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Abstract
As the manufacturing industry expands in both scale and energy consumption, the challenge of achieving green 
and sustainable development becomes more prominent. One effective approach to this challenge is reducing 
product energy consumption by selecting appropriate process parameters. Process parameters in fused deposition 
modeling (FDM) play a crucial role in determining the energy consumption during the manufacturing process. 
Accurately forecasting how these parameters affect energy consumption is essential for realizing green 
manufacturing in FDM. This paper proposes a method for predicting energy consumption in FDM using Bayesian-
optimized random forests (BO-RF). First, response surface methodology (RSM) is utilized to design experiments, 
obtain the sample datasets, and identify four significant factors affecting processing energy consumption. Then, the 
sample datasets are partitioned into training and testing subsets; Bayesian optimization is used to optimize the 
model parameters of the RF, thereby obtaining the prediction model. Finally, using mean square error (MSE), mean 
absolute percentage error (MAPE), mean percentage error, and coefficient of determination as evaluation metrics, 
the BO-RF model’s predictive performance is evaluated against nine other prediction models. The results 
demonstrate the BO-RF prediction model’s superiority over nine other models.
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INTRODUCTION
Additive manufacturing (AM), often referred to as 3D printing, is a technique for fabricating solid parts by 
layering materials based on a 3D computer-aided design (CAD) model. Unlike traditional subtractive 
manufacturing (cutting and machining), AM is a “bottom-up” material accumulation method[1]. Fused 
deposition modeling (FDM) 3D printing primarily uses filament materials such as polylactic acid (PLA), 
acrylonitrile butadiene styrene (ABS), and fiber-reinforced composites. The filament is heated and melted, 
extruded through a nozzle, and then deposited layer by layer onto a preheated substrate, ultimately forming 
parts with specific shapes and structures. Depending on the characteristics of the part’s shape and structure, 
supports may be added as necessary. Based on its process principles, FDM 3D printing demonstrates high 
material utilization, aligning with the requirements of green manufacturing. However, this technique still 
faces challenges such as long printing times and high energy consumption[2]. Due to the unique process 
characteristics of FDM, numerous printing parameters such as printing speed, infill speed, nozzle 
temperature, bed temperature, and layer height exist. It is intuitively understood that there is a certain 
relationship between these parameters and energy consumption. To obtain a more comprehensive 
understanding of how printing parameters influence energy consumption, researchers have conducted a 
series of studies using various qualitative and quantitative analysis methods.

In qualitative analysis, the impact of printing parameters and their interactions on energy consumption is 
studied using experimental design and statistical analysis methods. Griffiths et al. employed the design of 
experiments (DOE) method to investigate the effects of part orientation, number of perimeters, infill rate, 
and layer thickness on energy consumption[3]. Their results indicated that layer thickness was the most 
influential factor in determining energy consumption, and the interactions between the studied parameters 
also had a notable impact on energy consumption. Additionally, using main effects plots and contour plots 
of energy consumption, they determined the optimal range of printing parameter combinations. Enemuoh 
et al. applied Taguchi orthogonal design, signal-to-noise ratio analysis, and variance analysis to study the 
effects of five printing parameters: infill rate, infill pattern, layer thickness, printing speed, and number of 
perimeters on energy consumption[4]. Their findings showed that layer thickness exerted the greatest 
influence on energy consumption, followed by printing speed, infill rate, infill pattern, and number of 
perimeters. They identified optimized parameter levels based on the signal-to-noise ratio analysis. Galetto 
et al. used experimental design and variance analysis to examine the impact of layer height, infill rate, nozzle 
temperature, printing orientation, number of perimeters, printing speed, and retraction speed, as well as the 
interactions between these parameters, on FDM energy consumption[5]. They found that low infill rate, large 
layer thickness, and fewer perimeters were conducive to reducing energy consumption. Furthermore, based 
on the experimental design analysis results, they fitted a polynomial to approximate the relationship 
between printing parameters and energy consumption, identifying the corresponding optimized parameter 
combinations for different optimization needs. Elkaseer et al. utilized Taguchi orthogonal design, variance 
analysis, and polynomial fitting methods to establish a quadratic regression model for the relationships 
between infill rate, layer height, printing speed, printing temperature, and printing orientation with energy 
consumption[6]. They used this model to predict how printing parameters affect energy consumption, 
finding that printing speed and layer thickness exerted an important influence on energy consumption. 
Camposeco-Negrete et al. employed Taguchi design and variance analysis to study the effects of layer 
thickness, infill pattern, printing orientation, and printing position on energy consumption[7]. They further 
determined the optimized combination of printing parameters through desirability analysis. Al-Ghamdi 
et al. used experimental design and variance analysis to investigate the impact of layer thickness, infill rate, 
printing speed, and wall thickness on FDM energy consumption[8]. They found strong interactions between 
the printing parameters and developed a cubic nonlinear regression model. Hassan et al. used full factorial 
design and variance analysis to study how six different infill patterns and four infill rates influence FDM 
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energy consumption[9]. They established a polynomial regression model discovering that both of them had a 
notable impact.

