]. Note that patient-specific iPSCs are typically 
reprogrammed from their somatic cells, such as PBMCs and fibroblasts, by introducing reprogramming 
factors such as the combination of OCT3/4, SOX2, KLF4, and c-MYC[33,34] [Figure 1]. Over the past decade, 
the advent of iPSC technologies has enabled the massive generation of various human CNS cell types that 
bear the genetic makeups of their patient donors[35]. Mounting studies based on reprogrammed iPSCs have 
focused on modeling the pathogenesis of inherited neurodegenerative diseases and screening for potential 
drugs, which have added new insights into previous findings[36,37].

Since late 2016, with a clear understanding of microglial ontogeny and advances in stem cell biology, 
researchers have attempted to derive microglia from hPSCs, providing exciting new approaches to study 
and decipher human microglia biology and cell type-specific biology[38-43] [Figure 1]. Human PSCs could, in 
principle, provide an unlimited source of human microglia that can be used for multiple biochemical assays, 
omics analyses (transcriptomics, proteomics and metabolomics, etc.), secretome analysis, and co-culture 
with other hPSC-derived cell types (e.g., astrocytes and neurons) in vitro. Notably, given the complex 
interactions between neurons and glial cells, hPSC-derived microglia can also be incorporated into hPSC-
derived organoids, which largely lack microglia due to their different embryonic origins, making them a 
better in vitro model[44-47]. Furthermore, microglial progenitor cells xenografted in the mouse brain bring a 
new in vivo model fitted in the brain cell environment, as they manifest phenotypes most resembling 
primary human microglia[27,48-52].

In this review, we aim to review the versatile applications of hPSC-derived microglia and microglia-
containing organoids. Briefly, we will discuss their applications in disease modeling, omics and systematic 
analysis, interaction with other CNS cell types, as well as transplantation-based human-mouse chimerism.



Page 4 of Wu et al. Ageing Neur Dis 2023;3:19 https://dx.doi.org/10.20517/and.2023.0120

Figure 1. Microglia and human pluripotent stem cells. Microglia are increasingly emerging as potential drivers of CNS diseases. Using 
high-throughput sequencing techniques such as GWAS and multi-omics analysis, a series of risk genes/loci associated with 
neurodegenerative diseases have been detected selectively or preferentially in microglia rather than other cell types in large populations 
of diseased and healthy patients. It is thus necessary to understand the molecular mechanisms of disease-associated genetic variants 
and their potential effects in mediating microglial functions. To circumvent the differences between mouse and human microglia, novel 
methods have been recently developed to differentiate hPSCs, including hESCs and hiPSCs reprogrammed from patients’ somatic cells, 
as well as isogenic hPSCs edited with CRISPR/Cas9, into MGLs that can provide an unlimited source of human microglia, especially 
bearing those variants, for disease modeling and studying the mechanisms of microglial activation. CNS: Central nervous system; 
CRISPR: clustered regularly interspaced short palindromic repeats; ESCs: embryonic stem cells; GWAS: genome-wide association 
studies; hESCs: human embryonic stem cells; hPSCs: human pluripotent stem cells; iPSCs: induced pluripotent stem cells; MGLs: 
microglia-like cells; PBMCs: peripheral blood mononuclear cells; WES: whole exome sequencing; WGS: whole genome sequencing; WT: 
wild type.

HPSC-DERIVED MICROGLIA
While differentiation protocols of all major neural cell types from hPSCs were rapidly developed and widely 
studied, microglia production has long been elusive. Between 2016 and 2017, six seminal studies described 
dedicated differentiation protocols for generating human microglia-like cells (MGLs)[38-43]. Most protocols 
aim to mimic the in vivo trajectory of embryonic microglia differentiation, by exposing hPSCs to a series of 
growth factors or small chemicals in a timed, staged fashion. These protocols are also highly inspired by 
ontogeny studies that trace the microglia lineage from mesodermal primitive yolk sac progenitors to MYB-
independent erythroid progenitors (EMPs), yolk sac macrophages, and eventually microglia[1,53,54]. 
According to this developmental trajectory, these protocols are able to generate cells that transition from 
hPSCs to microglia through a range of lineage states.
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Note that these protocols use different culture conditions, media, and factors driving differentiation to 
generate MGLs in vitro[55]. Therefore, these protocols differ significantly in the required length of the 
differentiation period, the sorting needs to enrich intermediate cells, and the characteristics of the obtained 
MGLs. These protocols were neatly compared and discussed, which has also been nicely reviewed 
elsewhere[26,56]. Later on, the protocol was recently simplified by introducing a combination of pro-microglial 
factors, SPI1 and CEBPA (or CEBPB), into hPSCs, which skipped the progenitor cell stage of primitive 
development and thus shortened the time required for differentiation[57,58]. Each of these studies performed 
functional tests on their derived MGLs to validate that they could recapitulate a spectrum of traditional 
microglial cell behaviors.

