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Abstract
Topical drugs have gained a lot of interest with their massive market growth and are available in various dosage 
forms. Prodrug compounds of transdermal delivery systems can be very different and designed to convert into the 
form of active pharmaceutical ingredients (APIs) through enzymatic action once they enter the body. The skin, as 
an interfacial barrier between the body and surroundings, has demonstrated critical roles in metabolizing, filtering, 
and detoxifying to minimize certain side effects and improve the medication benefits of topically administered 
products. It is well recognized that the drug pharmacokinetics can be altered by the presence of skin enzymes 
driven by biotransformation reactions. To evaluate the effectiveness of a topical generic drug product, its safety, 
and bioequivalence with the reference one, models assessing enzyme metabolic activity are highly required for 
testing the amount of drugs that are metabolized or can potentially be metabolized in both healthy and 
compromised skin. Thus, knowledge of skin composition and enzyme expression levels is of paramount importance 
in mapping the relevant metabolism that may have occurred. Regulatory authorities have also been making efforts 
to develop efficient and harmonizable protocols to evaluate the metabolism of transdermal products. This review is 
a compilation of reported skin metabolizing enzymes, including their role in both drug metabolism and homeostasis 
regulation, along with their localization and quantification in skin equivalents (and/or membrane layers). Various 
aspects that potentially affect the skin enzyme metabolism study were also discussed with respect to drug 
development considerations.
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INTRODUCTION
Global topical drug delivery has gained extensive interest in the pharmaceutical and dermatological 
industry, signifying a market growth from USD $109.1 billion in 2023 to USD $176.8 billion by 2030[1,2]. 
Topical drugs are medication products that are directly administered to the spot of the outer skin 
surface[3,4], where the drug molecules can penetrate through skin layers, producing non-systemic (e.g., local 
effects within skin layers) or, to a lesser extent, systemic effects (e.g., enter blood circulation)[5]. It is well 
known that topical administration can avoid the hepatic first-pass metabolism that could otherwise reduce 
drug absorption and bioavailability. Over the last decades, however, studies have revealed significant 
expression of skin enzymes in the metabolic activity of topical drugs[6-8]. These enzymes are described as 
drug-metabolizing enzymes (DMEs), which are capable of performing biotransformation and detoxification 
of drug molecules, and also potentially result in activation of toxic metabolites and cutaneous reactions[6,9].

Despite numerous topical products on the market, the enzymatic profile of DMEs and apprehension of 
other skin enzymes (e.g., which enzymes are present, where exactly they are localized, and the underlying 
biotransformation mechanisms) remain unclear. Assessing the roles of skin enzymes and downstream 
metabolic pathways following drug exposure is an essential approach for drug development and targeted 
drug delivery to ensure equivalent safety and efficacy in clinical translation [from in vitro data to in vivo or 
in vitro-in vivo correlation (IVIVC)]. Thus, this review aims to provide an overview of: (i) skin metabolic 
enzymes (DMEs), as well as their interactions with substrates and drugs, (ii) the role of epidermal enzymes 
in maintaining homeostasis, (iii) the evaluation of DMEs cellular locations, molecular functions, and their 
abundances using advance analytical and modeling techniques, (iv) drugs and vitamins metabolism in skin, 
and (v) key considerations in drug development. The work is expected to provide updates on skin DMEs 
and support the development of new research models, strategies and regulatory authorities toward the stage 
of standardized clinical practice and drug testing improvement.

SKIN MORPHOLOGY
The skin is composed of a multilayered structure, including the epidermis, dermis, and hypodermis, and 
features an intricate network of cells, nerves, and receptors. The epidermis, which is a thin stratified layer of 
epithelium with five different cell strata, is divided into two regions: the stratum corneum (SC) or non-
viable epidermis, and viable epidermis consisting of stratum lucidum, stratum granulosum, stratum 
spinosum, and stratum basale[10]. Keratinocytes are the major cell type in the epidermis, making up 95% of 
the total, and play a vital role in sustaining the integrity of the skin barrier and homeostasis. More details of 
the roles of keratinocytes in homeostasis will be discussed in the following section. Other important cells 
such as Langerhans cells, melanocytes, and Merkel cells are distributed throughout the viable layers. Starting 
from the innermost layer of the epidermis, the stratum basale (SB) is anchored to the basement membrane, 
which is also known as the dermal-epidermal junction, by integrins. This layer consists of a large volume of 
highly proliferative cells, including the epidermal progenitor and stem cells. Continuous proliferation of 
these stem cells gives rise to specified cells such as melanocytes and, in particular, keratinocytes that can 
undergo stratification, differentiate and migrate upwards (from basale to corneum layer) to displace the 
surficial cells, a process called keratinization[11]. Several transcription factors (TFs), such as the activator 
protein-1 (AP-1), nuclear factor erythroid-related factor 2 (Nrf2), and aryl hydrocarbon receptor (AhR), are 
thought to regulate the signaling pathway of keratinocyte differentiation genes and govern the epithelial 
development[12]. Among the skin TFs, AhR is found to be expressed in every type of skin cell, including 
keratinocytes, melanocytes, fibroblasts, and immune cells, and it has been identified as a promiscuous 
binding site for many endogenous and exogenous compounds. Following the keratinocyte differentiation, 
the nuclei eventually degrade, and other organelles are catabolized by various epidermal enzymes[13]. Finally, 
the terminally differentiated cells form the outermost SC, which is made up of anucleated and flattened 
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dead keratinocytes (also termed corneocytes) embedded in the lipid matrix (such as ceramides, cholesterol, 
free fatty acids, and phospholipids). The arrangement of corneocytes in a dense lamellar structure in SC 
provides an efficient physical barrier of skin against the ingress of compounds from reaching viable tissue. 
The dermis, located underneath the SB layer, primarily consists of fibroblasts, which are responsible for the 
synthesis and secretion of collagen, elastin, and hyaluronic acid into the intercellular matrix. In the dermis, 
there are also other cells such as adipocytes, endothelial cells, and reticular fiber networks such as hair 
follicles, eccrine glands, and sebaceous glands. The hypodermis, the deepest layer of the skin, is composed of 
subcutaneous fat and loose connective tissue[14]. The compositions of skin with different stages of cell 
differentiation and expression reflect distinct barrier properties of the multilayered skin structure and, 
subsequently, the extent of metabolism.