In quantitative analysis, it is rare to find studies that utilize physics-based functions to clearly describe how 
printing parameters affect energy consumption. This is mainly due to the complexity of the relationship, 
making it challenging to establish an expression using physics-based mathematical models. Therefore, 
polynomial fitting methods based on quadratic regression are primarily used to establish the relation 
between printing parameters and energy consumption. Feng et al., based on experimental design results, 
employed the group method of data handling (GMDH) to establish second-order nonlinear relationship 
models between three printing parameters and FDM printing energy consumption[10]. Tian et al. used a 
linear regression model to predict the influence of printing parameters on the FDM energy consumption, 
and proposed a nonlinear optimization approach to identify the optimal combination of printing 
parameters that minimizes energy consumption while meeting part quality requirements[11]. Alizadeh et al. 
used polynomial fitting to establish a quadratic polynomial regression model for the relationship between 
layer thickness, printing speed, nozzle temperature, and energy consumption[12]. They then used the 
nondominated sorting genetic algorithm II (NSGA-II) and technique for order preference by similarity to 
ideal solution optimization (TOPSIS) methods to solve a multi-objective optimization model for energy 
efficiency and geometric accuracy of the parts, obtaining optimized combinations of printing parameters 
based on the quadratic polynomial regression model.

In recent years, with the swift advancements in artificial intelligence, machine learning (ML) has found 
extensive applications in the mechanical manufacturing sector. Applications such as fault diagnosis[13] and 
defect monitoring in part manufacturing[14] have shown promising results. In terms of regression prediction, 
ML techniques are frequently employed to forecast the correlation between design parameters and 
performance metrics in aerospace optimization design[15], establishing surrogate models for optimization, 
and achieving effective results. As a data-driven modeling and prediction method, ML has shown unique 
advantages in multi-input single-output regression prediction and has achieved broader adoption in the 
field of AM. Xia et al. employed three ML algorithms, adaptive neuro fuzzy inference system (ANFIS), 
extreme learning machine (ELM), and support vector regression (SVR), to establish predictive models for 
the surface roughness of parts formed by arc AM[16]. The study showed that the genetic algorithm (GA)-
ANFIS model, optimized by a GA, had relatively better predictive performance. Li et al., aiming to study the 
influence of process parameters on the performance of parts formed by selective laser melting (SLM), 
utilized Kriging, radial basis function (RBF), and SVR to build a composite surrogate model based on local 
error for predicting material utilization, energy consumption, and tensile strength of SLM parts[17]. The 
predictive method’s effectiveness was verified through experiments. Baturynska et al., addressing the low 
prediction accuracy of linear regression methods in predicting geometric errors of AM parts, proposed 
applying ML algorithms such as SVR, decision tree (DT) regression, and multilayer perceptron to predict 
geometric errors[18]. The comparison with linear regression models indicated that ML algorithms had better 
prediction performance for geometric errors in AM parts. Cai et al., studying the relationship between 
dynamic strength and printing parameters of 3D-printed polypropylene composites, used six ML 
algorithms to establish predictive models[19]. The study found that artificial neural networks (ANNs) had the 
best predictive performance but required longer prediction times, while SVR performed well in both 
predictive performance and prediction time. Gor et al. used ML algorithms such as ANN, K-nearest 
neighbors (KNNs), and support vector machines (SVMs) to predict the density of parts produced by 
powder bed fusion AM[20]. Their results indicated that among the ML algorithms used, SVM exhibited 
relatively the best predictive performance. Kumar et al. applied the KNN algorithm to predict the influence 
of process parameters on the surface roughness of parts formed by microplasma arc metal AM[21]. 
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Experimental validation showed that the prediction error of surface roughness confirmed the effectiveness 
of the KNN algorithm in predicting surface roughness for microplasma arc metal AM. Ranjan et al. used the 
random forest (RF) algorithm to predict how process parameters influence mechanical properties, such as 
bending performance and fracture strength of Al-reinforced ABS composite parts fabricated by fused 
filament fabrication (FFF) 3D printing[22]. Wu et al. employed RF, SVR, ridge regression (RR), and least 
absolute shrinkage and selection operator (LASSO) regression algorithms to establish predictive models to 
link FDM printing parameters with the surface roughness of formed parts[23]. The experimental validation 
results demonstrated the effectiveness of these methods in predicting the surface roughness of FDM parts. 
Furthermore, Li et al. utilized an ensemble learning method to create a ML model comprising six 
heterogeneous base learners to predict the influence of FFF printing parameters on the surface roughness of 
formed parts[24]. Their study showed that this predictive method achieved high accuracy in forecasting the 
surface roughness of FFF parts. Feng et al. utilized the GMDH to establish an energy consumption 
predictive model[10]. They further applied the differential evolution (DE) algorithm to optimize printing 
parameters for low energy consumption and conducted variance analysis to study the impact of three 
printing parameters on energy consumption. Zhang et al. used a back-propagation neural network (BPNN) 
to establish an energy efficiency predictive model[25]. Based on the model, they employed an adaptive niche 
GA to solve an energy efficiency optimization model and obtain optimized printing parameter 
combinations.

