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Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has 
attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such 
as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer 
biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid 
membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs 
carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer 
RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells 
and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin 
and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed 
in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of 
cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have 
generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. 
Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological 
resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the 
remarkable potential of EVs as a cancer biomarker.
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INTRODUCTION
Our body fluids, such as blood, urine, cerebrospinal fluid, saliva, pleural effusion, ascites fluid, breast milk 
and seminal plasma, contain various biological molecules[1]. Liquid biopsy is a minimally invasive method 
that uses these molecules as biomarkers, and it is emerging as a new tool in the strategy against cancer[2]. 
The terms "precision medicine"[3] and "personalized medicine"[4] have recently become popularized in the 
field of cancer research. Diagnosis and adequate therapy for individual cases of particular cancer types 
commonly rely on genetic mutation and gene expression analyses or pathological imaging observations of 
cancer lesions. However, such cancer genomic medicine approaches require collection of cancer tissue by 
biopsy, which imposes a heavy burden on the patient. In particular, it is difficult to obtain tumor tissue from 
organs located in the deeper parts of the body. Therefore, the development of minimally invasive methods, 
such as liquid biopsy, is desired. Liquid biopsy initially emerged only for the purpose of genetic diagnosis; 
however, it has considerable clinical application potential, such as in early diagnosis, monitoring of 
pathological conditions, and tailored treatment development according to cancer biology and the predicted 
treatment response[5]. Importantly, because of its minimally invasive nature, liquid biopsy can be scheduled 
more often to give more accurate snapshots of the disease at successive time points, which is useful for 
measuring temporal tumor burden levels and early evidence of recurrence or therapy resistance[6] 
[Figure 1]. Furthermore, liquid biopsy may reflect the genetic profile of more cancer subclones in a patient 
than tissue biopsies, which are obtained from only one cancer region[7].

Extracellular vesicles (EVs) have attracted increasing attention as a novel analyte in liquid biopsy[8]. EVs are 
lipid membranous vesicles that are released from almost all types of cells, including normal cells as well as 
abnormal cells, such as cancer cells. EVs are reported to be correlated with various biological phenomena 
and play important roles in cell-to-cell communication via horizontal transfer of cellular cargoes, such as 
proteins, RNAs [including mRNA and noncoding RNAs (e.g., microRNA; miRNA, transfer RNA; tRNA 
circular RNA; circRNA and long noncoding RNA; lncRNA)], DNA fragments, and lipids[9,10]. Importantly, 
the composition of EV cargoes secreted from individual cell types differs greatly depending on the cellular 
origin, and the characteristic features of EVs derived from various cancer cells have been revealed. Thus, 
cancer-derived EVs can be analyzed to determine the presence and nature of cancer. Furthermore, EVs have 
been reported to be found in almost all body fluids[11]. For these reasons, EVs are recognized as a promising 
liquid biopsy resource for cancer. In this review, we will discuss the feasibility and practicality of EV-based 
liquid biopsy in clinical settings. In the first half, we will argue the advantages and challenges of EV-based 
liquid biopsy for clinical application. In the second half, we will summarize recent notable studies 
investigating cancer-specific EV-related molecules as cancer biomarkers, with a focus on their biological or 
clinical significance.

CANDIDATE ANALYTES IN LIQUID BIOPSY OTHER THAN EVS
Liquid biopsy can target various cancer-associated analytes in multiple body fluids, and several candidate 
analytes in liquid biopsy for cancer have been identified. These analytes include circulating tumor cells 
(CTCs) and circulating nucleic acids, such as cell-free DNA (cfDNA) and some extracellular RNA (exRNA) 
fragments [Figure 2]. Currently, CTCs and cfDNA are the most widely studied target materials for liquid 
biopsy[12,13].

CTCs are cancer cells shed by primary or metastatic cancer lesions into the circulation and are considered a 
crucial determinant of hematogenous metastasis and recurrence. CTCs contain valuable information about 
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Figure 1. Clinical utility of liquid biopsy in cancer. Liquid biopsy presents a minimally invasive nature and thus has the potential to 
impact clinical practice at multiple stages of cancer management. This technique can contribute to early diagnosis, pathological 
condition monitoring, and tailored treatment development according to the cancer biology of individual patients. After cancer 
treatment, liquid biopsy can support follow-up care by providing early evidence of recurrence or therapy resistance.

Figure 2. Candidate analytes of liquid biopsy. Body fluids contain several promising biomarkers for cancer. Each candidate analyte can 
provide considerable information about the cancer biology of individual patients.

the spreading tumor, and early detection of CTCs and treatment of metastatic spread can contribute to 
improving disease outcomes. Numerous studies in the past decade have shown that CTCs have potential as 
biomarkers to predict cancer metastasis progression and prognosis[14,15]. A high number of CTCs has been 
reported to be correlated with clinical outcome[16-19]. However, CTCs are estimated to account for at most 
one cell among a hundred million circulating cells; thus, there are generally only a small number of CTCs in 
a few milliliters of blood sample. Furthermore, CTCs must be analyzed as soon as possible after collection 
because the number of viable cells decreases rapidly. Therefore, analysis of CTCs requires relatively large 
volumes of fresh blood and advanced technology with extremely high analytical sensitivity and 
specificity[20-22]. To date, numerous technologies are available that are useful for enrichment and detection of 
CTCs[23]. Among them, the CellSearch® system has received FDA approval for prognostic clinical evaluation 
of several cancer types[24]. However, due to the limited number of CTCs in the blood and the current level of 
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detection technologies, CTCs have not yet been entirely accepted in the clinic. Research groups have 
recently moved towards analyzing CTC contents (e.g., miRNA[25], mRNA[26], and protein[27,28]) for detection 
of biomarkers.

cfDNA is a short fragment of nucleic acids found in body fluids, and a component of cfDNA derived from 
tumor cells is called circulating tumor DNA (ctDNA). The majority of ctDNA originates from apoptotic 
and necrotic tumor cells. Over the past decade, a large number of studies have reported that measuring 
ctDNA levels in cancer patients may help in cancer diagnosis and prognosis prediction[29-31]. Interestingly, 
ctDNA is reported to be horizontally transferred from cancer cells to normal cells via uptake of apoptotic 
bodies, which is one of the EV subclasses (described below), leading to cancer progression[32,33]. 
Furthermore, ctDNA is also reported to harbor genetic and epigenetic changes present in the original 
tumor, and analytical techniques to detect such changes have already been established. By examining these 
changes, researchers have shown that ctDNA also helps predict treatment response and recurrence[34-38]. The 
major challenge in ctDNA research is that tumor-specific mutations may only represent 0.01% of the total 
cfDNA[39,40], thereby increasing the difficulty of detecting rare variants. Moreover, issues limiting cfDNA 
testing include its relatively short half-life[41,42]. Therefore, sample processing times are critical, and sample 
preservation requires special precautions, which are also significant barriers to practical use of cfDNA 
testing in the clinic.

CTC and ctDNA applications are confronted with several challenges, as described above. In short, the 
significantly low amounts and fragility of CTCs and ctDNA, which show remarkable variations in amount 
among individuals, increase the difficulty of detection. Moreover, CTC and ctDNA applications may be 
confined to evaluation of advanced cancer because CTCs are released from cancer tissue that has grown to 
the point that it causes metastases and ctDNA is primarily released from apoptotic or necrotic cancer 
tissue[43]. Thus, these entities may not be suitable for early diagnosis and may not reflect the current or near-
future state of the disease.

exRNA refers to RNA that is present outside of cells within EVs or associated with platelets, lipoproteins 
and protein complexes. Similar to cfDNA, almost all non-EV-associated exRNAs are released into 
circulation by passive secretion. In addition to CTCs and cfDNA, non-EV-associated exRNA has also been 
well investigated as a candidate analyte in liquid biopsy for cancer. In particular, non-EV-associated 
miRNAs are recognized as a significant RNA subtype for biomarker discovery because miRNA profiles are 
associated with cancer-specific conditions. The critical issue is miRNA extraction from biofluid samples; the 
amounts of miRNA are highly variable among different experiments. Because of the small size of miRNAs 
and their attachment to other molecules, reproducible extraction remains an inherent issue[44].