DRUG-METABOLIZING ENZYMES
Once drugs pass the physical barrier, DMEs act as a biochemical barrier, metabolizing and detoxifying (or 
toxifying) drug compounds from skin cells[15]. DMEs are typically found in the viable epidermis, with the 
majority found in keratinocytes (the primary cells of the epidermis)[15-17]. These enzymes are classified into 
phase I (i.e., oxidation, reduction, hydrolysis) and phase II (i.e., conjugation)[18-20].

Phase I enzymes include cytochromes CYPs, alcohol dehydrogenases (ADHs), aldehyde dehydrogenase 
(ALDHs), aldehyde oxidases, amine oxidases (AOCs), carboxylesterase (CESs), cyclooxygenases, esterases, 
epoxide hydrolases (EPHX), leukotriene A4 hydrolases, and flavin-containing monooxygenases (FMOs)[8]. 
As one of the most versatile enzyme families, CYPs (especially CYP1-3) are responsible for > 75% of phase I 
metabolic activity of general drug types[19,21]. Along with the distinct classification of isozymes, most 
dermatological drugs are either substrates, inducers, or inhibitors of CYPs, resulting in a myriad of potential 
reactions (e.g., drug-drug interactions)[20]. CYPs and other enzymes from phase I facilitate detoxification 
through (i) the biotransformation of prodrugs to their active metabolites or by (ii) increasing the excretion 
rate that involves the conversion of lipophilic compounds into more hydrophilic compounds. Of 
importance, the former process has been associated with the potential generation of procarcinogens (which 
can then be metabolized into toxic carcinogens)[20,22]. On the other hand, the latter process may result in 
insufficient drug potency, leading to reduced therapeutic efficacy (or a low threshold for effectiveness). As a 
member of the cytochrome P450 group (phase I enzymes), CYP11A1 plays significant roles in the human 
skin, such as initiation of local steroidogenesis and metabolism of Vitamin D, as well as regulation of the 
protective barrier and skin immune functions. Skin pathology could happen with disturbances in CYP11A1 
activity[23]. Action of CYP11A1 was observed on the unmodified side chain of Vitamin D3, which produces 
20-hydroxyvitamin D3 [20(OH)D3] (considered as the major product), and further oxidizes the side chain 
to generate 20,23-dihydroxyvitamin D3 [20,23(OH)2D3]; 20,22-dihydroxyvitamin D3 [20,22(OH)2D3]; and 
17,20-dihydroxyvitamin D3, with 20-hydroxyvitamin D3; 17,20,23-trihydroxyvitamin D3 [17,20,23(OH)3

D3]; and 17-hydroxyvitamin D3 as minor products[24,25]. Other CYP enzymes such as CYP27A1, CYP2R1, 
CYP3A4, CYP24A1, and CYP27B1 could further metabolize the CYP11A1-derived hydroxyderivatives with 
the production of at least 18 hydroxy metabolites[25,26].

Phase II enzymes such as hydroxysteroid dehydrogenase (HSD), glutathione S-transferase (GST), UDP-
glucuronosyltransferase (UGT), N-acetyltransferase (NAT), sulfotransferase, and acetyltransferase further 
promote the metabolism and elimination of drugs or intermediates through conjugation of more polar 
functional groups to the drugs. The GST is identified as the most prominent phase II enzyme, comprising 
three superfamilies (cytosolic, microsomal, mitochondrial)[27]. Altogether, the biotransformation of DMEs is 
characterized as the rate-determining steps in drug metabolism. Common DMEs found in human skin, 
including ex vivo native skin and reconstructed skin equivalents, are listed in Tables 1 and 2, though this list 
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Table 1. Common phase I drug metabolic enzymes detected in skin, its substrates or reactions performed, and topical drugs 
metabolized by the enzyme

Enzyme Substrates/reactions performed Topical drug Reference

ADH1A Aldophosphamide, aliphatic alcohols Ziagen, cyclophosphamides [28]

ADH1B Aliphatic alcohols, hydroxysteroids, retinol Retinyl palmitate [28]

ADH1C* Aliphatic alcohols, retinol, steroids N/A [28]

ADH5 Pentanol, ω-hydroxyl fatty acids N/A [28]

ALDH1A1 Acetaldehyde, aldophosphamide, aliphatic aldehydes, retinal N/A [29]

ALDH1B1 Acetaldehyde, aliphatic aldehydes, lipid peroxidation-derived 
aldehydes

N/A [29]