Based on the above analysis, it is evident that ML algorithms have realized broader adoption in AM and 
predicted the correlation between printing parameters and the quality of formed parts, including surface 
roughness and mechanical properties, resulting in accurate predictive outcomes. However, for different 
research problems, such as the regression modeling prediction between FDM printing parameters and 
energy consumption, the accuracy of predictive results varies depending on the ML algorithm used. In the 
current research on the correlation between FDM printing parameters and energy consumption, whether 
using polynomial fitting methods or ML methods for regression prediction, there is a lack of in-depth 
analysis regarding the predictive accuracy of the methods employed. This leads to an insufficient 
understanding of the most effective ML methods. Furthermore, it is clear that research on energy efficiency 
optimization in FDM based on ML methods is limited. Consequently, exploring various ML predictive 
approaches for FDM energy consumption is essential.

METHODS
Experimental design
Experimental design uses statistical methods to study how to design reasonable experimental schemes, 
obtain experimental data, and analyze experimental results to understand the effects of experimental factors 
and their interactions on responses. Experimental design primarily consists of the following three parts:

(1) Designing the Experiment Scheme: Determine the objectives of the experiment, specifically the response 
indicators. Identify the experimental factors to be studied and their levels, and design a reasonable 
experimental scheme. 
(2) Measuring Experimental Results: Conduct the experiments according to the designed scheme, and 
record the experimental response results. 
(3) Analyzing Experimental Results: Use statistical methods to analyze the experimental results. This 
involves assessing the significance of the effects of experimental factors on the response and analyzing the 
impact of interactions between experimental factors on the response.
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Response surface methodology experimental design
Response surface methodology (RSM) is a technique that uses appropriate experimental design methods to 
study how to approximate the functional correlation between design variables, constraints, and target values 
in complex situations. Its essence lies in approximating the relationship between the inputs x1, x2, …, xn and 
the output y of actual complex structural systems using response surface fitting. For the response surface 
function that fits the input-output relationship, in general, lower-order polynomials are sufficient to meet 
accuracy requirements. The determination of the polynomial order depends on the nonlinearities between 
the inputs and outputs in the actual structural system. When designing the response surface function, the 
following principles need to be considered: to minimize the number of experiments as much as possible, 
lower-order and simple expression polynomial functions should be chosen to meet the fitting accuracy 
requirements. Based on the previous analysis, selecting a reasonable experimental design method, which 
involves choosing sample points to fit the response surface, is one of the keys to the effective application of 
RSM. For response surfaces in the form of second-order polynomials, commonly used experimental design 
methods include:

(1) Full factorial design 
Full factorial design is a fundamental experimental design method in RSM. This method requires running 
all possible experimental combinations. For a full factorial design with m factors each at n levels, the 
number of experiments required is nm. As can be seen, the number of experiments increases exponentially 
with the number of factors. Therefore, considering the cost and time of experiments, full factorial design is 
not suitable for situations with a large number of factors.

(2) Central composite design 
Central composite design (CCD) is an extension of the two-level full factorial design. It involves adding 
axial points and center points to ensure that the design requirements are met. For an m-factor CCD, the 
number of experiments needed is typically 2m + 2m + 1. Compared to full factorial design, CCD requires 
fewer experiments, thus improving experimental efficiency.

(3) Box-Behnken design 
Box-Behnken design sets three levels for each experimental factor and is commonly used to study the 
nonlinear interactions between response variables and factors. For the same number of factors, Box-
Behnken design requires fewer experiments compared to CCD, offering higher experimental efficiency.

Establishment of RF model based on Bayesian optimization
DT
DT is a commonly used ML algorithm, and its model training process is based on a tree structure, 
conducting a series of attribute tests according to the sample datasets. Typically, a single DT model consists 
of a root node, several internal nodes, and leaf nodes, where the leaf nodes correspond to the results 
obtained by the model’s decision, and the root node and internal nodes correspond to specific attribute 
judgments. Based on the results of attribute judgments, the sample datasets contained in each node are 
divided into subsets and assigned to corresponding child nodes. The root node serves as the initial attribute 
judgment node and contains the complete sample datasets.