WHAT ARE “EVS”?
We will now describe EVs, which are the main focus of this review. “EV” is a collective term that refers to all 
types of lipid membranous vesicles naturally released from all cell types. From the 1970s to the 1980s, 
membrane-enclosed vesicle structures were reported in various types of solid tissues, body fluids, and 
culture supernatants. Depending on their size and origin, these vesicles are called various names, such as 
prostasomes, exosomes, microvesicles, microparticles, shedding vesicles, ectosomes, apoptotic bodies and 
oncosomes. Each vesicle type contains slightly different molecular groups due to differences in vesicle 
biogenesis and secretion pathways. Nevertheless, their designations have been vaguely defined. Therefore, 
the International Society for Extracellular Vesicles (ISEV), founded in Sweden in 2012, recommends the use 
of “extracellular vesicle” as a generic term for these vesicles[45,46]. The nomenclature of these vesicles is 
detailed in the Minimal Information for Studies of Extracellular Vesicles (MISEV), which is the guideline 
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advocated by the ISEV[47,48].

EVs are classically classified into three main categories: exosomes (approximately 100 nm), microvesicles 
(approximately 1 µm), and apoptotic bodies (greater than 1 µm)[49]. These three classes of EVs differ in size 
as well as morphology, content, generation mode, and release mechanism. Exosomes are formed by the 
inward budding of early endosomes to form multivesicular bodies (MVBs). These MVBs fuse with the 
limiting plasma membrane to release exosomes into the extracellular space. Microvesicles originate by direct 
shedding or budding from the plasma membrane. Apoptotic bodies are released from cells undergoing 
programmed cell death[50]. Recently, Théry et al[47,51]. developed a more reasonable classification system for 
EVs and defined vesicles < 100 nm as small EVs, < 200 nm as medium EVs, and > 200 nm as large EVs. 
Moreover, they demonstrated that each EV subtype showed different characteristic protein components, 
suggesting that each EV category is generated and secreted through a specific molecular mechanism[47,51].

EVS AS AN ANALYTE IN LIQUID BIOPSY
In 1983, Pan and Johnstone[52] discovered that cells secrete 100 nm-sized vesicles with a lipid membranous 
structure and that red blood cells release small vesicles loaded with the transferrin receptor, which is 
necessary to synthesize hemoglobin during maturation. They regarded EVs as “garbage bags” that are used 
to expel unused molecules from the cell and reported one of the remarkable EV functions; more 
importantly, this study demonstrated the presence of proteins in EVs[52,53].

In the 1990s, by analyzing immune cells, Raposo et al.[54] found that EVs affect recipient cells. EVs derived 
from B lymphocytes induced antigen-specific MHC class II-restricted T cell responses, indicating that EVs 
have functions related to intercellular communication[54].

In 2007, Valadi et al.[55] demonstrated that EVs from the human mast cell line HMC-1 and the mouse mast 
cell line MC/9 contain approximately 1300 mRNAs and 121 miRNAs and thus contribute to the exchange 
of genetic information between cells. Since that time, miRNAs have been the most widely studied class of 
short noncoding RNAs (ncRNAs) in EV cargoes[55].

To date, EVs have been reported to contain various proteins, RNAs [including mRNAs and noncoding 
RNAs (miRNAs, tRNAs, circRNAs and lncRNAs)], and DNA fragments[9]. The past few years have seen 
extraordinary developments in areas such as mass spectrometry (MS), high-throughput sequencing (HTS) 
(e.g., DNA sequencing, chromatin immunoprecipitation sequencing, methylation sequencing, and RNA 
sequencing), and big-data analysis[56,57]. These advanced technologies allow us to select analytes contained in 
EVs and evaluate them deeply. Significantly, the composition of EV molecular contents reflects the 
intracellular status of their cellular origin. Moreover, these molecules are stably preserved due to their lipid-
layered structure; hence, EVs from body fluids can be analyzed after being stored for a relatively long period 
of time[58]. A growing body of evidence has suggested that cancer-derived EV cargoes bare a strong 
resemblance to the intracellular status of their parental cells[59]. Analysis of EV cargoes can help reveal the 
existence, molecular profile and behavior of cancer. Thus, EV-based liquid biopsy contributes to early 
cancer diagnosis, monitoring of cancer pathological conditions, and treatment selection according to cancer 
biology and the predicted treatment response. In addition, EVs are easily accessible in various kinds of body 
fluids and appropriate for sequential collection. For these reasons, EVs have emerged as a promising 
biomarker resource and as another kind of liquid biopsy for cancer [Figure 2].
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CLASSICAL EV ISOLATION METHODS
Although EVs are a remarkable candidate analyte to detect cancer biomarkers, few EV-associated 
biomarkers have been implemented in clinical settings, which is partially due to the lack of adequate 
isolation methods[60]. In principle, EVs must be isolated from various biofluids for analysis. Indeed, in 
almost all cases, candidate EV-associated biomarkers were detected via isolation processes because target 
EV-associated molecules should be distinguished from EV-free molecules in the biofluid; however, a unified 
isolation method is not currently available, which is one of the biggest challenges in EV research.

The most popular technique for EV isolation is ultracentrifugation (UC), which separates EVs based on 
their size and buoyant density. The UC procedure does not require additional chemicals or pretreatment of 
the body fluid samples. Moreover, the combination of UC with other procedures, such as ultrafiltration, 
sucrose cushion, and density gradient centrifugation, can increase the purity of the EV fraction[61-63]. 
However, UC-based procedures generally require dedicated equipment and an extraordinary amount of 
time[60]. Moreover, repeated centrifugation can lead to reduced yield due to lost and aggregated EVs[64]. On 
the other hand, various polymer-based isolation kits, such as ExoQuick™, Total Exosome Isolation™ and 
miRCURY™, which are commercially available, can save time and labor costs, although issues with high 
contamination rates and high running costs have been reported[63,65]. An immunoaffinity capture approach 
using magnetic beads and monoclonal antibodies targeting EV surface antigens is also commonly used to 
isolate EVs[66,67]. Many reports have demonstrated that this approach achieves a selective and high-purity 
output; however, there are difficulties in terms of low capacity, low yield and high reagent cost[60]. Size-
exclusion chromatography (SEC) is a technique for separating biological molecules based on molecular size 
in which target molecules are isolated by filtration through a resin-packed column. SEC has been reported 
to yield highly purified EVs and achieve excellent reproducibility in a relatively short time[60,64]; however, the 
existence of EVs in multiple fractions results in a low EV concentration in the obtained samples. 
Consequently, subsequent EV analysis often requires an additional concentration step[68]. Recently, many 
researchers have studied combined methods integrating multiple isolation techniques together or 
conducting them sequentially[69]. Among others, the combination of UC and SEC has demonstrated higher 
purity of EVs and better performance in subsequent analyses than the single-step methods[70-72]; however, in 
daily clinical settings, combined methods might be avoided due to several factors, such as time 
consumption, cost, repeatability, and ease of use. As high-quality EV samples are essential for subsequent 
analyses, there is an urgent need for a simple, cost-effective, and reliable technique for both basic research 
and clinical practice.