For example, the ability of microglia to characterize inflammatory cues was tested by stimulating 
lipopolysaccharide (LPS), interferon-γ (IFN-γ) or interleukin-1β (IL-1β) and confirmed by measuring 
reactive oxygen species (ROS) or various inflammatory cytokines[39,40,42]. The propensity of MGLs to migrate 
towards the injury sites was also examined by the addition of ADP, which is usually released from injured 
neurons, or by employing a 3D culture system with laser-induced injury[57,59]. Basically, MGLs exhibited a 
rapid response, extending processes towards the perceived site of injury[38,40,41]. Furthermore, the phagocytic 
capacity was examined by utilizing various substrates, including pHrodo E. coli particles, microbeads coated 
with Zymosan, or more brain-associated substrates such as synaptosomes and fluro-conjugated fibrillar 
β-amyloid/tau oligomers[39-41,43]. Notably, one recent study showed that MGLs treated with multiple CNS 
substrates including synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta (Aβ) fibrils 
adopted diverse transcriptional states in a dish, which are discovered by scRNA-seq and are analogous to 
those found in human brain microglia in vivo[60]. Overall, these tests validated that a large number of 
microglia-related activities or states can be well-modeled in vitro, thereby underpinning their usage in 
further applications.

CO-CULTURE WITH OTHER CELL TYPES
Mounting studies have shown interactions and regulation between microglia and astrocytes[61,62], while the 
neuronal regulation of microglial activation has also been well-studied[63,64]. Moreover, the interactions 
between vascular endothelial cells and microglia have also been implicated in development and diseases 
during recent years[65-67]. Given the complexity of various cell types inside the brain milieu, it might not be 
wise to translate the microglial functions from monocultured MGLs directly to the brain. Co-culturing 
human MGLs with hPSC-derived cells such as neurons, astrocytes, endothelial cells, or other cell types will 
definitely facilitate mature interactions and thus provide extra important understanding [Figure 2].

Many studies recognized that their MGLs may have transcriptomic defects due to the absence of other brain 
cell types. Despite the fact that key microglial survival factors, such as CSF1 or IL34, were included in the 
culture medium for each MGL differentiation protocol, a large number of signaling factors and physical 
interactions were lacking. Other cytokines such as CX3CL1, CD200 and TGF-β, critical factors for keeping 
microglia homeostasis[32,53,68], were therefore added into the differentiation paradigm[40]. To further improve 
it, most protocols attempt to produce their MGLs closer to the microglial fate by the co-culture with 
astrocytes or neurons, which is able to induce significant changes in both MGL morphologies and 
transcriptome profiles[38-40,42,43,69].

In a recent study, Guttikonda et al. developed a novel method to generate microglia from hPSCs and 
established a defined hPSC-derived tri-culture system comprising pure populations of hPSC-derived MGLs, 
neurons and astrocytes, aiming to explore crosstalks associated with neuroinflammation[70]. Specifically, the 
tri-culture system was used with AD hPSCs bearing APPSWE+/+ mutations and their isogenic wild-type 
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Figure 2. The versatile applications of human pluripotent stem cell-derived microglia. Since MGLs and their derivatives were first 
developed from hPSCs, they have been applied in a variety of disease model systems in a very short time. To date, the most prominent 
studies have been conducted in the context of modeling multiple neurodegenerative and neurodevelopmental diseases, omics and 
systematic analysis, interaction with other CNS cell types, as well as transplantation-based human-mouse chimerism. The most 
widespread application is the use of monocultured MGLs in dissecting the inflammatory endeavors underlying neurodegenerative 
diseases. Given the complex interactions between microglia and other CNS cells, hPSC-derived MGLs were further co-cultured with 
hPSC-derived neurons and astrocytes, or engrafted within hPSC-derived BOs, which largely lack microglia due to their different 
embryonic origins, to study human microglial functions in either health and disease state closer to brain microglia. Other than 
incorporating into in vitro cultured BOs, human MGLs can also be transplanted in vivo into a fully developed mammalian brain and 
largely repopulated and functionally integrated into the brain, producing extensive chimerism. The chimeric model is intended to 
faithfully study the pathophysiology of human microglia within a mature and intact milieu. Moreover, hPSC-derived MGLs also provide 
a viable platform for conducting functional genomics or drug screening. For example, a promising approach is enabled by CRISPR-based 
functional genomics in differentiated MGLs. Pooled CRISPRa and CRISPRi screens enable scalable modeling of changes in gene 
expression and discovery of regulatory mechanisms through gene screens. In addition, integrative omics analyses, including RNA-seq, 
ATAC-seq, ChIP-seq, as well as proteomics, have been performed based on this platform. BOs: Brain organoids; CNS: central nervous 
system; CRISPR: clustered regularly interspaced short palindromic repeats; CRISPRa: CRISPR-activation; CRISPRi: CRISPR interference; 
hPSC: human pluripotent stem cells; MGLs: microglia-like cells; WT: wild type.

controls. Probably due to the initiation of reciprocal signaling by microglia and astrocytes in this system, 
they further uncovered that complement C3, which tightly associates with inflammatory responses and 
synaptic pruning, was potentiated in tri-culture and further enhanced in the APPSWE+/+ tri-cultures. This 
study thus successfully clarified, by the co-culture platform, the major cell type that is responsible for the 
increase in complement C3 in AD.
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BRAIN ORGANOIDS AND CHIMERISM
In vitro brain organoids
Developing human in vitro models to study microglia has been a major challenge, with primary microglia or 
hPSC-derived microglia being viable options. Recent studies have shown that it might not be a wise strategy 
to study microglia function and associated phenotypes without considering the complex interactions 
between microglia and other cells in the brain. Elucidating the inner responses of microglia requires the 
production of MGLs within the brain milieu. To correct the in vivo environment-dependent defects in the 
MGL transcriptomes, studies have turned to investigating the possible use of hPSC-derived brain organoids 
(BOs) to study the function of human microglia in health and disease states[71-73].