For the training sample dataset:

(1) 
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Attribute set:

(2) 

In the case of a classification problem, the training process of a DT model is illustrated in Figure 1, showing 
that the training of the DT model is a recursive process.

The key issue in achieving effective modeling of DTs is how to divide the optimal attributes. In DT learning, 
the division of optimal attributes is mainly achieved through the following three criteria:

(1) Information Gain:

(3) 

(4) 

Where Ent (D) represents the information entropy, and Pk denotes the proportion of samples belonging to 
the k class in the training sample datasets D, k = 1, 2, …, |y|. Dv indicates the number of samples containing 
the value of the attribute corresponding to the internal node in the sample datasets D. A larger information 
gain for a particular attribute indicates that the attribute is more favorable for splitting.

(2) Gain Ratio:

(5) 

(6) 

The gain ratio helps address the issue of attribute preference when using information gain as a criterion. 
Specifically, for attributes with a wider range of values, a higher information gain might occur, potentially 
leading to erroneous attribute partitioning, such as using sample ID as the optimal splitting attribute.

(3) Gini Index:

(7) 

(8) 

The aforementioned optimal attribute partitioning criteria correspond to three classic DT algorithms: the 
ID3 DT algorithm, the C4.5 DT algorithm, and the classification and regression tree (CART) DT algorithm. 
The CART algorithm is applicable to both classification and regression tasks. Therefore, in the predictive 
modeling of energy consumption in FDM 3D printing, a DT model based on the CART algorithm is used.

RF model
RF is an ensemble learning algorithm based on the Bagging algorithm, using DTs as base learners. Its 
primary modeling principle involves establishing several sample datasets through bootstrapping, 
constructing CART regression tree models for each dataset, and ultimately computing the arithmetic 
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Figure 1. DT model training process. DT: Decision tree.

average of the predictive results from these regression tree models to yield the prediction of the RF model.

The key steps in RF modeling include: 
(1) Utilizing bootstrapping to randomly sample the original training datasets, resulting in T training subsets. 
(2) Based on the T training subsets obtained in step (1), further establishing T CART regression tree models 
through random selection of attributes. 
(3) Employing each CART regression tree model to predict output results fi (x). 
(4) Calculating the prediction output results f (x) of the RF model through simple averaging, as given in

(9) 

According to the above analysis, the modeling process of RF is illustrated in Figure 2.

Bayesian optimization algorithm
The numbers of regression trees in a RF, leaf nodes, and attributes in the randomly selected subsets all 
significantly influence the model’s prediction performance. Therefore, parameter optimization is crucial for 
enhancing the performance of predictive models. Commonly used parameter optimization methods include 
grid search, GAs, particle swarm optimization (PSO), etc. In this paper, we adopt the Bayesian optimization 
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Figure 2. RF modeling process. RF: Random forest.

algorithm for parameter optimization of the RF model. Compared to other optimization algorithms, 
Bayesian optimization algorithm leverages known sampled information to determine new sampling points, 
thus possessing the advantage of high optimization efficiency.

The problem of optimizing RF model parameters based on the Bayesian optimization algorithm can be 
formulated as:

(10) 

Where x* represents the set of model optimization parameters, x denotes the model parameters to be 
optimized, X stands for the parameter space for the optimization parameters, and f (x) signifies the objective 
function to be optimized, which is the prediction error of the RF model.

The solution steps of the Bayesian optimization algorithm mainly include: 
(1) Estimating the posterior distribution of the objective function using the probability surrogate model of 
Gaussian process based on known sampled points and their function values. 
(2) Determining the optimal sampling point for the next iteration according to the sampling rule of the 
acquisition function.

Based on the above analysis, the modeling process of RF based on Bayesian optimization is illustrated in 
Figure 3.

EXAMPLE VERIFICATION
Energy efficiency function
FDM 3D printing generates energy consumption mainly during the startup, preheating, printing, and reset 
stages, with the printing stage contributing the highest energy consumption due to its prolonged 
duration[26]. To consider the feasibility and ease of energy consumption measurement, this study measures 
the total energy consumption throughout the entire printing process, from the startup to the reset stages of 
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Figure 3. BO-RF modeling process. BO-RF: Bayesian-optimized random forest.

the FDM 3D printer. Given that the energy consumption varies depending on the specific part being 
printed, using energy consumption as the sole research object yields results that lack general applicability. 
Therefore, this study further investigates the energy efficiency of the printing process, referred to as printing 
energy efficiency, based on the energy consumption of the printing process.

There are numerous indicators for evaluating the energy efficiency of the manufacturing process[27], with 
specific energy and energy utilization rate being two commonly used indicators. In this study, specific 
energy is adopted as the evaluation indicator for the energy efficiency of FDM 3D printing. In FDM, the 
specific energy can be represented by the ratio of the total energy consumption during the printing process 
to the total material consumption. A lower specific energy indicates that less energy is consumed per unit 
volume of material, thereby signifying higher energy efficiency.