EV-ASSOCIATED PROTEINS
Common EV protein markers
EVs contain abundant proteins that reflect their origin and alterations of their parental cells. Based on the 
endosome-based biogenesis pathway, EV-specific protein markers include membrane trafficking-associated 
proteins (e.g., Rab family proteins, annexins), MVB-associated proteins (e.g., Alix, Tsg101 and ESCRT 
complex), tetraspanins (e.g., CD9, CD63 and CD81) and heat shock proteins (Hsp70 and Hsp90)[73-75]. As 
these proteins are common to EVs derived from almost all cell types, they can serve as common positive EV 
markers that can confirm the presence of EVs, and isolated EVs can be assessed via downstream proteomic 
analyses, such as western blotting (WB), enzyme-linked immunosorbent assay (ELISA), and flow cytometry 
(FCM), which use common EV proteins as hallmarks. With regard to checking the quality of isolated EV 
samples, MISEV recommends the use of apolipoproteins A1/2 and B and albumin as negative markers of 
blood-derived EVs because they are often co-isolated with these molecules[47,76].
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EV protein-based platform for cancer diagnosis
Targeting membrane proteins on the surface of EVs is an effective strategy because target cancer-derived 
proteins can be directly detected without the use of a large sample volume or time-consuming isolation 
processes for EVs. Recently, great efforts have been devoted to establishing clinically useful detection 
platforms, including platforms for direct detection of cancer-specific EVs without any isolation or 
purification procedures. These platforms mainly consist of specific antibody-based technologies that detect 
EV surface proteins, such as ELISA.

Jørgensen et al.[77] established the EV Array, which can detect EVs in unpurified materials in a high-
throughput manner. The EV Array is composed of different capture antibodies located on a microarray 
slide, which capture EVs according to their surface proteins, and the target EVs are detected with a cocktail 
of biotinylated antibodies against the tetraspanins CD9, CD63, and CD81. The authors validated the 
performance of the EV Array by comparing plasma from nonsmall cell lung cancer (NSCLC) patients and 
normal healthy subjects[78]. Shao et al.[79] reported that a microfluidic chip platform could distinguish 
patients with glioblastoma multiforme (GBM) from normal healthy subjects. This microfluidic chip labeled 
with magnetic nanosensors quantifies an EV-specific protein marker (CD63) and glioblastoma-specific 
proteins, such as epidermal growth factor receptor (EGFR) and EGFR variant III, on the surface of EVs via 
micronuclear magnetic resonance (μNMR). In this study, the authors also indicated that GBM EVs reflect 
gene amplification or mutation and predict the therapy response. Surface plasmon resonance (SPR)-based 
nanosensors have recently attracted much attention due to their ability to detect a small number of 
molecules[80]. Im et al.[81] developed an SPR-based exosome sensor called nanoplasmonic exosomes 
(nPLEXs). Each nanohole array of nPLEX is functionalized with antibodies that recognize EV surface 
proteins. nPLEX was able to differentiate ascites samples from ovarian cancer patients from healthy controls 
with an accuracy of 97% and identified ovarian cancer cell-derived EVs based on their expression of CD24 
and EpCAM. Yoshioka et al.[82] also established a highly rapid and sensitive analytical technique called 
“ExoScreen”. This assay consists of two kinds of antibodies against proteins on the surface of EVs that are 
detectable by photosensitizing beads. A very small sample volume (at least 5 μL) was required to detect EVs 
in serum from healthy controls without a complicated isolation process. Moreover, the assay could be 
completed within 2 h. In this study, they identified CD147 as a specific EV-surface protein derived from 
colorectal cancer cells and revealed that a larger number of CD9/CD147 double-positive EVs could be 
detected in serum from colorectal cancer patients than in serum from healthy control subjects using this 
assay. Furthermore, Zhao et al.[83] developed a simple microfluidic platform named the “ExoSearch” chip 
that allows quantitative isolation of EVs using immunomagnetic beads. An “ExoSearch” chip could detect 
ovarian cancer by measuring three EV cancer protein markers, CA-125, EpCAM and CD24. The 
development of immune-capturing systems in microchips also provides highly sensitive and reliable 
detection of cancer markers without requiring a large sample volume or time-consuming EV isolation 
processes.

Other EV protein biomarkers for cancer diagnosis
EV surface proteins and EV lumen proteins are regarded as candidate cancer biomarkers. Numerous studies 
have identified cancer-associated EV protein markers using isolation processes, followed by WB, ELISA, 
and FCM. Promising EV protein markers identified in clinical studies with patient body fluid samples are 
summarized in Table 1.

Clinically validated traditional molecules have also been identified in EVs, such as prostate-specific antigen 
(PSA), and they represent novel diagnostic biomarkers. Mitchell et al.[84] demonstrated that the expression 
of PSA and PSMA in urinary EVs can act as treatment response markers in prostate cancer. Additionally, 
Logozzi et al.[85] showed increased PSA expression on EVs in vitro and in the plasma of prostate cancer 
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Table 1. A list of EV proteins as potential biomarkers for cancer

Cancer 
types

Biological 
source

Isolation 
method

Detection 
method Markers Potential application Ref.

Urinary cancer

Prostate 
cancer

Plasma UC ELISA PSA Diagnosis/Prognosis [85]

Urine UC + SUC ELISA/WB PSA, PSMA Diagnosis/Monitoring [84]

Plasma/Serum UC/ExoQuick ELISA/WB Survivin Diagnosis/Monitoring [87]

Urine UC IP/WB δ-catenin Diagnosis [156]

Serum UC WB MDR-1/P-gp, MDR-3, 
PABP4

Predict chemoresistance 
(Docetaxel)

[95,157]

Plasma - FCM PSMA Monitoring/Predict 
chemoresistance

[158]

Bladder 
cancer

Urine UC MS/WB EH-domain-containing 
protein 4, EPS8L1, EPS8L2, 
GTPase NRas, Mucin 4, 
retinoic acid-induced 
protein3, resistin, alpha 
subunit of GsGTP binding 
protein

Diagnosis [159]

Urine UC ELISA TACSTD2 Diagnosis [160]

Urine UC MS α-1-anti-trypsin, H2B1K Diagnosis [161]

Urine UC WB HEXB, S100A4, SND1, 
TALDO1, and EHD4

Diagnosis [162]

Urine UC WB Periostin Diagnosis [163]

Urine UC + SUC WB EDIL3 Diagnosis [164]

Urine UC + SUC FCM CD36, CD44, 5T4, basigin, 
CD73, MUC1, α6-integrin

Diagnosis [165]

Renal cancer Urine UC MS/WB MMP9, DKK4, EMMPRIN, 
CP, PODXL, CAIX, CD10, 
AQP1, dipeptidase 1, 
syntenin 1

Diagnosis [166]

Female cancer

Breast cancer Serum ExoQuick ELISA Survivin, Survivin2B Diagnosis/Prognosis [88]

Serum/Plasma ExoQuick ELISA/WB CD82 Diagnosis [167]

Ascites UC + SUC WB CD24, EpCAM Diagnosis [168]

Plasma UC FCM TRPC5 Prognosis/Predict 
chemoresistance

[169]

Serum UC FCM UCH-L1 Predict chemoresistance 
(Anthracycline/taxan)

[92]

Serum UC FCM/WB HER2 Predict chemoresistance 
(Trastuzumab)

[96]

Plasma UC ELISA/FCM TGFβ1 Predict chemoresistance 
(Trastuzumab)

[97]

Ovarian 
cancer

Plasma - Exosearch chip CD24, EpCAM, CA-125 Diagnosis [83]

Plasma UC WB TGFβ1, MAGE3/6 Diagnosis [170]

Plasma UC + SUC WB Claudin-4 Diagnosis [171]

Ascites UC + SUC WB E-cadherin Diagnosis/Prognosis [172]

Ascites UC WB MMP2, MMP9, uPA Diagnosis [173]

Ascites UC + SUC WB CD24, L1CAM, ADAM10, 
EMMPRIN

Diagnosis/Prognosis [174]

Digestive 
cancer

Pancreatic 
cancer

Serum UC FCM GPC1 Diagnosis/Prognosis [89,175]

Serum UC + SUC ELISA CKAP4 Diagnosis [176]

Serum UC ELISA MIF Diagnosis/Prognosis [177]
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Plasma - ELISA EpCAM Prognosis [91]

Colorectal 
cancer

Serum Exoquick ELISA CEA Diagnosis [178]

Serum - ExoScreen CD147, CD9 Diagnosis [82]

Ascites UC WB claudin-3 Diagnosis [179]

Gastric 
cancer

Serum UC FCM/WB HER-2/neu, CCR6, 
EMMPRIN, MAGE-1, c-MET

Diagnosis [180]