ALDH1L1 10-formyl-tetrahydrofolate N/A [29]

ALDH2 Aldehydes Nitro-glycerine [29]

ALDH3A1 Medium-chain aliphatic and aromatic aldehydes N/A [29]

ALDH3A2 Fatty and long-chain aliphatic aldehydes N/A [29]

ALDH4A1 Glutamate-ϒ-semialdehyde N/A [29]

ALDH6A1 Methylmalonate semialdehyde, oxidative decarboxylation of 
methylmalonate semialdehyde to acetyl-CoA and propionyl-
CoA

N/A [30]

AO Aza- (and oxa-) heterocycles, oxidize endogenous/exogenous 
aldehydes to carboxylic acid

Carbazeran, citalopram, pyridoxal, 
tamoxifen, vanillin, zoniporide

[31]

AKR1A1 Aldehyde N/A [32]

AKR1B1 Aldose N/A [32]

AKR1C1-3 Trans-dihydrodiols of aromatic hydrocarbons N/A [32]

AKR1D1 Δ4-3-ketosteroid 5β-stereospecific N/A [32]

AKR7A2 Azole (e.g., posaconazole, voriconazole) Azole antifungal drug [33,34]

CBR1 Aldehydes and ketones to hydroxyl Laxoprofen, pentoxifylline [35]

CYP1A1 Dibenzo [a, l] pyrene, 7,12-dimethybenz[α]anthracene Dacarbazine [36]

CYP1A2 Dibenzo [a, l] pyrene, 7,12-dimethybenz[α]anthracene Acetaminophen, caffeine, imipramine, 
pirfenidone, theophylline

[36]

CYP1B1 Dibenzo [a, l] pyrene, 17β-estradiol, fatty acid, polycyclic 
aromatic hydrocarbons

Estradiol, melatonin, retinol [37]

CYP2B6 Bupropion, O-deethylation of 7 ethoxy-4-trifluoromethyl 
coumarin

Aminopyrine, clonazepam, diazepam [38]

CYP2E1 Chlorzoxazone hydroxylation, para-nitrophenol hydroxylase Tretinoin [39]

CYP3A4/5/7 Erytchromycin N-demethylase, cyclosporine Bexarotene, benzodiazepines, 
clindamycin, lidocaine, tretinoin, opioids, 
sandimmune 

[40]

CYP4B1 N-hydroxylation of aromatic amines, W-hydroxylation of lauric 
acid

N/A [41]

CYP4F8 19-Hydroxylation of prostaglandin H1 and H2 N/A [41]

CYP4F12 Oxidation of arachidonic acids into 18-hydroxy arachidonic acid N/A [41]

CYP7B1 25-hydroxycholesterol, 27-hydroxycholesterol, DHEA Prasterone [41]

CYP8A1 Eicosanoids N/A [8]

CYP11A1 Hydroxylation of cholesterol to pregnenolone, hydroxylation of 
Vitamin D3

Lanosterol, lumisterol 3 [26]

CYP2R1 25-hydroxylation of Vitamin D3 N/A [42]

CYP24A1 Hydroxylation of 1α, 25(OH)2D3 and 25(OH)D3 N/A [42]

CYP26B1 Retinoic acid (Vitamin A) Tretinoin [43]

CYP27A1 27-hydroxylation of cholesterol and 25-hydroxylation Vitamin 
D3 

N/A [44]

CYP27B1 Vitamin D3 metabolism N/A

CYP3A4 and 

[45]

CYP39A1
7α-hydroxylation of 24-hydroxy cholesterol N/A [41]

CYP51A1 4β-desmethyllanosterol, 24,25-dihydrolanosterol, 24-
methylenedihydrolanosaterol, obtusifoliol

Imidazole  [46,47]
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CYB5A N/A Ruxolitinib [48]

FMO1 N-oxygenation of secondary and tertiary amines (benzydamine) Benzydamine, ketoconazole, rifampicin [49]

FMO3 Sulfides and tertiary amines to sulfoxide and N-oxide Cimetidine, nicotine [50]

FMO5 Ketones to esters N/A

EPHX1 (dermis) and 

[50]

EPHX2 (epidermis)
Hydrolysis of arene and aliphatic epoxide to less reactive and 
become more water-soluble dihydrodiol by the addition of water 
(Trans)

N/A [51]

STS (epidermis) Hydrolysis of aryl and alkyl sulfate Estrone sulfate, lovastatin [52]

ADH: Alcohol dehydrogenase; *previously named as ADH1, ADH2, and ADH3; ALDH: aldehyde dehydrogenase; AO: aldehyde oxidase; AKR: 
aldo-keto reductase; CBR: carbonyl reductase; CYP: cytochrome P450; FMO: flavin-containing monooxygenases; EPHX: epoxide hydrolase; 
MHBD: 2-methyl-3-hydroxybutyryl-CoA dehydrogenase; STS: steroid sulfatase; DHEA: dehydroepiandrosterone; N/A: not applicable.