Based on the above analysis, the energy efficiency function for FDM 3D printing, in terms of specific 
energy, can be expressed as

(11) 

Where ESEC is the specific energy consumption; E is the total energy consumption during the manufacturing 
process; Vm is the total material consumption of the manufactured parts. V is the volume of the molded 
part; fp is the filling density of the molded part. Based on the above analysis, it is evident that the smaller the 
unit energy consumption and specific energy consumption, the higher the energy utilization efficiency.
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Figure 4. Prototype part drawing.

Experimental materials and equipment
The printing material used in this study is PLA filament, and the selected FDM printing device is the UP 
PLUS 2. The part diagram of the printed specimen is shown in Figure 4.

After completing the 3D modeling of the part using SolidWorks based on the part drawing, the next step 
involves setting up the print parameters and performing the slicing operation using Cura software. First, the 
set values for various process parameters are obtained from the Test design results based on Box-Benhnken. 
Next, these parameters are configured in the Cura software. Then, the model is exported and sent to the 
printer for printing. During the printing process, the Aitek AWS2013 power meter is used to measure the 
energy consumption. Finally, the energy consumption data for FDM 3D printing is obtained. The primary 
function of the slicing software is to slice the model layer by layer and generate different paths based on the 
model’s shape and the set process parameters, ultimately producing the GCode file for the entire 3D model, 
which can be exported for offline printing.

Experimental design results
There are numerous printing parameters in FDM 3D printing. These parameters can be categorized into the 
following three types: 
(1) Process-related printing parameters: These include layer height, bed temperature, nozzle temperature, 
printing speed, infill speed, bottom/top thickness, retraction speed, retraction distance, and so on. 
(2) Machine-related printing parameters: These include nozzle diameter, filament width, and other related 
parameters. 
(3) Part geometry-related printing parameters: These include the printing orientation of the part, specific 
geometric features, and similar attributes.

Based on existing research results from the literature[5] and the controllable parameters of the UP PLUS 2 
printer the previously listed parameters were further refined. After analysis, this paper focuses on the 
following six printing parameters for further study: Layer Height, Nozzle Temperature, Bed Temperature, 
Print Speed, Travel Speed, and Infill Speed. According to process requirements, the ranges for these 
parameters are as follows: Layer Height: 0.1-0.3 mm; Nozzle Temperature: 200-220 °C; Bed Temperature: 
60-80 °C; Printing Speed: 40-60 mm/s; Travel Speed: 90-110 mm/s; Fill Speed: 60-80 mm/s. Based on these 
ranges, each experimental factor is set to three levels. The experimental factors and their levels are 
summarized in Table 1.
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Table 1. Print parameters and factors level

Factor 
Level

Layer height 
(mm)

Nozzle temperature 
(°C)

Bed temperature 
(°C)

Printing speed 
(mm/s)

Travel speed 
(mm/s)

Fill speed 
(mm/s)

1 0.1 200 60 40 90 60

2 0.2 210 70 50 100 70

3 0.3 220 80 60 110 80

Based on the determined experimental factors and levels, the experiment involves six factors with three 
levels each. Considering the number of experiments and efficiency, this study chooses the Box-Behnken 
design type. The specific energy consumption (ESEC) is used as the experimental response. Using Design 
Expert software, an experimental matrix based on the Box-Behnken design type was created, as shown in 
Table 2, comprising a total of 54 experimental runs.

Analysis of variance
The analysis of variance (ANOVA) significance test method was used to analyze the factors influencing the 
energy efficiency of FDM printing. When the P-value is ≤ 0.01, the experimental factor has a very significant 
effect on the response; When P ≤ 0.05, the effect is significant; When P > 0.05, the experimental factor does 
not significantly affect the response.

The ANOVA results for FDM printing energy efficiency are shown in Table 3. From the results, it can be 
seen that the model’s P-value is < 0.0001 (P < 0.05), indicating that the model accurately reflects the real 
situation. The P-value for the lack of fit is 0.9439 (P > 0.05), suggesting that the lack of fit is not significant, 
and thus, the model has good explanatory power. After validating and confirming the model’s effectiveness, 
it can be further concluded that the factors with a very significant impact on FDM printing energy efficiency 
are layer height (X1), bed temperature (X3), and printing speed (X4). The factor with a relatively significant 
impact is fill speed (X6), while the remaining printing parameters have a less significant impact on FDM 
printing energy efficiency. Regarding the interactions between printing parameters, the interaction between 
layer height and heated bed temperature has a very significant impact on FDM printing energy efficiency, 
the interaction between layer height and printing speed has a relatively significant impact, and the 
interactions between other printing parameters have a less significant impact on FDM printing energy 
efficiency.