Others

Lung cancer Serum UC ELISA EGFR Diagnosis [181]

(NSCLC) Serum UC ELISA/WB AHSG, ECM1 (with serum 
CEA)

Diagnosis [182]

Serum - EV array 30 Proteins Diagnosis [78]

Plasma - EV array CD171, NY-ESO-1, PLAP, 
Flotilin1

Diagnosis [183]

Urine UC WB LRG1 Diagnosis [184]

Melanoma Plasma UC ELISA (Exo 
Test)/FCM/WB 

Caveolin-1, CD63 Diagnosis/Prognosis [185]

Plasma UC WB TYRP2, VLA-4, HSP70, 
HSP90

Prognosis [186]

Plasma UC/Total 
Exosome 
isolation Kit

ELISA/FCM /WB PDL-1 Predict immunotherapy 
resistance 
(Pembrolizumab)

[91]

Glioblastoma Serum - µNMR system EGFR, EGFRv�, CD63 Prognosis [79]

NSCLC: Non-small cell lung cancer; LSCC: laryngeal squamous cell carcinoma; UC: ultracentrifugation; SUC: sucrose cushion; ELISA: enzyme-
linked immuno-sorbent assay; FCM: flow cytometry; WB: western blotting; IP: immunoprecipitation; MS: mass spectrometry; miRNA: microRNA; 
tRNA: transfer RNA; circRNA: circular RNA; lncRNA: long non-coding RNA.

patients. The authors emphasized the failure of current PSA testing in discriminating between benign 
prostatic hypertrophy and prostate cancer in terms of both overdiagnosis and overtreatment, which leads to 
patient suffering and public and private healthcare expenditures. Moreover, they claimed that EV PSA 
might resolve the problem associated with differences in PSA cutoff levels based on age, race and individual 
physiological condition. Similar to PSA, some traditional molecules in EVs have been discussed to have 
higher relevance to cancer than their total amount in body fluids, such as CEA for colon cancer[86].

Additionally, some EV-associated markers have been reported as diagnostic markers for multiple cancer 
types. Khan et al.[87] showed that Survivin, an inhibitor of apoptosis member, could be detected in plasma-
derived EVs from both prostate cancer patients and healthy subjects; however, the relative amount of EV 
Survivin was remarkably higher in the plasma of prostate cancer patients. Their subsequent study showed 
that the EV Survivin and its alternative splice variants were also elevated in breast cancer patient plasma[88], 
which suggests that EV Survivin might be an important diagnostic marker common to several cancer types.

EV proteins can be used to monitor cancer progression and drug resistance
Biomarkers in EVs of several cancer types may be applied for cancer stratification because they change in 
response to anticancer therapy. Thus, EV proteins may be used as novel biomarkers to monitor cancer 
progression or to identify patients susceptible to anticancer drugs.

Melo et al.[89] reported that glypican-1 (GPC1) could be a specific marker of cancer-derived EVs and that the 
existence of GPC1-positive EVs in serum could differentiate patients with pancreatic ductal 
adenocarcinoma (PDAC) from patients with benign pancreas disease or from healthy control subjects with 
100% sensitivity and specificity. The levels of GPC1-positive EVs were significantly decreased after surgical 
resection; moreover, they were related to overall survival (OS) and significantly higher in patients with 
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distant metastasis than in patients with lymph node metastasis only or no metastases[89]. Although this 
conclusion is controversial, a replication study was performed to validate this finding, and a subsequent 
discussion was held in ISEV2017[90]. Similarly, Giampieri et al.[91] reported that a higher level of EpCAM-
positive EVs before chemotherapy was correlated with shorter progression-free survival (PFS) and OS. In 
contrast, in this study, an increase in EpCAM-positive EV levels during treatment was correlated with better 
PFS in PDAC patients[91]. These studies demonstrated that EV-associated proteins could be biomarkers for 
monitoring tumor burden.

The development of chemoresistance is a persistent problem during cancer treatment. Various studies have 
reported cell-to-cell transfer of multidrug resistance (MDR) efflux pumps as EV cargoes from 
chemotherapy-resistant cells to chemotherapy-sensitive cancer cells. EVs from doxorubicin-resistant[92] or 
docetaxel-resistant[93] breast cancer cell lines transferred chemoresistance to recipient cancer cells through 
P-glycoprotein (P-gp) loaded onto EVs. Moreover, the same phenomenon in paclitaxel-resistant ovarian 
cancer cells was also caused by the transfer of functional P-gp mediated by EVs[94]. Docetaxel-resistant 
prostate cancer cells were also reported to proliferate through cell-to-cell transfer of EV P-gp. In this study, 
serum EVs from prostate cancer patients who were nonresponders to docetaxel therapy protected prostate 
cancer cells from the cytotoxicity of docetaxel[95]. These studies indicate that EV-P-gp might be a promising 
marker to predict chemotherapy resistance in several cancer types. Ubiquitin C-terminal hydrolase L1 
(UCH-L1) has also been reported as an EV-based predictive biomarker of chemoresistance in breast cancer. 
UCH-L1 overexpression has been reported to induce upregulation of P-gp levels through the MAPK/ERK 
signaling pathway, thereby enhancing an MDR phenotype in breast cancer. Ning et al.[92] showed that higher 
UCH-L1 levels in circulating EVs are correlated with poorer response to adjuvant anthracycline/taxane-
based chemotherapy. In addition, they demonstrated that UCH-L1-positive EVs derived from breast cancer 
cell lines could transfer chemoresistance to recipient cells in vitro, indicating that EVs might be a predictive 
biomarker of chemoresistance in breast cancer patients.

Interestingly, EV-mediated drug resistance has been reported to be relevant for molecular target drugs as 
well as chemotherapy drugs. Ciravolo et al.[96] reported that 73% of advanced-stage breast cancer patients 
had HER2-positive EVs in circulation, which hampered the corresponding therapeutic efficacy of 
trastuzumab monoclonal antibody. Importantly, this study demonstrated that the presence of HER2-
positive EVs in the serum of breast cancer patients could be an indicator to predict a patient’s response to 
trastuzumab therapeutic regimens[96]. Martinez et al.[97] reported that EVs released from HER2 drug-resistant 
cells contain larger amounts of the immunosuppressive cytokine TGF-β1. Importantly, a recent neoadjuvant 
clinical trial by the same group that included trastuzumab and lapatinib further demonstrated that HER2-
overexpressing breast cancer patients who were nonresponders to HER2 drug therapy had significantly 
higher amounts of TGF-β1 in circulating EVs than patients who did not respond to HER2 drug therapy. 
These results suggest that EV-TGF-β1 can be a biomarker for predictive response to this therapeutic 
regimen against breast cancer[97].

Recently, with the successful development of immune checkpoint inhibitors (ICIs), cancer immunotherapy 
has attracted worldwide attention as a new cancer treatment. EV proteins may contribute to identifying 
patients susceptible to ICIs. Tumor cells avoid immune recognition by upregulating the surface expression 
of programmed death-ligand 1 (PD-L1), which interacts with the programmed death-1 (PD-1) receptor on 
T cells to elicit the immune checkpoint response. Indeed, immunotherapy with anti-PD-1 antibodies has 
shown remarkable therapeutic effects against different tumor types[98]. However, for some patients, the 
therapeutic response has been reported to be rather poor[99,100]. To address this problem, Chen et al.[101] 
showed that specific EVs reduce the effectiveness of immunotherapy approaches in certain patients with 
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melanoma. Remarkably, using human melanoma xenografts in nude mice, they showed that metastatic 
melanoma cell lines release EVs loaded with PD-L1 on their surface and that interferon-γ increases the 
expression of PD-L1 on these vesicles, which suppresses the function of CD8+ T cells, facilitating tumor 
growth. Importantly, these authors showed that the level of PD-L1-positive EVs differentiates responders 
from non-responders to anti-PD-1 therapy. More importantly, this study provides evidence supporting the 
application of PD-L1-positive EVs as a predictive biomarker for anti-PD-1 therapy in melanoma 
patients[101].