Table 2. Common phase II drug metabolic enzymes in skin, its substrates or reactions performed, with examples of inducers or 
inhibitors

Enzyme Substrates/reactions performed Topical drug Reference

17β-HSD11 5-androstane-3,17-diol (3-diol) into androsterone Glucocorticoids

GSTK1 (κ)

[53]

CDNB N/A

GSTM2 (µ
)

[54]

CDNB, glutathione N/A

GSTO1 (Ω
)

[55]

Ascorbic acid, CDNB N/A

GSTP1 (π)

[56]

CDNB, ethacrynic acid glutathione N/A

GSTT1 (θ)

[57]

CDNB S-hexylglutathione N/A [58]

MGST1 1-S-(glutathionyl)-2,4,6-trinitrocyclohexadienate; glutathione; glutathionyl-S-
dinitrobenzene

N/A [57]

SULT1A4 N/A N/A [59]

SULT2B1 DHEA, pregnenolone Viramune [59]

COMPT Ascorbic acid, caffeic acid, daphnetin, flavonoids, gallic acid, green tea catechins, 
hydroxyquinoline

Benserazide [60]

MPST 3-mercaptopyruvate (with dihydrolipoic acid and thioredoxin) to hydrogen sulfide Hydrogen sulfide [61]

TGM3 First undergoes proteolysis to its active form 
Acyl-transfer between glutamine and other primary amines essential for the formation 
of epithelial and hair follicle

N/A [62]

TPMT S-methylation of aromatic and heterocyclic sulphydryl Azathioprine [63]

TST Thiosulfate Hydrogen sulfide, sodium 
thiosulfate

[64]

HSD: Hydroxysteroid dehydrogenase; GSTK: glutathione-S-transferase; CDNB: 1-chloro-2,4-dinitrobenzene; SULT: sulfonyl transferase; COMPT: 
catechol-O-methyl transferase; MPST: 3-mercaptopyruvate sulfurtransferase; TGMs: transglutaminases; TPMT: thiopurine methyltransferase; 
TST: thiosulfate sulfurtransferase; DHEA: dehydroepiandrosterone; N/A: not applicable.

is not exhaustive.

IDENTIFICATION, CHARACTERIZATION AND ABUNDANCE OF SKIN ENZYMES
The advent of new approach methodologies (NAMs) such as omics- (e.g., metabolomics, genomics, 
proteomics and transcriptomics) and onics-based (e.g., electronics and photonics) tools have eased the 
bioprospection of a massive data for the enzymes, including the study of physicochemical properties and 
clinical information. Mass spectrometry (MS) is the most comprehensive proteomic tool and is often used 
in conjunction with other methods to manifest both qualitative and quantitative profiling at the single-cell 
level, as well as to discover novel enzymes.
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The fact is that there is a low correlation between the levels of mRNA, protein expression, and molecular 
activities. A recent study performed by Couto et al. has observed and quantified 2,000 skin proteins using 
MS with label-free quantification (MaxQuant)[8]. Herein, instead of phase I, a higher phase II 

Representing the most vital and largest interface between the body and surroundings, however, the skin is 

highly heterogeneous across intra- and inter-individual (or skin equivalents), resulting in various enzymatic 

activities and their cellular localization[16]. Kazem et al. have summarized the DMEs’ activities in different 

skin equivalents[65]. Overall, mRNA expression of phase I enzymes is more plentiful than phase II[65,66]. The 

mRNA of CYP1A1 and CYP1B1 was found to be expressed in all tested skin models, including ex vivo 

native human skin (NHS). Specifically, both CYP1A1 and CYP1B1 are colocalized within the epidermis 

(matured keratinocytes), fibroblasts, and sebaceous gland, with little expression in sweat producing cells[67].
Dysregulation of CYP1A1 and CYP1B1 has been observed to mediate reactions that result in mutagenic and 

carcinogenic metabolites[20,68]. Their clinical implications should be cautiously scrutinized during drug 

development. Although mRNA expression was detected in other CYP subfamilies (e.g., CYP4, CYP7, CYP8,
CYP11, CYP21, CYP26, CYP27, CYP39 and CYP51), they showed no significant cellular functionality[20,65,68].

enzyme 
expression was reported at the proteomic level in both NHS and skin equivalents. GSTP1 (π) was the highest 
abundant (62.65 ± 17.78 pmol·mg-1) phase II enzyme, followed by GSTM4 (µ) and GSTM3 (µ) at 
concentrations of 21.75 ± 0.63 pmol·mg-1 and 19.68 ± 10.29 pmol·mg-1, respectively. This finding 
corresponds to the data reported by Götz et al., Hewitt et al., and Eijl et al., where GSTP1 (π) protein (2-
fold) and activity levels (8-fold) are higher in skin compared to liver[27,54,69]. The GSTP1 (π), in particular, has 
been demonstrated to play important roles in regulating epidermal cell growth and cellular apoptosis. 
Differentiated keratinocytes appeared to promote high expression of GSTP1 (π) and increase drug 
clearance[70]. In contrast to liver, UGT was not actively detected in any NHS and skin equivalents, suggesting 
that skin is a minor site for glucuronidation reaction[54]. Upon ligand binding to AhR, however, it may 
enhance UGT (UGT1A3) transcription in response to xenobiotic drug molecules. On the other hand, the 
most abundant enzymes from phase I are ADH1B, ADH1C, ALDH1A1, and carbonyl reductase (CBR), 
which are mainly found in the epidermis layers[71]. Among these enzymes, ADH1C is observed to be the 
highest expressed phase I enzyme (37.46 ± 15.05 pmol·mg-1), yet the concentration is much lower as 
compared to GSTP1 (π).