However, previously described “mini-brains” showed that they lack microglia, which arise in the mesoderm, 
due to the ectodermal lineage that produces neuroepithelial cells. To further demonstrate microglial 
functions within the complex interactions of various cell types, in vitro BOs, particularly microglia-
containing BOs, as also reviewed in another study[74], may provide an approximate brain environment and 
are recognized as the best in vitro model [Figure 2]. To address this, Abud et al. documented that MGLs 
migrate into and transplant within BOs when both are maintained in a co-culture system[40]. The 
transplanted MGLs, in turn, adopt a more divergent morphology than MGLs alone in vitro, and rapidly 
turned into an amoeboid morphology responding to the injury[75]. In recent years, MGLs or EMPs derived 
from hiPSCs have been used to co-culture with cortical and cerebral organoids, respectively, for modeling 
both brain development and disease pathogenesis[47,50,76-79]. These protocols generally require the time-
consuming addition of expensive cytokines and growth factors during the differentiation of immune or 
progenitor cells, respectively.

Interestingly, a recent study by Ormel et al.[80] modified the original protocol[71,72] by reducing neural 
ectodermal stimulators and delaying matrigel coating to generate organoid-grown microglia (oMGs) that 
develop innately within the BOs. This finding was predicated on a scRNA-seq study, which showed that 
BOs contain a population of cells defined by mesodermal markers[81]. This suggests that the presence or 
absence of this population may affect the development of microglia within BOs. They validated that the BOs 
inherently developed cells expressing the myeloid transcription factor PU.1, the conical microglial marker 
IBA1, as well as the lysosomal marker CD68. The transcriptome profile of oMGs was shown to be similar to 
that of human microglia in vitro. Notably, the expression levels of homeostatic makers like P2RY12 and 
TMEM119 are still much lower in the oMGs, suggesting that some in vitro environmental effects may not 
be fully corrected[31,32].

The chimeric model
The counterpart to in vitro BOs may be a model involving in vivo transplantation of human MGLs into a 
fully developed mammalian brain. Neonatal transplanted human neural or microglial progenitor cells can 
be largely repopulated and functionally integrated into the brain or spinal cord of adult host rodents, 
producing extensive chimerism. This chimeric model is therefore intended to faithfully study the 
pathophysiology of human microglia within a mature and intact milieu [Figure 2].

Specifically, the hPSC-derived hematopoietic progenitor cells (HPCs) were delivered to neonatal mouse 
brains to develop hPSC microglial chimeric mouse brain models. Transplanted HPCs contribute to 
environment-dependent differentiation into microglia, and acquire the signatures of in vitro human 
microglia and the capability of responding to tissue injury[27]. Specifically, transplanted MGLs respond to 
peripheral LPS insults by elevating inflammatory genes including MSR1 and CD45. Additionally, they could 
rapidly migrate towards the injury site upon laser ablation. More importantly, the engrafted MGLs 



Page 8 of Wu et al. Ageing Neur Dis 2023;3:19 https://dx.doi.org/10.20517/and.2023.0120

possessed a unique transcriptional profile, greatly different from that of murine microglia, when responding 
to Aβ plaques and revealed several human-specific responding genes.

Similarly, in another study, a chimeric mouse model was established by transplanting hPSC-derived 
primitive macrophage progenitor cells (PMPs) into the brains of newborn mice[50]. The scRNA-seq 
uncovered that the xenografted hPSC-derived MGLs largely retained human microglial properties, in which 
the expression profile is consistent with physiological human microglia and recapitulated the microglial 
heterogeneity. Importantly, the engrafted MGLs in the cerebral cortex manifested much more complex 
morphologies, participated in murine synaptic pruning, and also responded dynamically to cuprizone-
induced demyelination[50].

By transcriptome analyses, it is also shown that the expression profile of engrafted MGLs resembles ex vivo 
human microglia at 2 months of age, and these MGLs have remedied transcriptome impairments observed 
in monocultured human MGLs[28]. In a scenario where the TREM2R47H mutation may not induce significant 
defects in MGLs in vitro, in vivo studies of engrafted hPSC-derived MGLs have shown that such mutation 
results in functional defects. To this end, MITRG-immunodeficient mice were transplanted with 
homozygous HPCsR47H at the neonatal stage, prompting the development of robust amyloid pathology 
within the mouse brain. Although the TREM2 expression is normal, the ability of MGLs to migrate to Aβ 
plaques is significantly deficient[27].