EV-ASSOCIATED NUCLEIC ACIDS
As described above, high-speed analytical technologies, such as HTS, are powerful tools for identifying 
candidate nucleic acid biomarkers. For detection and validation of candidate EV nucleic acid biomarkers, 
reverse transcription-quantitative polymerase chain reaction (RT-qPCR) after an isolation process is the 
most common detection method. Recently, digital polymerase chain reaction (dPCR) has emerged as a 
novel detection method for EV nucleic acids. dPCR is a qPCR technique that provides a sensitive and 
reproducible method of measuring the amount of DNA or RNA present in a sample[102]. The tremendous 
progress in these technologies during the last few decades has allowed us to analyze EV-associated nucleic 
acids derived from diverse body fluids.

EV RNA biomarkers
Pioneering studies of nucleic acids from isolated EVs have identified various miRNAs and mRNAs as the 
major components of EVs[55,103]. Subsequently, several important papers reporting on the function of EV-
miRNAs were published and showed that the transferred EV-miRNAs can be active in recipient cells and 
modify the cellular phenotype[104-106]. Over the last decade, studies have revealed that EVs contain other 
noncoding RNAs, such as tRNAs[107], circRNAs[108] and lncRNAs[109,110]. To date, EV RNAs (as EV cargo) 
have received the most attention in terms of cancer diagnosis and prognosis because they are easy to 
quantify using conventional methods, such as qPCR, and stable against RNase-dependent degradation in 
the circulatory system[111]. Table 2 summarizes the candidate EV RNA markers reported as diagnostic and 
prognostic tools for cancer.

EV RNAs for cancer diagnosis
Since the discovery of EV-miRNAs by Valadi et al.[55] in 2007, numerous studies have been performed to 
identify diagnostic EV miRNAs for cancer. Taylor et al.[112] showed that eight miRNAs (miR-21, miR-141, 
miR-200a, miR-200c, miR-200b, miR-203, miR-205 and miR-214) that were previously characterized as 
diagnostic markers for ovarian cancer were also upregulated in circulating EVs derived from ovarian cancer 
patients. Rabinowits et al.[113] conducted miRNA-profiling analyses of EV-based liquid biopsy samples and 
tumor biopsy samples from lung cancer patients and healthy controls. Their study showed a similarity in 
miRNA patterns between EV-based biopsy samples and tumor biopsy samples from lung cancer patients 
and demonstrated significant differences between these miRNA patterns and those in EVs from the healthy 
control group. This result indicates the potential of EV miRNAs as a liquid biopsy source for lung cancer. 
On the other hand, EV miR-1246 was significantly increased in ESCC patient serum samples but was not 
elevated in tumor biopsy samples, indicating that the level of EV miRNAs may not necessarily reflect the 
amounts in parental cells[114].

Regarding EVs in other body fluids, Nilsson et al.[115] reported that PCA3 and TMPRSS2:ERG mRNA, which 
are previously established prostate cancer biomarkers, were also present in urinary EVs from prostate 
cancer patients. Additionally, Foj et al.[116] demonstrated that the levels of miR-21-5p, miR-375, and let-7c-
5p were remarkably increased in urinary EVs derived from prostate cancer patients compared with those 
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Table 2. A list of EV RNAs as potential biomarkers for cancer

Cancer types Biological source Isolation 
methods

Detection 
methods RNA types Markers Potential application Ref.

Uninary cancer

Prostate 
cancer

Urine UC + SUC nestedPCR mRNA PSA, PCA-3, TMPRSS:ERG Diagnosis/Monitoring [115]

Urine - ExoDx® Prostate 
(IntelliScore)

mRNA/lncRNA PCA3, ERG, SPDEF Diagnosis [118]

Urine UF/UC RT-qPCR miRNA let-7c, miR-21, miR-107, miR-145, miR-196a-5p, miR-204, 
miR-375, miR-501-3p, miR-574-3p, miR-2909

Diagnosis [116,187-191]

Serum/Plasma UF/SEC/UC RT-qPCR miRNA let-7i, miR-16, miR-21-5p, miR-24, miR-26a, miR-26b, miR-
30c-5p, miR-34b, miR-92b, miR-93, miR-103, miR-106a, 
miR-107, miR-130b, miR-141, miR-181a-2, miR-195, miR-197, 
miR-200c-3p, miR-210-3p, miR-223, miR-298, miR-301a, 
miR-326, miR-328, miR-331-3p, miR-346, miR-375, miR-
432, miR-574-3p, miR-625, miR-1290, miR-2110

Diagnosis [187,192-196]

Plasma UF/SEC/UC RT-qPCR miRNA miR-17, miR-20a, miR-23a, miR-130b, miR-198, miR-200b, 
miR-375, miR-379, miR-513a-5p, miR-572, miR-577, miR-
582-3p, miR-609, miR-619, miR-624, miR-1236, miR-1290

Prognosis [119,187]

Serum UC RT-qPCR miRNA miR-1246 Prognosis [197]

Urine - Urine Exosome 
RNA Isolation Kit 
/ RT-qPCR

lncRNA p21 Diagnosis [122]

Plasma Total Exosome 
Isolation Kit

RT-qPCR lncRNA SAP30L- AS1, SChLAP1 Diagnosis [198]

Plasma / Urine - exoRNeasy 
kit/ddPCR

mRNA AR-V7 Predict hormone therapy 
resistance (Abiraterone and/or 
Enzalutamide)

[132,133]

Bladdar cancer Urine UC ddPCR miRNA miR-21, miR-93, miR-200c, miR-940 Diagnosis [199]

Urine - ddPCR miRNA miR-21-5p, miR-4454, miR-720, miR-200c-3p, miR-29b-3p, 
miR-200b-3p

Diagnosis [200]

Urine UC RT-qPCR miRNA miR-375, miR-146a Diagnosis [201]

Urine unknown RT-qPCR miRNA miR-146b-5p, miR-155-5p Diagnosis [202]

Urine UC RT-qPCR lncRNA HOTAIR, HOX- AS-2, MALAT1, SOX2, OCT4 Diagnosis/Prognosis [203]

Serum ExoQuick RT-qPCR lncRNA PCAT1, UBC1, SNHG16 Diagnosis/Prognosis [204]

Serum UC RT-qPCR lncRNA UCA1 Diagnosis [205]

Urine / Serum UC RT-qPCR circRNA PRMT5 Diagnosis/Prognosis [126]

Renal cancer Serum UC + IP RT-qPCR miRNA miR-210, miR-1233 Diagnosis [206,207]

miR-150-5p, miR-126-3p in combination with miR-34b-5p, Urine UC RT-qPCR miRNA Diagnosis [208]
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miR-449a and miR-486-5p

Serum Total Exosome 
Isolation Kit

RT-qPCR miRNA miR-224 Prognosis [209]

Plasma ExoQuick RT-qPCR miRNA miR-26a-1-3p, miR- let-7-I, miRN-615-3p Prognosis [210]

Urine UC RT-qPCR lncRNA GSTA1, CEBPA, PCBD1 Diagnosis [211]

Female cancer

Breast cancer Plasma FC/UC/ExoQuick RT-qPCR miRNA miR-21, miR-1246 Diagnosis [212]

Plasma UC RT-qPCR miRNA miR-105 Diagnosis [213]

Serum unknown/Total 
Exosome Isolation 
Kit 

RT-qPCR miRNA miRNA-21, miRNA-222, miRNA-155 Prognosis/Predict 
chemoresistance (miR-21, miR-
155: Doxorubicin, Paclitaxel)

[214,215]

Serum UC + IP RT-qPCR miRNA miR-200a, miR-200c, miR-205 Diagnosis [216]

Bood/Milk/Ductal 
fluids

UC RT-qPCR miRNA miR-16, miR-1246, miR-451, miR-205 Diagnosis [217]

Serum ExoQuick RT-qPCR lncRNA HOTAIR Prognossis/Monitoring [129]