Data preprocessing
The quality of the datasets significantly affects the predictive performance of the model. Therefore, it is 
essential to preprocess the datasets obtained through experimental design, including feature processing, 
dataset partitioning and normalization.

Feature processing
The number of features or dimensions in the datasets used for training the BO-RF model can influence the 
predictive performance of the model. When the dimensionality is too high, the predictive accuracy of the 
model will decrease. Hence, it is necessary to analyze and process the features of the datasets. In this study, a 
variance analysis of the response surface experimental design results revealed that layer height, bed 
temperature, printing speed, and infill speed had significant effects on energy consumption. Therefore, 
dimensionality reduction was performed on the original datasets with six features, and ultimately, four 
features were selected for training the BO-RF model.
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Table 2. Test design results based on Box-Benhnken

Printing parameters Experimental results
Experimental 
sequence

Layer 
height 
(mm)

Nozzle 
temperature 
(°C)

Bed 
temperature 
(°C)

Printing 
speed 
(mm/s)

Travel 
speed 
(mm/s)

Fill speed 
(mm/s)

Equivalent 
printing time 
(s2/mm3)

ESEC 
(J/mm3)

1 0.2 220 60 50 110 70 0.0014 55.9

2 0.3 210 60 50 100 70 0.0009 40.7

3 0.2 210 60 40 100 70 0.0018 60.1

4 0.2 210 80 60 100 80 0.0010 77.7

5 0.1 210 80 50 100 60 0.0033 139.7

6 0.2 220 80 50 110 70 0.0014 67.7

7 0.3 210 70 40 110 60 0.0014 45.5

8 0.1 210 70 60 110 70 0.0024 103.5

9 0.2 200 70 50 110 70 0.0014 62.0

10 0.3 210 70 60 90 70 0.0008 39.3

11 0.2 220 70 50 90 80 0.0013 60.6

12 0.3 210 80 50 100 60 0.0011 51.1

13 0.1 220 70 40 100 70 0.0036 121.2

14 0.2 210 70 50 100 70 0.0014 61.6

15 0.2 210 70 50 100 70 0.0014 59.2

16 0.2 210 70 50 100 70 0.0014 61.1

17 0.1 210 60 50 100 80 0.0025 89.0

18 0.2 220 70 50 90 60 0.0017 64.9

19 0.3 200 70 40 100 70 0.0012 46.4

20 0.2 210 60 60 100 60 0.0014 51.6

21 0.1 200 70 60 100 70 0.0024 106.1

22 0.2 200 60 50 110 70 0.0014 50.2

23 0.2 210 70 50 100 70 0.0014 61.6

24 0.2 200 70 50 90 80 0.0013 55.9

25 0.1 210 60 50 100 60 0.0033 99.0

26 0.2 210 80 60 100 80 0.0010 63.0

27 0.2 210 70 50 100 70 0.0014 60.1

28 0.2 220 70 50 110 60 0.0017 62.5

29 0.2 200 60 50 90 70 0.0014 48.8

30 0.1 200 70 40 100 70 0.0036 121.2

31 0.2 210 80 40 100 80 0.0016 74.8

32 0.3 220 70 40 100 70 0.0012 46.9

33 0.3 210 60 50 100 80 0.0008 35.0

34 0.2 210 80 40 100 60 0.0021 80.5

35 0.1 210 70 60 90 70 0.0024 108.4

36 0.2 220 80 50 90 70 0.0014 75.3

37 0.2 210 60 40 100 80 0.0016 54.0

38 0.1 210 70 40 90 70 0.0036 124.1

39 0.1 210 80 50 100 60 0.0033 133.5

40 0.1 210 70 40 110 70 0.0036 122.2

41 0.2 200 70 50 90 60 0.0017 63.4

42 0.3 210 70 40 90 70 0.0012 49.7

43 0.2 210 70 50 110 80 0.0013 59.2

44 0.2 210 80 50 90 70 0.0014 69.1

45 0.2 210 80 50 110 70 0.0014 67.7

46 0.3 200 70 60 100 70 0.0008 40.2
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47 0.2 220 70 50 110 80 0.0013 57.3