Despite these exciting advantages, however, the chimeric model also has its limitations. The most 
prominent one is the lack of peripheral adaptive immune system, since this model employs 
immunodeficient mice. As microglia also actively crosstalk with peripheral immune cells during the 
development of neurodegenerative diseases[82-84], this shall not be ignored when studying the disease 
pathology using the chimeric model. The caveat might be addressed by simultaneously transplanted 
microglia progenitors or BOs and hematopoietic stem progenitor cells (HSPCs), differentiated from the 
same hPSC line, into newborn immunodeficient mice. This strategy has been applied in a study exploring 
progressive human immunodeficiency virus type one (HIV-1) infection, in which human neuroglial 
progenitor cells (mainly astrocytes and oligodendrocytes) and HSPCs were injected into the lateral ventricle 
and liver, respectively[85]. This method established a new chimeric model with a chimeric brain and 
humanized peripheral immune system, which might be applied to MGL-related studies.

Collectively, these recent advances demonstrate that the generation of functional MGLs in vitro greatly 
dwarfs the bottleneck of prior acquisition of human microglia. However, while inducing MGLs in vitro may 
now be well-established, the environment-dependent nature of microglia and the limited studies comparing 
MGLs with reference microglia in vivo may fuel the field that may faithfully recapitulate the brain milieu.

VERSATILE APPLICATIONS OF HPSC-DERIVED MICROGLIA
Since MGLs were first induced from hPSCs, they have been applied in a variety of disease models in a very 
short time. To date, the most prominent studies have been conducted in modeling multiple 
neurodegenerative diseases and neurodevelopmental disorders, and a range of omics and functional 
genomic studies [Figure 2].

Disease modeling
Neurodegenerative diseases mainly include AD, PD, and ALS, among others. Of those, AD is the leading 
cause of about 60%-70% of dementia cases[86], and PD is the second most common neurodegenerative 
disease, affecting 2%-3% of the population over 65 years old[87,88]. Neurodegenerative disorders are 



Page 9 of Wu et al. Ageing Neur Dis 2023;3:19 https://dx.doi.org/10.20517/and.2023.01 20

characterized by a progressive decline in cognitive performance and/or motor performance that are caused 
by progressive neuronal death inside the CNS[89,90]. To be frustrated, very few effective treatments for those 
diseases are available. Dissecting the pathogenesis of neurodegenerative diseases is urgently needed to 
develop novel therapeutic strategies.

In the last decade, genetic variation in neurons has been recognized as an important causal factor in 
neurodegenerative diseases. However, amid the multi-omics era, microglia are increasingly emerging as 
potential disease drivers rather than passive participants. Particularly in recent years, genome-wide 
association studies (GWAS)[91-96] and multi-omics analysis[97,98] have uncovered an unexpected dominant role 
for microglial activation in increasing the risk of neurodegenerative diseases. For example, in a recent study, 
a GWAS analysis of a large number of AD cases and non-demented elderly people, with the largest sample 
involving 1,126,563 individuals, has demonstrated that many risk genes related to neurodegenerative 
diseases or preferentially or selectively expressed in microglia rather than other cell types in the 
brain[91,92,99,100]. It is thus necessary to understand the molecular underpinnings of disease-associated genetic 
variants and their potential effects in mediating microglial functions [Figure 1].

Thus, MGLs derived from hPSCs provide viable options for understanding human microglia biology and 
facilitate functional studies of GWAS risk genes, as MGLs express most CNS disease-related genes[40,101]. Of 
particular note, risk variants can be corrected by CRISPR/Cas9 genome editing to generate isogenic hPSCs 
with the same genetic background except for the variants [Figure 1]. This is extremely important, especially 
considering the genetic heterogeneity of the affected population.

Parkinson’s disease
PD is characterized by the accumulation of α-synuclein (α-Syn) in dopaminergic neurons. Release of 
oligomeric/fibrillar α-Syn from damaged neurons may potentiate neuronal death partially via microglial 
activation. One of the first applications of hPSC-derived MGLs in modeling diseases was dissecting the 
possible effects of several early-onset PD mutations in microglial functions[102]. MGLs were differentiated 
from iPSC lines reprogrammed from familial PD patients who possessed a triplet of the SNCA gene 
encoding α-Syn, or the SNCAA53T mutation. Induced MGLs were shown to phagocytose monomeric or 
fibrillar α-Syn; however, after endogenous overexpression or after the addition of monomeric α-Syn to the 
medium, this activity was greatly dampened in SNCA triploid mutants[102]. They further revealed that the 
endocytosis of monomeric α-Syn was actin-independent, whereas the fibrillar form was taken up through an 
actin-dependent pathway, thus hinting at new potential targets for aggregation clearance[102].

To investigate whether fibrillar α-Syn activates the NLRP3 inflammasome in human microglia. hPSC-
derived MGLs were used as an in vitro model for α-Syn activation[103]. MGLs can be activated by the mutant 
α-SynA53T released by hPSC-derived dopaminergic neurons. Unexpectedly, α-Syn antibody complexes 
enhanced rather than inhibited inflammasome-mediated IL-1β release, suggesting that α-Syn antibodies are 
uniquely neuroinflammatory in a human context. Transplantation of MGLs within an α-Syn humanized 
mouse model led to caspase-1 activation and neural death, which was further aggravated by α-Syn 
antibodies. The findings may bring a caveat that therapies of depleting protein aggregates by antibodies may 
produce paradoxical inflammatory effects in human microglia.