Serum ExoQuick RT-qPCR lncRNA SNHG14 Predict chemoresistance 
(Trastuzumab)

[130]

Plasma UC RT-qPCR mRNA TrpC5, mdr1, MUC1 and flotillin2 Predict chemoresistance 
(Anthracycline/taxan)

[135]

Serum Total Exosome 
Isolation Kit 

RT-qPCR mRNA GSTP1 Predict chemoresistance 
(Anthracycline/taxan)

[136]

Ovarian cancer Serum UC + IP RT-qPCR miRNA miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, 
miR-205, miR-214

Diagnosis [112]

Serum Total Exosome 
Isolation Kit 

RT-qPCR miRNA miR-1246 Predict chemoresistance 
(Paclitaxel)

[218]

Digestive 
cancer

Pancreatic 
cancer

Serum/Urine UC RT-qPCR miRNA miR-17-5p, miR-21 Diagnosis [219]

Plasma ExoQuick RT-qPCR miRNA miR-155 Predict chemoresistance 
(Gemcitabine)

[131]

Saliva UC RT-qPCR mRNA Apbb1ip, ASPN, Daf2, FoxP1, Bco31781, Gng2 Diagnosis [220]

Liver cancer 
(HCC)

Plasma Total Exosome 
Isolation Kit

RT-qPCR tRNA ValTAC-3, GlyTCC-5, ValAAC-5, GluCTC-5 Diagnosis [107]

Serum Exoquick RT-qPCR circRNA circUHRF1 Diagnosis/immunotherapy 
resistance (anti-PD-1)

[108]

Serum Exoquick RT-qPCR miRNA miR-21, miR-10b Prognosis [221]

Gastoric 
cancer

Serum unknown RT-qPCR miRNA HOTTIP Diagnosis/Prognosis [124]
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Serum UC RT-qPCR lncRNA lncUEGC Diagnosis [123]

Serum Exoquick RT-qPCR circRNA circSHKBP1 Diagnosis [222]

Esophageal 
cancer (ESCC)

Serum Exoquick RT-qPCR miRNA miR-21 Diagnosis [120]

Colorectal 
cancer

Serum UC RT-qPCR miRNA let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, miR-
23a

Diagnosis [127]

Serum ExoQuick RT-qPCR miRNA miR-4772-3p Prognosis [223]

Rectal cancer Plasma miRCURY Exosome 
Isolation Kit

RT-qPCR miRNA miR-30d-5p, miR-181a-5p and miR-486-5p Diagnosis [224]

Others

Lung cancer Plasma ExoQuick RT-qPCR miRNA miR-151a-5p, miR-30a-3p, miR-200b-5p, miR-629, miR-
100, and miR-154-3p

Diagnosis [225]

Lung cancer 
(NSCLC)

Plasma IP RT-qPCR miRNA let-7f, miR-20b, miR-30e-3p, miR-223, miR-301 Diagnosis [226]

Lung cancer 
(LSCC)

Plasma ExoQuick RT-qPCR miRNA miR-205, miR-19a, miR-19b, miR-30b, miR-20a Monitoring [227]

Lung cancer 
(NSCLC)

Serum UC RT-qPCR miRNA miRNA-222-3p Prognosis/Predict 
chemoresistance (Gemcitabine)

[228]

Lung cancer 
(NSCLC)

Serum ExoQuick RT-qPCR miRNA miRNA-146a-5p Predict chemoresistance 
(Cisplatin)

[229]

Lung cancer 
(NSCLC)

Plasma - exoRNeasy 
kit/ddPCR

mRNA PD-L1 Predict immunotherapy resistance 
(anti-PD-1)

[134]

Melanoma Plasma - exoRNeasy 
kit/ddPCR

mRNA PD-L1 Predict immunotherapy resistance 
(anti-PD-1)

[134]

Glioblastoma Serum/Cereblospinal 
fluid

UC RT-qPCR miRNA miR-21 Diagnosis/Prognosis [230]

Cereblospinal fluid UC RT-qPCR miRNA miR-21 Diagnosis [231]

Serum ExoQuick RT-qPCR miRNA RNU6-1, miR-320, miR-574-3p Diagnosis [232]

Serum - iMER mRNA MGMT, APNG Predict chimoresistance 
(Temozolomide)

[137]

HCC: Hepatocellular carcinoma; ESCC: esophageal squamous cell cancer; NSCLC: non-small cell lung cancer; LSCC: laryngeal squamous cell carcinoma; UC: ultracentrifugation; SUC: sucrose cushion; UF: 
ultrafiltration; IP: immunoprecipitation; RT-qPCR: reverse transcription-quantitative PCR; ddPCR: droplet digital PCR; miRNA: microRNA; tRNA: transfer RNA; circRNA: circular RNA; lncRNA: long non-coding RNA.

from healthy subjects. Analyses of urinary EVs and associated RNAs are difficult to perform because of the low abundance of these molecules and the fact that 
the urine volume itself varies greatly over time. However, recently, a new technology has been reported in which zinc oxide nanowires are used to catch 
urinary EVs to increase the yield[117]. Moreover, ExoDx® Prostate (IntelliScore) is a simple, non-DRE, urine-based test for prostate cancer that is commercially 
available in the United States. This test has been clinically validated for risk stratification of clinically significant prostate cancer (Gleason score ≥ 7) from low-
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grade prostate cancer (Gleason score 6) and benign prostate disease, thus avoiding unnecessary prostate 
biopsy. A patient-specific individual risk score is evaluated based on an original algorithm that combines 
the expression level of three RNAs (PCA3 noncoding RNA, ERG mRNA, and SPDEF mRNA), which are 
correlated with clinically significant prostate cancer, detected directly in urinary EV RNAs[118].

To date, the potential of many miRNAs as cancer prognostic markers has been reported. Huang et al.[119] 
showed that increased levels of serum miR-1290 and miR-375 in EVs were correlated with decreased OS in 
patients with advanced-stage prostate cancer. Tanaka et al.[120] revealed that high levels of circulating EV 
miR-21 could distinguish esophageal squamous cell cancer (ESCC) patients from patients with benign 
diseases. The levels of EV miR-21 were also correlated with cancer progression and aggressiveness, 
indicating that EV miR-21 can serve as a diagnostic biomarker for cancer as well as a therapeutic target. In 
addition to EV miR-21, EV miR-1246 was also identified as a diagnostic and prognostic marker for 
ESCC[114]. Regarding prognostic markers for digestive cancers, Matsumura et al.[121]. reported that serum EV 
miR-19a-3p might be a prognostic biomarker to predict the recurrence of colorectal cancer. Other 
noncoding RNAs, such as lncRNAs and the less common family of circRNAs in EVs from cancer cells, have 
also attracted increasing attention. Urinary EV lncRNA p21 was reported to be elevated in prostate cancer 
patients and able to distinguish prostate cancer patients from those with benign disease[122]. Lin et al.[123] 
reported that lncRNA upregulated in plasma exosomes from gastric cancer (lncUEGC1) patients could be 
used to detect early-stage gastric cancer. Serum EV-associated lncRNA HOTTIP was also reported as a 
diagnostic and prognostic indicator of gastric cancer[124]. Furthermore, Lee et al.[125] demonstrated the 
prognostic significance of circulating EV ncRNAs [miRNA-21 and lncRNA activated by transforming 
growth factor beta (lncRNA-ATB)] for human hepatocellular carcinoma. In this study, the OS and PFS rates 
were significantly lower in patients with higher levels of miR-21 and lncRNA-ATB in EVs[125]. Concerning 
circRNA, Chen et al.[126] showed that circRNA PRMT5 was highly enriched in both serum and urinary EVs 
collected from patients with bladder cancer compared with normal individual cohorts. In this study, they 
also revealed that EV circPRMT5 levels were significantly correlated with cancer metastasis[126].

EV RNAs to monitor cancer progression and drug resistance
Similar to EV proteins, EV-RNAs have been reported to have potential as biomarkers for monitoring 
therapeutic effects or resistance to anticancer therapy.