48 0.1 220 70 60 100 70 0.0024 106.5

49 0.2 210 70 50 100 70 0.0014 59.2

50 0.3 220 70 60 100 70 0.0008 42.1

51 0.3 210 70 60 110 70 0.0008 40.7

52 0.2 220 60 50 90 70 0.0014 51.6

53 0.2 210 60 60 100 80 0.0010 49.2

54 0.3 210 80 50 100 80 0.0008 48.8

Table 3. Variance analysis results of print energy efficiency

Source of variance Sum of squares Degrees of freedom Mean square F value P value

Model 38,469.78 27 1,424.81 131.91 < 0.0001

X1-layer height 27,298.83 1 27,298.83 2,527.32 < 0.0001

X2-nozzle temperature 3.91 1 3.91 0.36 0.5525

X3-bed temperature 2,187.90 1 2,187.90 202.56 < 0.0001

X4-printing speed 542.36 1 542.36 50.21 < 0.0001

X5-travel speed 8.27 1 8.27 0.77 0.3897

X6-fill speed 142.47 1 142.47 13.19 0.0012

X1X2 0.50 1 0.50 0.046 0.8313

X1X3 233.59 1 233.59 21.63 < 0.0001

X1X4 97.84 1 97.84 9.06 0.0058

X1X5 0.29 1 0.29 0.027 0.8715

X1X6 12.47 1 12.47 1.15 0.2925

X2X3 10.43 1 10.43 0.97 0.3348

X2X4 0.40 1 0.40 0.037 0.8480

X2X5 5.41 1 5.41 0.50 0.4855

X2X6 0.94 1 0.94 0.087 0.7704

X3X4 3.74 1 3.74 0.35 0.5612

X3X5 21.31 1 21.31 1.97 0.1720

X3X6 3.14 1 3.14 0.29 0.5943

X4X5 2.89 1 2.89 0.27 0.6091

X4X6 11.91 1 11.91 1.10 0.3033

X5X6 2.22 1 2.22 0.21 0.6542

X1
2 2,128.44 1 2,128.44 197.05 < 0.0001

X2
2 0.55 1 0.55 0.051 0.8230

X3
2 14.95 1 14.95 1.38 0.2500

X4
2 39.72 1 39.72 3.68 0.0662

X5
2 1.71 1 1.71 0.16 0.6938

X6
2 2.58 1 2.58 0.24 0.6289

Residual 280.84 26 10.80

Lack of fit 147.26 19 7.75 0.41 0.9439

Pure error 133.58 7 19.08

Total deviation 38,750.62 53

Dataset partitioning
As per the analysis, 54 sets of experimental data were selected as the sample datasets. After removing 
duplicate sample data, 47 sets of experimental data were retained. To ensure that the training set had 
enough samples to meet the model’s predictive accuracy, 35 sets of data were randomly assigned for training 
set data, while the remaining 12 sets were allocated for test set data.
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Normalization
In the sample data of ML, there often exists a disparity in the orders of magnitude between different feature 
attributes. For example, in this paper, the order of magnitude for layer height is 10-1, while for bed 
temperature, it is 101. The differences in orders of magnitude between feature attributes can lead to features 
with higher magnitudes dominating the ML algorithm, causing the model to overlook information 
contained in other features, thus resulting in a decrease in prediction accuracy. To prevent the differing 
magnitudes from affecting the predictive accuracy of the BO-RF model, the datasets need to be 
normalized[28]:

(12) 

Where x’ indicates the processed sample data, x’max stands for the maximum value in the processed sample 
data, x’min corresponds to the minimum value in the processed sample data, x denotes the original sample 
datasets, xmax points to the maximum value in the original sample datasets, and xmin represents the minimum 
value in the original sample datasets. The normalization range chosen in this study is [0, 1].

Model evaluation metrics
To quantitatively evaluate the modeling and predictive performance of different ML models, four evaluation 
metrics are chosen: mean square error (MSE), coefficient of determination (R2), mean absolute percentage 
error (MAPE), and maximum percentage error (MPE).

(1) MSE

(13)
 

Where n represents the number of samples in the test set, yi denotes the measured value of the output 
response, and yi means the predicted value of the output response. A smaller MSE indicates a better 
predictive capability of the model.

(2) R2

(14) 

The R2 characterizes the percentage of variability in a dependent variable that is explained by the model. The 
optimal value is 1, indicating excellent performance of the regression prediction model. The closer the value 
of R2 is to 1, the better the predictive performance of the model.

(3) MAPE

(15) 

(4) MPE

(16)  
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Figure 5. Energy efficiency modeling prediction results of RF and BO-RF models. (A) Prediction results of the training set for the RF 
model; (B) Prediction results of the test set for the RF model; (C) Prediction results of the training set for the BO-RF model; (D) 
Prediction results of the test set for the BO-RF model. RF: Random forest; BO-RF: Bayesian-optimized random forest.

In the four model evaluation metrics, MSE is used to assess the dispersion of prediction results, R2 is used to 
evaluate the linear correlation between predicted values and actual values, while MAPE and MPE are 
employed to evaluate the accuracy of prediction results.