Importantly, in a very recent study, Langston et al. found that the influence of PD-associated non-coding 
variants, as identified by GWAS, on leucine-rich repeat kinase 2 (LRRK2) expression is propagated 
exclusively through microglia, and not by other cell types in the brain[104]. By using hPSC-derived MGLs, 
they elucidated microglia-specific regulatory chromatin regions that regulate LRRK2 expression in human 
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frontal cortex and substantia nigra. In addition, they applied a large-scale CRISPR interference (CRISPRi) 
screen in MGLs and identified a regulatory DNA element containing single nucleotide polymorphism 
(SNP) rs6581593 that affects LRRK2 expression. This study thus suggests that cell types should be 
considered when assessing the role of non-coding variants in disease pathogenesis and reveals mechanisms 
of association of non-coding regions of PD risk genes.

Alzheimer’s disease
As numerous microglia genes have recently been implicated in regulating AD risk[105-110], these studies 
carefully analyze risk genes to unravel the genetic basis of this disease. To date, most of the work using 
hPSC-derived MGLs has been devoted to dissecting the pathogenesis of AD. For example, Lin et al. 
investigated the impact of the APOE ε4 allele on the function of human microglia[76]. An APOE3/3 iPSC line 
was edited by CRISPR/Cas9 genome editing to produce an isogenic homozygous APOE4/4 line. This 
genetic change contributed to the dysregulation of more than 1,000 genes, as well as the suppression of the 
uptake of Aβ oligomers. These MGLs were then co-cultured with BOs, derived from amyloid-beta precursor 
protein (APP)-overexpressed iPSCs, and manifested diffuse amyloid pathology[111]. APOE3/3 MGLs within 
the BOs were shown to greatly reduce the number of Aβ, whereas the phagocytosis ability of APOE4/4 
MGLs was dampened. Similarly, converting APOE4/4 into isogenic APOE3/3 by CRISPR/Cas9, in turn, 
recovered the phagocytic deficits.

The creation of isogenic APOE4 MGLs has also been applied in another recent study. By doing this, Victor 
et al. explored the interaction of microglia with neurons and revealed the refractory properties of 
APOE4-MGLs compared to their isogenic APOE3 controls. Specifically, APOE4-MGLs evoked fewer 
calcium transients when cultured with APOE3 spheroid conditioned media (CM), and were insensitive to 
ATP uncaging[112]. The purinergic signaling, mediated by the purinergic receptor P2RY12, which is highly 
expressed in microglia, might be impaired. While the homeostatic microglial state is featured by highly 
expressed P2RY12, APOE4 might thus dampen the microglial surveillance of neuronal activities. 
Mechanistically, APOE4 reprogrammed the microglial energetics towards a pro-inflammatory state, as well 
as lipid processing, which led to extracellular cholesterol accumulation. Particularly, CM from 
APOE4-MGLs suppressed neuronal activities by the potentiation of neuronal lipid-gated GIRK currents. 
Reducing extracellular cholesterol accumulation with Triacsin C (TrC), an ACSL1 inhibitor that prevents 
lipid accumulation, could restore purinergic signaling and also neuronal activities.

Triggering receptor expressed on myeloid cells-2 (TREM2), expressed on myeloid cells, is another key AD 
pathogenic gene, which is the most studied gene after the development of hPSC-derived MGLs. The 
membrane protein TREM2 regulates critical functions of microglia, including phagocytosis and chemotaxis, 
and plays a pivotal role in the pathogenesis of AD. The TREM2R47H mutation has been shown to possess a 
risk comparable to that of a single APOE ε4 allele[105,106]. One study has shown that TREM2 was transcribed 
into mRNA with altered splicing, and was significantly decreased in mice bearing a heterozygous 
TREM2R47H mutation[113]. However, human MGLs containing the identical mutations did not show TREM2 
reduction or altered splicings. To further support this discrepancy, Xiang et al. demonstrated that human 
MGLs containing either heterozygous or homozygous TREM2 deletions exhibited defective 
phagocytosis[113]; however, MGLs containing heterozygous R47H variant did not recapitulate this phenotype. 
It is observed using both E. coli fragments and human Aβ plaques. Thus, those studies re-emphasized the 
importance of employing human models that faithfully recapitulate disease-associated risk genes/variants to 
enhance their translatability.
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To fully dissect the role of TREM2 in human microglia, McQuade et al. obtained three isogenic TREM2-
knockout (KO) iPSC lines using CRISPR/Cas9 and further differentiated these cells into MGLs to study the 
transcriptional and functional impact of TREM2 deletion[114]. They found increased susceptibility of 
TREM2-KO MGLs to M-CSF-dependent survival, impaired phagocytosis of disease-associated substrates 
such as APOE, and defects in CXCR4-mediated chemotaxis. Those collectively lead to an attenuated 
response to Aβ plaques. Single-cell sequencing of xenografted human microglia further documented the loss 
of disease-associated microglia (DAM) phenotype in human TREM2-KO microglia. Similarly, in another 
study, TREM2-KO MGLs exhibited exaggerated Ca2+ signaling in response to purinergic agonists (e.g., 
ADP) that shape the damage response of microglia[115]. Driven by increased expression of P2Y12 and P2Y13 
receptors, this ADP hypersensitivity leads to greater Ca2+ release, which triggers sustained Ca2+ inflow and 
modulates the motility of TREM2-KO microglia to a greater extent.