Ogata-Kawata et al.[127] reported that the levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, 
miR-21, miR-223, miR-23a) in serum EVs were significantly increased in colorectal cancer patients. The 
serum levels of these miRNAs were significantly decreased after tumor resection, indicating their potential 
for monitoring tumor burden[127]. Svedman et al.[128] investigated EV-associated miRNA levels in patients 
with metastatic melanoma before, during, and after MAPK inhibitor therapy. They showed that increased 
levels of let-7g-5p were correlated with lower tumor burden and could clearly differentiate responders from 
nonresponders; moreover, an increase in the miR-497-5p level during the treatment course was significantly 
associated with better PFS rates[128]. Several researchers have investigated EV-associated lncRNAs in patients 
during chemotherapy. HOTAIR is one of the major lncRNAs that is overexpressed in a variety of cancers 
and promotes cancer cell proliferation, invasion and migration. Tang et al.[129] reported that EV HOTAIR 
was more enriched in serum samples from breast cancer patients than in healthy controls. In addition, they 
showed that a high pretreatment level of EV HOTAIR was correlated with a poor response to neoadjuvant 
chemotherapy and tamoxifen hormone therapy. In this study, EV HOTAIR was significantly decreased in 
all patients after surgery compared with before surgery, indicating that serum EV HOTAIR originates from 
the tumor tissue, and its level is associated with tumor burden and cancer aggressiveness[129].
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Regarding EV lncRNAs, Dong et al.[130] have previously shown that isolated EVs from HER2-positive 
advanced breast cancer patients who were nonresponders to trastuzumab therapy contained more lncRNA 
SNHG14 than EVs from responders. In this study, the authors showed that EV lncRNA-SNHG14 promoted 
trastuzumab resistance by activating Bcl-2/apoptosis regulator BAX (Bax) signaling. Similar to this study, 
other types of EV RNAs have also been reported to be involved in resistance to anticancer therapy. 
Mikamori et al.[131] reported that higher miR-155 expression levels in resected tumor tissue samples from 
pancreatic ductal adenocarcinoma patients treated with gemcitabine (GEM) were correlated with a poorer 
prognosis. This study demonstrated that the levels of miR-155 in plasma-derived EVs were consistent with 
those in pancreatic tissue[131]. The results suggest that circulating EV biomarkers can reflect, to some extent, 
the tumor burden and possess potential as real-time monitoring biomarkers for anticancer drug resistance. 
Interestingly, they further demonstrated that high expression of miR-155 in pancreatic cancer cell lines 
promoted antiapoptotic signaling and EV secretion in vitro. Moreover, they showed that the EVs released 
by miR-155-overexpressing PDAC cell lines could transfer chemoresistance-associated molecules (including 
miR-155) to other cancer cells and that the recipient cells subsequently acquired chemoresistance to GEM 
in vitro. Del Re et al.[132] succeeded in detection of androgen receptor splice variant 7 (AR-V7) in EV RNAs 
from castration-resistant prostate cancer (CRPC) patients. The authors showed that EV AR-V7 mRNA 
levels were associated with hormonal therapy resistance. OS was significantly shorter among patients with 
EVs containing AR-V7 mRNA than among those without AR-V7 mRNA present (3 months vs. 20 
months)[132]. Woo et al.[133] reported a practical method for analysis of AR-V7 mRNA in urinary EVs. In this 
study, the authors adopted a lab-on-a-disc integrated with six independent nanofiltration units, which 
enabled simultaneous processing of six individual samples. EV mRNA was extracted from each 4 mL urine 
sample, and AR-V7 and androgen receptor full-length (AR-FL) mRNA levels were quantified by dPCR. The 
results showed that higher AR-V7 and lower AR-FL expression was detected in urinary EVs derived from 
patients with CRPC than in those from patients with hormone-sensitive prostate cancer. In addition, they 
described that AR-V7 transcript levels and the AR-V7/AR-FL ratio in urinary EVs were higher in patients 
with advanced prostate cancer[133]. These studies indicate that EV AR-V7 mRNA could be a predictive 
biomarker for hormonal therapy resistance in prostate cancer. Some studies have investigated the relevance 
between EV RNAs and the response to ICIs. For example, Del Re et al[134]. demonstrated that EV-associated 
PD-L1 mRNA levels could be useful for real-time monitoring of the response to anti-PD-1 antibody 
therapy. They evaluated PD-L1 mRNA expression levels in plasma EVs from melanoma and NSCLC 
patients during nivolumab and pembrolizumab therapy. After 2 months of treatment, the EV PD-L1 mRNA 
copy numbers were significantly decreased in responders but remained unchanged in nonresponders[134]. 
Regarding the EV-based biomarkers associated with breast cancer chemoresistance, Ma et al.[135] performed 
profiling analyses of mRNA in circulating EVs from breast cancer patients treated with chemotherapy or 
not. The authors demonstrated that four mRNAs (TrpC5, MDR1, MUC1, and flotillin2) were amplified in 
EVs from patients with chemotherapy but were not amplified in patients without chemotherapy[135]. 
Interestingly, considering that TrpC5 was previously shown to regulate P-gp expression in recipient cells, 
this study suggested that TrpC5-enriched circulating EVs could promote cancer MDR development in these 
patients. More recently, Yang et al.[136] analyzed the levels of glutathione S-transferase P (GSTP1) mRNA in 
serum EVs from breast cancer patients treated with anthracycline/taxane-based neoadjuvant chemotherapy. 
GSTP1 is an enzyme that has a critical role in cell detoxification. Importantly, they observed that patients 
with EVs highly enriched in GSTP1 mRNA showed an inadequate response to chemotherapy[136].

Shao et al.[137] established a microfluidic platform termed immunomagnetic exosome RNA (iMER) analysis, 
which integrates immunomagnetic selection targeting EV-surface proteins and real-time qPCR for 
collecting EV-associated RNAs into a single microfluidic chip form. Serial measurements of the mRNA 
levels of MGMT and APNG, two important enzymes involved in repairing DNA damage induced by 
temozolomide for glioblastoma, demonstrated the feasibility of drug resistance monitoring during 
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treatment using this integrated platform[137]. Although this kind of novel technology for capturing and 
analyzing EVs requires further development and validation in a clinical setting, it has the potential to reach 
the next level of EV utilization to detect cancer biomarkers.

EV DNA biomarkers
In addition to RNA species, DNA fragments have also been identified in EVs. Balaj et al.[138] were among the 
first to show that EVs contain single-stranded DNA. Yokoi et al.[139] confirmed the presence of double-
stranded DNA in EVs using imaging flow cytometry and described how nuclear content was loaded into 
EVs. EV DNA is also a promising diagnostic tool due to its ability to carry information regarding cancer-
specific mutations[140]. Here, we aim to summarize the growing evidence for EV DNA as a diagnostic marker 
and to consider its diagnostic advantages compared to cfDNA.

Kahlert et al.[141] identified the genomic DNA fragments in EVs from pancreatic cancer cell lines and 
pancreatic cancer patients. All genomic sequencing revealed mutations in KRAS and p53 in the genomic 
DNA of EVs derived from pancreatic cancer, suggesting that EV DNA sequencing can be used to determine 
treatment plans and predict therapy resistance[141]. However, in a subsequent paper, the first author called 
into question the superiority of EV DNA profiling to cfDNA profiling as an analyte for liquid biopsy[142]. 
Another remarkable study showed the detection rate of KRAS mutations in circulating EVs in PDAC 
patients and healthy controls. Mutations were detected in 7.4%, 66.7%, 80%, and 85% of age-matched 
controls and localized, locally advanced, and metastatic PDAC patients, respectively. In this study, the 
mutant KRAS detection rate in patients with localized PDAC after surgical resection dropped from 66.7% 
before surgery to 5% after surgery, indicating that EV-associated KRAS mutations could serve as biomarkers 
for real-time monitoring of therapy response and tumor burden[143]. A subsequent study demonstrated that 
the kinetics of EV-associated KRAS mutant allele frequency (MAF) were deeply correlated with 
neoadjuvant chemotherapy response; 71% of patients with a lack of cancer progression showed decreased 
KRAS MAF, while 94% of patients with cancer progression showed no decrease in KRAS MAF[144]. 
Interestingly, whereas the KRAS mutation detection rate in localized and metastatic pancreatic cancer was 
nearly equivalent for the cfDNA and EV DNA analyses, surgically resected primary tissue samples showed 
95.5% concordance with the EV DNA-based assessment and only 68.2% concordance with the cfDNA 
analysis results. Similarly, agreement between the results for pancreatic patient tissue and liquid biopsy 
analyses was reported to be 83.3% for EV DNA-based analysis and only 66.8% for cfDNA-based analysis.