Unexpectedly, CBR3, which was understood to be expressed highly in skin, was reported to have lower 
expression levels compared to CBR1, which is predominantly expressed in liver, kidney, and intestines. 
Only three CYPs enzymes, which are CYP8A1 (5.52 ± 4.70 pmol·mg-1), CYP7B1 (2.57 ± 0.45 pmol·mg-1), and 
CYP51A1 (0.98 ± 0.09 pmol·mg-1), were detected. These CYPs enzymes are primarily involved in 
endogenous metabolism (i.e., cholesterol and eicosanoid metabolism). The result showed a controversy with 
the work of Kazem et al., where no enzyme activity was assessed for the above CYPs enzymes[65]. Being the 
most abundant phase I DME in liver, CYP3A4 has low or no expression in all tested skin models[7,66]. 
Meanwhile, FMO1 and FMO5 were highly detected in engineered models, whereas FMO3 was only found 
expressed in NHS[7]. Other phase I enzymes have been detected, including AOs, AOCs, CES, and EPHX. In 
addition, Couto et al. have also identified and quantified redox enzymes, proteases, and nucleases[8]. 
Thioredoxin and peroxiredoxin 1 were reported to be the most abundant antioxidant enzymes in skin. 
Another study done by Liu et al. combined liquid chromatography with tandem MS (LC/MS/MS), non-
invasive tap strips method, and the label-free MaxLFQ to quantify skin proteins in volunteers[72]. Herein, up 
to 1,157 epidermal proteins, including TGM1, TGM3, ALOX12B, and ALOXE3, were matched to the 
UniProt database[72]. As one of the most crucial enzymes in cornification, TGM was identified to be 
expressed in the granulosum and spinosum layers[73].
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The epidermis was recognized as the major reservoir site for skin esterase, which is responsible for the 
conversion of methyl salicylate to salicylic acid[74,75]. Telaprolu et al., instead, have identified greater 
metabolism in the dermis layer derived from the same donors, with greater area stained with esterase 
specific dye and a greater density, supporting higher dermal esterase  prevalence[76]. The evidence further 
highlights the indispensable relationship between the biological complexity of skin models and enzyme 
activities. Nonetheless, the enzymes were mostly close or below the limit of detection[7]. The observed data 
can be explained by the discrepancy between the mRNA turnover rate and the protein translation level. 
Moreover, this can also be due to a limited metabolic pathway (i.e., a high saturation rate of metabolism). 
Skin metabolism is approximately only 10%-30% of that activity in liver, albeit most DMEs are detected in 
skin[16,65,77].

ROLE OF EPIDERMAL ENZYMES IN HOMEOSTASIS
The skin is continuously exposed to a number of endogenous and external compounds. In addition to 
serving as an effective barrier, it is capable of maintaining local and global homeostatic mechanisms (with 
respect to physical, chemical, immune, microbial and neuronal functional levels), i.e., pH, plasma 
concentration, and neuronal plasticity[78]. Apart from DMEs, there are other intra- and extracellular 
epidermal enzymes (EEs) responsible for regulating redox balance and dynamic equilibrium by enhancing 
the barrier structure functions[79,80]. As mentioned above, most enzymes are localized in the epidermal, and 
the driven biotransformation activity is substantially important in inducing the differentiation of organelle 
(i.e., melanin and keratin). For instance, TGMs mainly located in the spinosum and granulosum layers can 
synthesize and upregulate the expression of barrier-related proteins such as keratin, profilaggrin, loricrin 
and involurin, accelerating the keratinization and cornification. TGM-3, specifically, is a cross-linking 
protein for the formation of epidermal and reticular fibers[81]. Filaggrin is the major intermediate for the 
compaction of keratinocytes and the regulation of the epidermal terminal differentiation. During this 
process, the keratinocytes can modulate the expression and secretion of EEs, such as the kallikrein (KLK)-
related proteases, enabling direct cleavage of extracellular and transmembrane epidermal proteins (e.g., 
corneodesmosin and desmocollin) in SC layer[80,82]. In healthy skin, desquamation and degradation of these 
proteins enable continual self-renewal of epidermal cells to maintain intact barrier homeostasis[82].

Moreover, essential lipids consisting of ceramides, cholesterol, and fatty acids (FA) are key components of 
the epidermis[78]. Common EEs involved in the lipids metabolism, that are important for keeping a 
functional skin barrier include β-glucocerebrosidase (converts glycosylceramides into ceramides), acidic 
sphingomyelinase (converts sphingomyelin into ceramides), and phospholipase A2 (converts phospholipids 
to free FAs and glycerol). Another relevant aspect is the effect of pH, which is directly relevant for cell 
differentiation, formation of epidermal lipids (and other lipid compartments), maintenance of skin 
microbiome, and the promotion of suboptimal substrate turnover[83]. The epidermis has a low pH of 4.0-6.0. 
Both β-glucocerebrosidase and sphingomyelinase are reported to work optimally at pH 5.0-5.5[83]. The free 
FAs formed by phospholipid breakdown contribute to the acidic environment in SC, which is required for 
the regulating activity of many of the enzymes in SC and the barrier function. In reaction with the main 
stressors in skin, such as ultraviolet radiation (UVR), the phase 1-dependent skin cells and DMEs may 
generate carcinogenic stressors, including the reactive oxygen species (ROS) and nitric oxide (NO)[84]. The 
UVR can be classified into UV-A, UV-B, and UV-C, each with different electrophysical properties, and 
their penetration into skin is dependent on the wavelength. UV-A tends to penetrate to the innermost 
epidermis layer and to the dermis, while UV-B can be absorbed fully by the epidermis melanocytes[11]. The 
resulting radicals are responsible for the induction of inflammation cascade and degenerative 
photoaging[11]. These radicals can also alter nucleic acids (DNA and RNA) and protein expression, which 
result in mutations and are the leading factor in melanoma or non-melanoma cancers and drug 
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resistance[85,86]. To detoxify and eliminate these radicals, the skin is equipped with antioxidant EEs such as 
glutathione peroxidases (GPxs), superoxide dismutases (SODs), and catalases (CATs), which are expressed 
abundantly in the viable layers.