Microglia apply oxidative phosphorylation (OXPHOS) to supply energy in a normal surveillance state, but 
undergo metabolic conversion to glycolysis, facilitating them to execute rapid responses. The role of 
TREM2 on microglia metabolic function was studied in patient-specific iPSC-derived MGLs carrying 
TREM2 loss-of-function variants[116]. They showed that MGLs with TREM2 variants (e.g., R47H) manifested 
profound metabolic defects, including reduced mitochondrial respiratory capacity and inability to undergo 
glycolytic immunometabolic conversion. Mechanistically, dysregulated PPARγ/p38MAPK signaling was 
observed to be caused by TREM2 variants, while activating those pathways may ameliorate the metabolic 
deficits in these cells and consequently rescue critical microglial functions such as Aβ phagocytosis.

Other AD risk genes have also been studied using this human model. For example, CD33, whose 
polymorphisms are associated with late-onset Alzheimer’s disease (LOAD), is expressed on myeloid 
immune cells, including microglia. A recent study analyzed CD33-KO hPSC-derived MGLs for cytokine 
expression, phagocytosis, and its associated oxidative burst[117]. CD33 depletion constitutively activated 
inflammation-associated pathways with increased phosphorylation of splenic tyrosine kinase (SYK) and 
extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as increased levels of IL-1β, IL-8, and IL-10. 
The phagocytosis and phagocytic oxidative burst of aggregated Aβ and bacterial particles were also 
increased after CD33 knockout. This study suggests that CD33 deletion is beneficial for phagocytosis of Aβ 
but potentially harmful for oxidative bursts and inflammation.

SNP rs616338 is another genetic variant recently identified by GWAS that results in a p.S209F amino acid 
substitution in the ABI3 gene[118]. ABI3 expression is higher in microglia than other CNS cell types, and is a 
structural component of the WAVE2 complex, which is known to regulate lamellipodia formation, 
membrane folding, and phagocytosis. This study obtained ABI3-KO iPSC lines and further ABI3-KO MGLs 
and found that ABI3-KO MGLs showed significantly lower uptake of Zymosan-conjugated pHrodo beads, 
reduced expression levels of the scavenger receptor MSR1 and increased expression levels of the glucose 
transporter SLC2A1. ABI3-KO cells were less responsive to ADP in the transwell migration assay despite 
higher mRNA expression of the P2RY12 receptor in KO cells. The lack of ABI3 did not obviously affect Aβ
42 secretion, tau phosphorylation at Ser214 and APP phosphorylation at Thr668 in co-culture with hiPSC-
derived neurons carrying the APPSwe mutant. The overall results suggest that ABI3 deficiency in microglia 
significantly impairs phagocytosis and ADP-induced migration, but produces limited effects on AD-like 
pathology.

In addition to deleterious risk variants, potentially protective variants in microglia are increasingly being 
identified. For example, the P522R variant of PLCG2 is associated with a reduced risk of AD[119]. To 
investigate this, chimeric AD and wild-type mice were established by transplanting PLCG2P522R or isogenic 
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wild-type hPSC-derived MGLs. The PLCG2P522R variant greatly increased microglial human leukocyte 
antigen expression and induced antigen presentation, chemokine signaling and T cell proliferation 
pathways by single- and bulk-RNA sequencing as well as histological analysis. This study demonstrates that 
the PLCG2P522R variant enhances the ability of microglia to recruit T cells and present antigens, and notably 
primes a transcriptional profile that is shown to be reduced in the brains of AD patients.

Although the role of neurochemical pathways in microglia has been extensively studied, the 
mechanoreceptors that regulate microglial function remain largely unexplored. A very recent study used 
hPSC-derived MGLs to study PIEZO1, a mechanotransduction ion channel[120]. They found that PIEZO1 
orchestrated the clearance of Aβ by improving phagocytosis, survival, and lysosomal activity. Specifically, 
Aβ suppressed PIEZO1-mediated calcium transients. Accordingly, the activation of PIEZO1 with a selective 
agonist, Yoda1, greatly enhanced microglial phagocytosis to promote Aβ clearance both in human and 
mouse AD models. Therefore, this study suggests that, by controlling the activated PIEZO1 channels, the 
microglial defects in AD patients may be improved, thereby reducing the Aβ burden.

Amyotrophic lateral sclerosis
ALS is a fatal disease characterized pathologically by motor and cortical neurodegeneration and 
microgliosis. Mutations in the C9orf72 gene are the most common mutations in familial and sporadic ALS 
and familial fronto-temporal dementia (FTD). The role of C9orf72 mutations has been well-studied in 
neurons previously, with less in microglia. Recently, studies have generated C9orf72 ALS/FTD patient-
derived iPSCs and differentiated them into MGLs[121]. Monocultures of C9orf72 MGLs had essentially 
similar transcriptome characteristics to control MGLs. However, when treated with Aβ or synaptosomes, 
the mutant MGLs manifested deficient phagocytic activity and exhibited exacerbated immune responses. 
They further found that the expression of endosomal markers and lysosome-associated membrane proteins 
was changed in mutant MGLs, as was seen in patient autopsy tissues.