RESULTS
In the BO-RF model, the Bayesian optimization algorithm is used to optimize the parameters of the RF 
model, including the numbers of DTs, leaf nodes, and attributes in the randomly selected subsets. The 
sample datasets consist of the 47 experimental data sets introduced in the data preprocessing section, with 
35 sets used for the training set and the remaining 12 sets for the testing set. Figure 5 shows the energy 
efficiency prediction results based on the RF and the BO-RF model. Here, ESEC is used to represent energy 
consumption, which is the energy consumption per unit volume of material processed.

To validate the superiority of the BO-RF model, comparisons are made among the BO-RF energy efficiency 
prediction model, RF-based energy efficiency prediction model, SVR-based energy efficiency prediction 
model, and BPNN-based energy efficiency prediction model in terms of the four evaluation metrics: MSE, 
MPE, MAPE, R2 [Table 4]. To visually represent the comparison results, a comparison histogram is plotted 
[Figure 6]. Among these models, GS-SVR stands for grid search-based SVR, GA-SVR for GA-based SVR, 
PSO-SVR for PSO-based SVR, BO-SVR for Bayesian optimization-based BVR, BO-MK-SVR for Bayesian 
optimization-based multi-kernel SVR, GA-BPNN for GA-based BPNN, PSO-BPNN for PSO-based BPNN, 
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Table 4. Comparison of prediction performance of each energy efficiency modeling

MSE R2 MAPE MPE
Training set Test set Training set Test set Training set Test set Training set Test set

BO-RF 0.0008 0.001 0.9891 0.974 2.8% 5.0% 9.7% 11.4%

RF 0.0105 0.010 0.9352 0.909 11.8% 16.8% 48.0% 37.1%

GS-SVR 0.0013 0.002 0.9852 0.950 3.5% 7.5% 11.4% 9.6%

GA-SVR 0.0003 0.002 0.9966 0.950 1.9% 6.6% 6.8% 21.8%

PSO-SVR 0.0422 0.021 0.8901 0.749 15.8% 14.2% 41.4% 37.8%

BO-SVR 0.0005 0.002 0.9931 0.965 2.3% 6.3% 9.2% 14.2%

BO-MK-SVR 0.0058 0.009 0.9214 0.816 11.5% 16.8% 24.9% 27.2%

GA-BPNN 0.0046 0.004 0.9554 0.927 5.5% 9.3% 53.3% 30.8%

PSO-BPNN 0.0003 0.003 0.9963 0.944 1.5% 7.0% 8.2% 17.1%

BO-BPNN 0.0033 0.017 0.9573 0.646 4.4% 13.0% 45.0% 50.4%

MSE: Mean square error; R2: coefficient of determination; MAPE: mean absolute percentage error; MPE: maximum percentage error; BO-RF: 
Bayesian-optimized random forest; RF: random forest; GS-SVR: grid search-based support vector regression; GA-SVR: genetic algorithm-based 
support vector regression; PSO-SVR: particle swarm optimization-based support vector regression; BO-SVR: Bayesian optimization-based 
support vector regression; BO-MK-SVR: Bayesian optimization-based multi-kernel support vector regression; GA-BPNN: genetic algorithm-based 
back-propagation neural network; PSO-BPNN: particle swarm optimization-based back-propagation neural network; BO-BPNN: Bayesian 
optimization-based back-propagation neural network.

Figure 6. The results of model evaluation metrics for ten models. (A) The comparison of MSE among the prediction results of various 
models; (B) The comparison of R2 among the prediction results of various models; (C) The comparison of MAPE among the prediction 
results of various models; (D) The comparison of MPE among the prediction results of various models. MSE: Mean square error; R2: 
coefficient of determination; MAPE: mean absolute percentage error; MPE: maximum percentage error.
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and BO-BPNN for Bayesian optimization-based BPNN.

According to the comparison results in Table 4, it is evident that the energy efficiency prediction model
based on BO-RF exhibits the best predictive performance. The SVR-based energy efficiency prediction
model also demonstrates good predictive performance, albeit slightly inferior to the BO-RF model.
However, the predictive performance of the BPNN-based energy efficiency prediction model is relatively
poor. Analysis suggests that the BPNN model requires a large amount of sample data, and its predictive
performance improves with a larger sample size. When predicting with small sample data, the RF and SVR
models perform better.

CONCLUSION AND FUTURE WORK
In this study, we addressed the prediction problem of the relationship between processing parameters and
energy consumption in FDM. We proposed a FDM energy consumption prediction model based on BO-
RF. Through experimental validation from the perspectives of MSE, MPE, MAPE, and R2, we compared 
the prediction results of the BO-RF energy consumption prediction model with those of nine other 
models. The results demonstrate the superiority of the BO-RF-based FDM energy consumption
prediction model.

The proposed approach in this study is data-driven, which may have limitations in model interpretability.
In future work, we will integrate data-driven and mechanistic knowledge-driven models to enhance model
interpretability and improve predictive performance.
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