As a protective barrier between the internal human body and external environments, the sensory and 
adaptive capacity of skin could sustain local and global body homeostasis against harmful/unpleasant 
factors. The ability of skin to synthesize melatonin in response to external stress is critical and is considered 
one of its essential physiological functions[87]. Slominski et al. presented that melatonin (N-acetyl-5-
methoxytryptamine) is a product of multistep tryptophan metabolism via serotonin and N-
acetylserotonin[88]. Melatonin metabolism occurs rapidly through indolic and kynuric pathways caused by 
UVR or ROS. Antioxidative responses and DNA repair pathways can be stimulated by melatonin and 
metabolite products of melatonin. These properties of melatonin could be derived from the binding to 
quinone reductase 2 (NQO2), calmodulin (CaM) or the regulation of mitochondrial functions impacting 
cellular homeostasis. At pharmacological concentrations, melatonin can be used to counteract a number of 
damages caused by MT1- and MT2-independent mechanisms; this effect is mediated by the aryl 
hydrocarbon receptor (AhR), which is attributed to the structural similarity between melatonin and its 
natural ligands, such as tryptophan metabolites and indolic compounds[88].

In the research of Slominski et al., UV energy can touch the central neuroendocrine system and reset the 
body homeostasis, including that of skin (cutaneous homeostasis)[89]. UV absorption by the skin triggers 
mechanisms defending skin integrity, and also causes skin pathology, such as cancer, aging, and 
autoimmune responses. Melanins, known as skin colors or biopolymeric pigments, are produced by 
melanocytes (which are specialized pigment cells)[90]. Melanins are also considered polymorphous and 
multifunctional biopolymers, represented by eumelanin, pheomelanin, neuromelanin, and mixed melanin 
pigment[89]. L-tyrosine and L-DOPA play significant roles as the substrates and intermediates of 
melanogenesis. They also act as positive regulators of melanogenesis and other cellular functions of the 
body, depending on internal and external factors[91]. The optical and chemical filtering properties of 
melanins, together with their cytoprotective ability, could help protect skin cells against environmental 
factors such as solar/UV radiation, free radicals, and toxic chemicals. Melanins achieve this by binding to 
these harmful substances and then transferring them into more stable complexes[90,92]. Nevertheless, 
according to Karkoszka et al., owing to the formation of such complexes, locally and systemically 
administered drugs bound to melanins might not directly interact with receptors or enzymes.This could 
result in a lack of certain pharmacological and/or pharmacodynamic parameters, increasing the likelihood 
of side effects[92]. Additionally, there are risk factors for melanoma, deriving from the malignant 
transformation of melanin-producing melanocytes, which is a formidable malignancy[93].

Additionally, EEs are reported to be involved in hydration-induced changes (e.g., maturation of skin cells, 
desquamation process, and expression of protein) in different epidermal cells. For instance, a decrease in 
glycerol metabolism combined with reduced sebaceous gland activity leads to water loss in SC, causing an 
abnormal skin barrier and altered molecular mobility[94]. Several studies have also identified the role of EEs 
in antioxidant defense and redox metabolism; for instance, protein glutathione peroxidase 4 (GPX4) and 
thioredoxin reductase 1 (TXNRD1) are responsible for protecting skin against membrane lipid 
peroxidation[95].
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METABOLISM OF DRUGS AND VITAMINS IN SKIN
Prodrugs and soft drugs
The entity of metabolites and the quantification of metabolomes have been a standard protocol to identify 
the amount of drugs permeated to different skin layers, and potentially predict the levels of metabolic 
activity. Prodrugs are intentionally designed to be inactive until they reach the site of action, in this case 
mainly within skin layers, and are converted to the active parent drugs by DMEs to exert pharmacological 
effects. These prodrugs can avoid extensive metabolism by skin enzymes, reduce off-target toxicity, and 
enhance the bioavailability of drugs at local sites. Telaprolu et al. have identified the presence of esterase 
enzymes in ex vivo human skin membranes by using methyl salicylate (in Metsal™ cream) as substrates[76]. 
Methyl salicylate is a widely available over-the-counter topical drug. It is a prodrug that is 
pharmacologically inert until it is metabolized into the therapeutically active salicylic acid (Aspirin) and 
methanol by the skin carboxylesterases in the viable epidermis and dermis layers [Figure 1]. The salicylic 
acid will be further metabolized (in liver) for clearance by phase II DMEs, i.e., CYP2C9, NAT2, and 
UGT1A6 through hydroxylation, acetylation, and glucuronidation, respectively[96].