The FUSP525L mutation is highly penetrant and leads to earlier onset and faster progression of ALS cases. To 
study its role in microglia, Kerk et al. used iPSC lines bearing FUSP525L mutation and their isogenic control 
lines to differentiate human MGLs[122]. They found that the mutation led to mislocalization of FUS proteins 
from nucleus to cytoplasm in MGLs. The mutation also caused changes in the transcriptome profile and 
revealed differentially expressed genes associated with microglial functions. For example, many 
chemoreceptor genes were altered and further dampened calcium signaling for chemoreceptor activation. 
The phagocytic ability and cytokine release were also examined but were not obviously affected in mutant 
MGLs.

Unlike variants in coding regions, risk loci in non-coding regions have been largely unexplored by genetic 
association studies; however, these risk loci may play a previously unappreciated but increasingly 
understood role in the pathogenesis of diseases. Recently, a study performed a region-based rare variant 
association analysis of 6139 ALS genome-wide untranslated regions (UTRs) and 70403 non-ALS 
controls[123]. They found that 3′UTR variants of IL-18 receptor accessory protein (IL18RAP) were 
significantly enriched in the control genomes and were associated with a 5-fold lower risk of ALS 
development. Mechanistically, the variant reduced mRNA stability and the binding of double-stranded 
RNA binding proteins. In addition, the variant per se attenuated the neurotoxicity of hiPSC-derived MGLs 
carrying the C9orf72 mutation by mediating the NF-κB signaling, thereby conferring neuroprotective 
advantages for motor neurons and rendering it a protective variant for ALS.
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Down syndrome
Down syndrome (DS) is caused by the trisomy of human chromosome 21, and is featured by retarded brain 
development and serves as a common risk factor for AD, partly because the APP gene is located on 
chromosome 21[124]. Although microglia regulate synaptic plasticity during neurodevelopment, its role in DS 
and AS in DS (called DSAD) remains elusive. Previously, studying the role of microglia during brain 
development has been quite challenging due to the lack of an appropriate model; however, the generation of 
hPSC-derived MGLs provides a novel platform to study the concerted interactions among different cell 
types and their crosstalk in the human-brain-like environment over a long-term process of in vivo 
development.

Indeed, Jin et al. leveraged microglia-containing BOs and mouse chimeras and demonstrated that DS-MGLs 
showed defective development and functions[79]. Specifically, DS-MGLs exhibited larger soma size and 
branching impairment, as well as an enhanced synaptic pruning ability, and further displayed dystrophic 
and senescent phenotypes responding to pathological tau derived from DSAD human brain tissues. 
Furthermore, by RNA-sequencing, the type I interferon (IFN-I) signaling is shown to be upregulated in 
DS-MGLs. The inhibition of the IFN-I pathway by silencing IFNAR expression could improve the 
abnormal DS-MGL functions and prevent senescence.

Autism spectrum disorder
ASD is tightly associated with impaired synaptic pruning during brain development, and thus microglia is 
shown to be a key cell type that contributes to the disease pathology[10]. A recent study generated a chimeric 
platform to investigate the neuro-immune activities in ASD with macrocephaly. MGLs in this chimeric 
model were well survived for several months, and reached full maturation, closely resembling human 
microglia in situ[47]. The morphology of ASD-MGLs at 12 weeks post transplantation (wpt) is featured by 
increased soma size and primary process thickness, as well as increased filopodia, which is accompanied by 
a reactive phenotype. Furthermore, through the generation of ASD and control BOs and their incorporation 
into unaffected human microglia, it was observed that those microglia only responded to ASD-BOs in terms 
of morphology changes. This is a quite important notion that the cell-non-autonomous changes of 
microglial phenotypes were driven by the ASD brain environment, but not the intrinsic microglia genetic 
predisposition.

Multi-omics and systematic screens
One of the core advantages of hPSC-derived MGLs is that an exponential increase of cells can be harvested 
compared to traditional methods. In general, more than 100-fold MGLs can be obtained from the starting 
population of hPSCs[125]. Furthermore, the self-renewal biology of hPSCs could, in principle, provide an 
unlimited source of human MGLs that could be used for high-throughput experiments, such as omics 
analysis (transcriptomics, proteomics, and metabolomics) and systematic screening [Figure 2].

A recent study used CRISPR/Cas9 genome editing to generate hPSC lines with several AD variants at the 
INPP5D, TREM2, SORL1 and CD33 loci and further differentiated them into MGLs, in which AD-like 
expression profiles were recapitulated[98]. Note that all MGLs thus share the same genetic background, 
except those variants, which can reduce the genetic bias among individuals. They further combined 
integrative omics analyses, including RNA-seq, ATAC-seq, ChIP-seq, and proteomics, and found that the 
upregulation of APOE is a convergent pathogenic node of AD[98].