Similar to KRAS mutations, several analyses of circulating EVs from NSCLC patients showed the presence 
of clinically relevant epidermal growth factor receptor (EGFR)-specific mutations[145,146]. Remarkably, these 
studies highlight the expanded performance associated with combining analysis of EV-associated nucleic 
acids together with cfDNA vs. cfDNA analysis alone. Castellanos-Rizaldos et al.[145] reported that the 
combined use of EV nucleic acids together with cfDNA overcame the limited abundance of the EGFR 
T790M mutation and other EGFR mutations and contributed to improved sensitivity and specificity 
compared to cfDNA alone. Krug et al.[146] showed that the combined use of EV RNA and cfDNA sequencing 
improved the detection of EGFR mutations up to 98% vs. 84% for cfDNA alone. EV-based liquid biopsy has 
potential for multiplexing DNA analyses with analyses of other EV cargoes, such as miRNA, lncRNA, and 
proteins; thus, it can provide highly accurate information about cancer biology.

Other body fluids, such as urine, may also be valuable sources for EV DNA-based liquid biopsies. Lee 
et al.[147] investigated whether genetic alterations in urothelial bladder cancer were reflected in urinary 
cfDNA or EV DNA and demonstrated concordance between the copy number profiles of tumor tissue and 
urinary DNA (cfDNA and EV DNA), with allelic frequencies of 56.2% and 65.6%, respectively. 
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Amplification of MDM2, ERBB2, CCND1, and CCNE1 and deletion of CDKN2A, PTEN, and RB1, whose 
alterations are all frequently found in bladder cancer, were also identified[147].

In addition to these studies, many studies have indicated that EV DNA may have a significant impact on the 
origin cells and recipient cells by playing a role in the maintenance of cellular homeostasis[148] and acting as 
an intercellular messenger[149]. Furthermore, similar to EV RNA, the packaging of DNA into membrane-
enclosed vesicles contributes to enhanced stability by protecting it from the external environment and 
avoiding recognition by the immune system[150]. These findings may demonstrate that EV DNA is superior 
to cfDNA as a biomaterial in liquid biopsy for cancer; however, current protocols for definitively detecting 
cancer-derived EV DNA in clinical samples are hampered by high labor costs, high financial costs, and low 
accuracy. The ctDNA isolation and detection method has already been established and might be used in 
routine clinical situations in the near future[142]. Although cfDNA was first reported in the 1940s[151], the 
presence of EV DNA has long been doubted and was only demonstrated in the 2010s[138,140]. The potential of 
EV DNA as an analyte for liquid biopsies has not been thoroughly investigated but is a promising research 
area. We must improve strategies to utilize EV DNA and establish more useful methods of applying this 
molecule for liquid biopsy.

CHALLENGES AND FUTURE PERSPECTIVE
Most potential biomarkers are based on small-scale studies and require longitudinal validation in larger 
samples. In addition, the consistency and variability in data collected using different technologies are 
significant problems. The large amounts of data from recently developed detection technologies provide an 
opportunity to identify key molecules but also represent a challenge to differentiating valuable markers 
among numerous candidate molecules, and the associated processes need further investigation. Deeper and 
more rigorous studies are required to accurately correlate these potential markers with clinical practice. 
Moreover, the basic knowledge regarding the biological characteristics of EVs is still insufficient. The 
mechanisms that regulate the heterogeneity of cancer EVs have not been fully elucidated, and the factors 
that affect EV synthesis, secretion and transfer remain poorly understood; overcoming these issues is crucial 
to improving the accuracy of EV diagnostic outcomes.

The future of EV-based liquid biopsy depends on meeting certain technological issues. Isolation and 
detection of EVs are undoubtedly the biggest problems mentioned above; however, other technological 
problems have been observed. For example, RT-qPCR for EV-associated nucleic acids requires more 
appropriate housekeeping genes or reference genes, and universal genes that meet all the criteria as control 
genes for EV-associated nucleic acids have not yet been identified[152]. For EV-associated miRNAs, current 
protocols recommend that samples be processed from aligned volumes and that technical variations should 
be compensated for using synthetic nonhuman miRNAs, such as Caenorhabditis elegans cel-miR-39, as 
normalization controls. Variations can stem from many sources, such as differences in sample preparation, 
stabilization, RNA extraction, and target quantification. These differences are not a consequence of the 
disease state itself. Therefore, optimal genes that are stably expressed, irrespective of the experimental 
situation or treatment, must be identified to define reference genes for normalizing EV-associated nucleic 
acid expression. Several housekeeping genes or reference genes have been identified for different native 
tissues and body fluids, and stable endogenous RNAs have been proposed as internal controls; however, a 
consensus has not been reached[152]. In 2002, Vandesompele et al.[153] demonstrated that the common RT-
qPCR procedure of using only one control gene induced relatively large errors. In this study, they claimed 
that ideal single internal control genes do not exist and recommended the use of at least three adequate 
control genes for calculating a normalization factor[153]. This issue with normalizers in gene expression 
analyses continues to this day, and the same issue is found with protein analyses. Quantification of EV-
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associated proteins also requires an internal control; however, the most suitable internal control for EV 
proteins for equivalent amounts of protein has not been identified. Not all EVs contain common EV marker 
proteins, such as Alix, TSG101, CD9, and CD63[154]. Hence, this problem with internal controls is a major 
problem associated with EV-based liquid biopsy, and further investigation is needed to develop biomarker 
research.

Despite these several concerns, EV-based liquid biopsy will provide higher sensitivity and specificity than 
classical biomarkers due to their stability in body fluids, and new technologies are being developed to solve 
the current limitations of EV-based liquid biopsy, as mentioned in this manuscript. Translating EV cargo 
profiles into routine clinical diagnostics would be facilitated by efficient alternatives to EV preparation via 
ultracentrifugation, such as biofluidic devices for high-throughput analysis. Moreover, extraordinary 
progress has occurred in analytic technologies, such as MS, HTS, and big-data analysis. These technologies 
have become irreplaceable and familiar analytical tools for researchers analyzing EV-associated molecules. 
Indeed, some studies have recommended MS-based methods as an alternative to detect EV protein markers 
after isolation procedures[155]. Further technological development will advance societal implementation of 
EV-based liquid biopsy for cancer.

CONCLUSIONS
Useful cancer biomarkers in liquid biopsies are urgently required, and EVs represent a promising resource 
for cancer biomarkers. The development of technologies is accompanied by novel statistical tools, which 
can utilize high-dimensional machine learning approaches to analyze big data and provide timely decisions. 
Thus, the future of EV-based liquid biopsy will be associated with multiple academic fields, such as 
molecular biology, bioengineering, clinical medicine, machine learning, and statistics. Numerous EV-
associated studies will likely enhance the performance of cancer biomarkers in early diagnosis, prognosis, 
surveillance and treatment. Additionally, recent advances in bioinformatics may demonstrate the biological 
significance of identified cancer markers, which will provide clues for elucidation of cancer 
pathophysiology. In conclusion, the development of EV-based liquid biopsy will lead to early diagnosis of 
fatal cancers and tailor-made treatments for individual patients, and such advancements will extend the 
healthy human life span and reduce medical costs. Similar to the dramatic changes in our daily lives caused 
by a microscopic virus, a tiny vesicle may also dramatically advance cancer management.
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