Another example is tamoxifen, which is traditionally used as first-line treatment in breast cancer but has 
more recently been identified as a potential drug for exophytic dermatitis[97,98]. The parent drug is bio-
transformed by CYP2C9 to its potent form, 4-hydroxytamoxifen, with minimal off-target issues. Pre-
formulation with nano-emulgel further increases its lipid solubility and enhances its topical SC 
penetration[97]. Hyaluronic acid (HA) is broadly incorporated in many cosmetics formulations to enhance 
skin rejuvenation and hydration, along with the capability to potentially support the wound healing process 
and prevent skin necrosis[99]. Topical HA, in its non-cross-linked form, however, is highly susceptible to 
enzymatic breakdown (e.g., hyaluronidase). Fortunately, the nano-prodrug formulation enhances its 
bioavailability by enabling controlled bioactivation and release upon reaching the target site, such as radicals 
production, overexpressed enzymes, and low pH intracellular environment[99]. Naturally-derived drug 
compounds (e.g. silibinin) exhibit low chemical stability and undergo rapid metabolism (mainly mediated 
by UGT1A1, UGT1A6, UGT1A9, GST and SULT), leading to rapid clearance from the body[100]. Silibinin is 
known for its photo-protective capabilities against UV-B to prevent hyperproliferation and differentiation 
of epidermal keratinocytes, and regulate inflammation signaling cascades[101]. Several research studies have 
been conducted to improve silibinin bioavailability through prodrug modification[102]. Silibinin loaded in 
hydrogel polymer with a combination of chitosan and fucoidan has been shown to favor longer drug 
retention time and skin distribution[103].

Contrary to prodrugs, soft drugs are therapeutically active molecules that undergo rapid systemic 
metabolism into inactive metabolites after exerting their local effects. The active drugs, thus, do not enter 
the systemic circulation and are promptly cleared from the body[104]. For example, crisaborole is a topical 
soft drug used to treat atopic dermatitis (AD). The drug is metabolized into 5-(4-cyanophenoxy)-2-
hydroxyl benzylalcohol (AN7602) by CYP enzymes (e.g., CYP1A1/2 and CYP3A4) and hydrolases. It was 
then further metabolized to 5-(4-cyanophenoxy)-2-hydroxyl benzoic acid and AN7602-sulfate through 
oxidation and sulfation[105]. Both metabolites are inactive products lacking glucocorticoid activity[106]. Tom et 
al. have demonstrated relatively low levels of crisaborole topical ointment in human plasma, suggesting 
systemic detoxification through enzyme metabolism[106].

Vitamins
Vitamins (i.e., Vitamins A, C, D, and E) are actively used as important ingredients in many topical 
products. Endogenous retinoic acid (RA) is triggered during wound-induced hair follicle neogenesis 
(WIHN) and other skin damage responses (e.g., laser treatments)[107]. Bioactivation of Vitamin A (retinol) is 
through two-step oxidation, forming retinaldehyde and later to the biologically active RA by retinol 
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Figure 1. Metabolism of methyl salicylate by skin esterases. (Reproduced from “Human skin drug metabolism: relationships between 
methyl salicylate metabolism and esterase activities in ivpt skin membranes” by Krishna et al., Metabolites 2023).

dehydrogenase (ALDH1 family) and CYP26 enzymes, respectively[108]. Retinol can also undergo 
esterification with fatty acid to form retinyl esters by retinol acyltransferase (LRAT) [Figure 2].

Synthesis of Vitamin D mainly occurs in the epidermis, where epidermal keratinocytes carry the most 
metabolic enzyme activity. Vitamin D3 is produced from 7-dehydrocholesterol (7-DHC) (photolysis) or 
derived from diet. CYP27A is reported to metabolize Vitamin D3 to 25OHD and further to its active 
metabolite 1,25(OH)2D or 24,25(OH)2D by CYP27B1 and CYP24A1, respectively[44,45].

DRUG DEVELOPMENT CONSIDERATIONS
The key considerations in topical drug development are to test whether the product is safe, potent and 
capable of reaching its desired clinical efficacy. Following the phase-out of animal trials in research, as 
mandated by FDA Modernization Act 2.0, a number of in vitro and in vivo skin permeation models, as well 
as NAMs, have been implemented to evaluate skin metabolism under controlled settings to allow for the 
optimization and delivery control[109]. Generic topical dermatological products can be safe, effective and 
affordable alternatives to branded medications. Yet, the complex nature of skin can impact skin enzyme 
expression and metabolic activity, causing high variability in the pharmacokinetics and pharmacodynamics 
(PK/PD) of the drugs[7]. Important scientific questions, thus, need to be addressed for drug assessment.

Roles of skin enzymes
The enzymes involved in the biotransformation of topically administered drugs, as well as their 
biotransformation mechanism and pathway, should be thoroughly investigated. This includes the reaction 
kinetics (Vmax/Km/Kcat/CLint), and toxicology profiles with potential induction and inhibition of 
enzymes. The enzyme saturation state is essential for determining the reaction rate and the amount of 
parent drugs available, especially when prodrugs or soft drugs are applied. Drug interaction following the 
enzyme biotransformation (or drug combinations) generates reactive metabolites that could potentially 
induce toxicity, causing pre- or post-marketing withdrawals. Although most DMEs in skin showed low 
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Figure 2. Enzyme-catalyzed Vitamin A metabolism. (Reproduced from “Retinol and retinyl esters: biochemistry and physiology” by 
Sheila M and William S, J Lipid Res 2013).

basal activity, leave-on topical products can have significant time-concentration effects following prolonged 
exposure.