In addition to this, hPSC-derived MGLs provide a viable platform for conducting functional genomics or 
drug screening. A promising approach is enabled by CRISPR-based functional genomics in differentiated 
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cells. Pooled CRISPR-activation (CRISPRa) and CRISPRi screens enable scalable modeling of changes in 
gene expression and discovery of regulatory mechanisms through gene screens. Such a platform was 
recently established using overexpressed transcription factors to directly convert cell fate[126]. Specifically, 
they selected six transcription factors (PU.1, MAFB, CEBPA, CEBPB, IRF5, and IRF8) that are highly 
expressed in human microglia, and engineered them into an iPSC line within two integrated cassettes at the 
safe harbor loci for doxycycline-induced expression. This allowed the differentiation process of MGLs to 
take only 8 days.

On this basis, inducible CRISPRa/i machinery was stably integrated into the safe harbor loci of hPSCs, 
respectively, to enable robust overexpression and knockdown of endogenous genes, as well as large-scale 
loss-of-function (LOF) and gain-of-function (GOF) gene screens[126]. On this platform, pooled CRISPRa/i 
screens were performed to discover potential regulators of microglial survival, proliferation, phagocytosis, 
and inflammatory activation. Screens with scRNA-seq as a readout showed that these microglia adopted a 
range of states reflecting those observed in the human brain and identified regulators of specific states, 
which could enable functional characterization and therapeutic targeting of these states. Thus, hPSC-
derived MGLs confer a large-scale, multi-modal CRISPRa/i-based genetic screen that can systematically 
identify regulators of microglia states and their functions.

CONCLUSIONS AND PERSPECTIVES
With advances in technologies such as hPSC cultivation, scRNA-seq, CRISPR/Cas9 systems and lineage 
tracing, research around microglia has generated substantial growth in our understanding. In particular, 
with the recent development of robust methods for studying hPSC-derived MGLs and BOs, researchers now 
have more optional strategies available to verify and expand previous findings in rodents.

Revisiting the protocols
As we described earlier, there are a range of protocols in use, and depending on the study, subtle differences 
may be introduced that may bring varied relevance to the human context[26,56]. Studies have demonstrated 
that co-culture with other cell types or adding supplements into the medium further primes MGLs towards 
a more accurate microglia fate; however, more studies are required to reveal how deficiencies are corrected. 
In some protocols, hPSCs may have been differentiated into monocytes[127]. These cells are then exposed to 
extracellular cues that lead to macrophages with microglial features or later trans-differentiate into MGLs. 
However, the use of monocytes as a model for human microglia may be controversial because of the 
different ontogenetic origins of microglia and peripheral macrophages. Therefore, no consensus has been 
reached regarding a unique method for generating hPSC-derived MGLs.

The production of large numbers of MGLs from hPSCs is an important and seemingly initial step in 
understanding how human microglia behave. The human MGLs hold great promise for dissecting the 
potential functions of a growing number of risk loci associated with various neurological diseases[93-96]. The 
platform will thus be important for translational research and drug screening as well as for the development 
of precision medicines. In addition, human MGLs might also be promising regenerative agents in 
transplantation therapies, as hPSC-derived neurons are.

Beyond this, it is important to combine the high-throughput in vitro assays and other in situ or in vivo 
findings within more complicated and/or accurate models such as BOs or human-mouse chimeras. The 
development and use of this paradigm will likely yield more translational results to humans.



Page 15 of Wu et al. Ageing Neur Dis 2023;3:19 https://dx.doi.org/10.20517/and.2023.01 20

Considering the aging status
As hPSCs were basically reprogrammed from somatic cells, either young or aged donor cells, the aging 
features were largely rejuvenated[128-130]. Indeed, when cultured alone or co-cultured with neurons and 
astrocytes cultured in two-dimensional monolayer or three-dimensional organoids, hPSC-derived MGLs 
are most similar to fetal or early postnatal human microglia. The expression of key microglial markers such 
as TREM2, P2RY12, and TMEM119 in hPSC-derived MGLs was significantly lower compared to microglia 
isolated from adult brain tissue[131]. As such, MGLs and their aging status might be scrutinized in future 
studies, especially when modeling the pathogenesis of neurodegenerative diseases.

Several avenues, however, might be employed to render cellular senescence, for instance, by introducing 
progerin, a truncated Lamin A protein that causes the pathology of Hutchinson-Gilford progeria syndrome 
(HGPS)[132], or by telomerase manipulation[133]. The treatment with chemicals, such as hydroxyurea, triggers 
senescence featured by increased β-Gal staining and ROS production, decreased proliferation, and DNA 
damage profiles[134]. However, given the sensitivity of MGLs to stimuli, the use of chemical induction 
methods may warrant caution.

Alternatively, maintaining the cellular aging status has been achieved by direct reprogramming of adult cells 
in recent years[34,135,137]. Typical reprogramming events were performed on adult fibroblasts and astrocytes 
that can be converted to neurons[137-139]. However, reprogramming microglia to neurons has been 
controversial, or furthermore, proved unsuccessful under a stringent lineage-tracing condition[140,141]. The 
extra challenge with the microglia reprogramming events might come from the cross-lineage barrier if 
looking at the epigenetic landscape of neural development. As such, direct reprogramming of adult cells 
into microglia would be, in a similar fashion, much trickier. To address this, continuous endeavors will have 
to be devoted.
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