Genetic variation
Intra- (e.g., transcriptomic heterogeneity across different skin regions) and inter- (e.g., age, gender, racial) 
individual differences can lead to case-to-case variation in drug activities.

Skin nature
The skin biological complexity, maturation stage, culture and isolation methods (from selection, 
preparation to storage conditions) can make huge disparities in drug permeation and enzyme expression. 
The reconstructed skin has an overall lower number of enzymes detected compared to ex vivo native human 
skin (NHS)[77]. The NHS and synthetic reconstructed skin comprise only an approximate 32% overlap in the 
identification and quantification of enzymes[8].

Correlation between mRNA-protein-cellular activities of enzymes
Levels of mRNA were shown to have poor proxies toward the quantification of protein and activity[69]. Plus, 
many DME activities are close to the limits of detection and quantification, which could reduce accuracy[8,69].

Skin equivalents
The skin models should have the ability to reflect in vivo conditions of drug metabolism. The selection, 
preparation, and isolation methods (e.g., heat and frozen treatments) are shown to affect enzyme turnover 
and metabolic activity[76].

There are also investigations regarding comorbidities associated with metabolic dysfunction that result in 
changes in DME expression and activities[110]. The alterations due to the disease state itself, as well as the 
treatments and comedication (e.g., drug- and/or enzyme-drug interactions)[110,111], can lead to a loss of 
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enzyme activity, causing the enzymes to fail to respond properly to the drugs. At the same time, many 
autoimmune and inflammatory-mediated reactions can also lead to abnormal mRNA and protein turnover. 
For instance, Sumantran et al. observed a meaningful reduction in DME levels in both melanomas and 
psoriasis[112]. Another study done by Candi et al. showed overexpression of TGM-5 in patients with 
ichthyosis vulgaris, while nearly absent in Darier’s disease-affected skin[73]. Literature studies also suggested 
that various skin diseases can manifest the generation of free radicals (e.g., ROS) and trigger subsequent 
inflammatory responses, eventually resulting in the destruction of homeostasis and redox balance. Perihan 
et al. reported that in patients with acne vulgaris, there were significantly exacerbated levels of antioxidant 
EEs, as compared to healthy controls, due to the increase in oxidative stressors[113]. Conversely, the 
expression of EEs was found to decrease in severe acne than mild or acute conditions[113]. This could 
probably be attributed to the overproduction of ROS that leads to cellular senescence of enzyme-related 
proteins[95]. While evidence linking comorbidities status with enzyme expression, the exact underlying 
mechanism remains to be discovered.

Additionally, skin diseases could also alter the epidermal keratinocyte differentiation program, causing a 
defective skin barrier and affecting the delivery of topically administered drugs[95]. Psoriasis features 
hyperproliferation and upregulation of keratinocyte differentiation, resulting in abnormal protein 
metabolism and redox regulation. This disturbance contributes to the improper development of skin 
adhesion and junction proteins essential for intact barrier formation[114,115]. Meanwhile, the levels of filaggrin, 
together with the EEs involved in SC lipid biosynthesis, were significantly low in atopic dermatitis[116]. 
Alterations in the expression of barrier-related protein (or nucleic acids) are believed to contribute to 
epidermal cell degradation, increased lipids peroxidation and membrane permeability of topical drugs. Skin 
affected with vitiligo has selective loss of melanin resulting from autoimmune destruction of melanocytes in 
the epidermis and hair follicles. This disrupts the balance of the cutaneous antioxidant system, including 
both enzymatic and non-enzymatic molecules, inducing a pre-senescent status and compromised metabolic 
function[117]. Progressively, irregular expression of these enzymes and barrier-related proteins could result in 
skin barrier dysfunction, reduced drug biotransformation, and eventually result in excessive drug 
accumulation at local sites or in systemic circulation.

Hence, it is always important to understand the comprehensive role of enzymes in skin to ensure the safety 
and efficacy of the topically administered drugs. Information on metabolizing enzymes in skin is also highly 
helpful in assessing and comprehending the bioequivalence of topical products in terms of qualitative (Q1) 
and quantitative (Q2) composition, as well as physical and microstructural arrangement of matter (Q3). 
Even if Q1/Q2 similarity is achieved, the grade of excipients and enhancers needs to be considered, as they 
can have a significant impact on enzyme metabolism and final drug product quality attributes.

CONCLUSION
Numerous works have demonstrated the presence of DMEs with significant skin metabolizing activity. 
Although enzyme expression (both transcriptional and translational levels) and activity in the skin are 
generally much lower than in the liver, the skin is still the largest interface between the body and 
surroundings; hence, the skin’s net capacity for metabolic processes and other cellular effects can be 
considerable. Owing to their ability to induce biotransformation and bioactivation, these DMEs can bring 
both positive and adverse impacts. A comprehensive understanding of these enzymes could provide a basis 
for promising in vitro to in vivo extrapolation, including dose optimization and targeted drug delivery. 
However, there are no verified and validated standard protocols for quantification parameters of enzymes in 
the skin compartment, hampering the efficiency and reliability of research findings, thereby reducing the 
accuracy of assessment tools. Furthermore, the complexity of skin morphology, the scarcity of studies on 
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the relationship between skin enzymes and topical drugs, and the low correlation among different types of 
data derived from mRNA, protein, and activity studies pose further challenges in drug development. Given 
these issues, future research shall continue to fill the gaps relating to complications of metabolic profiling, 
improve data incorporation into modeling systems, and refine existing predictive frameworks.
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