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Abstract
Radiotherapy is an integral part of the management of head and neck cancers, both in radical and adjuvant settings. 
Traditionally, similar radiation dose and fractionation schedules have been used based on tumor stage with variable 
outcomes indicating “one size does not fit all”. In the era of precision medicine, though we have achieved physical 
precision with technological advancements, we have yet to attain biologic precision. In the current review, we have 
highlighted the different aspects of precision oncology such as hypoxia targeting, radiomics and radiogenomics, 
radiobiologic targeting, and big data. The review also discusses various potential therapeutic targets and 
approaches in head and neck cancer management that might help to increase radiosensitization, which in turn 
increase survival, and quality of life. This can be incorporated into the armamentarium of radiation oncology in all 
the phases of radiation planning, from diagnosis to treatment to the prognosis and management of long-term side 
effects. Biologic precision can be applied in the clinic to provide individualized, personalized treatment in the future.
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INTRODUCTION
Since the discovery of X-rays by Wilhelm Roentgen in 1895, the clinical use of radiotherapy has evolved 
significantly[1]. The introduction of computed tomography (CT) scan in the 1980s has helped in visualizing 
the tumor 3-dimensionally (3D) instead of bony landmark 2-dimension (2D) and thus effective planning of 
radiotherapy in head and neck cancer (HNC). Since then, there have been progressive technological 
advancements in radiation oncology with the advent of intensity-modulated radiotherapy (IMRT) in the 
1990s, image-guided radiotherapy (IGRT), stereotactic radiotherapy (SRT), particle radiotherapy, and 
adaptive radiotherapy. All these high-precision techniques are aimed at improving the therapeutic ratio, 
targeted delivery of very high doses, and reducing doses to the organs at risk (OAR), thus improving the 
outcome and providing better quality of life in HNC patients.

Even though anatomic or physical precision was achieved in the 21st century, still the whole world is 
preaching precision oncology in radiotherapy. Despite the advances, there continues to be a significant 
failure which may be due to unpredictable biological behavior of similar tumors in different individuals. 
Patients with the same stage and disease at the same site respond differently to the same treatment modality, 
reaffirming “one size does not fit all”. Hence, requiring more to be integrated into the treatment approach 
than what is presently practiced. This has attracted the investigators to think and go beyond physical 
precision and attempt to incorporate biological precision. Precision oncology holds the promise of tailoring 
the spectrum of cancer care from diagnosis to risk assessment, predicting the outcome, and personalization 
of cancer care.

In this narrative review, we aim to highlight the different aspects of precision oncology in the present era, 
such as targeting hypoxia, incorporation of imaging as data and predictive models, radiobiologic targeting, 
and finally “Big Data” in achieving personalized precision therapy.

HYPOXIA TARGETING
Locoregional failure (LRF) is the major cause of disease progression and death in HNC patients. Hypoxia is 
one of the important tumor micro-environmental components associated with radioresistance, tumor 
progression, and metastasis, which poses a great clinical challenge as well as an attractive target for 
therapeutic manipulation in HNC. The impact of hypoxia has been known since the 1950s and there is 
extensive evidence of its impact on clinical outcomes[2,3].

Although the mechanism of hypoxia-induced radioresistance has been described in different models, it is 
more complex than what is understood. The normal stem cell niche not only has the capability to tolerate 
and survive hypoxia but also requires hypoxia for survival[4-6]. The tumor cells are generally considered to be 
more hypoxic than normal stem cells[7,8]. The same mechanism of survival of cancer stem cells can be 
replicated from normal cells. This is by the mechanism of “radical competition”. The low oxygen tension 
protects the stem cell DNA damage from free oxygen radicals and the DNA radicals are reduced by 
hydrogen donation from the thiol compound, thus leading to survival and radiation protection[9]. There are 
several hypoxic-induced responsive mechanisms, which not only decrease the effectiveness of therapeutic 
radiation but also negatively influence the outcomes of chemotherapeutics and radiosensitizers. These 
mechanisms/molecules include hypoxia-inducible factor (HIF)-1α based mechanisms, hypoxia-induced 
reprogramming of energy metabolism, heat shock transcription factor 1(HSF1)-mediated heat stress 
response, and heat shock proteins (HSPs), endoplasmic reticulum stress, glucose-regulated proteins (GRPs), 
hypoxia-induced autophagy, hypoxia-induced formation of the radioresistant cancer stem cells (CSC) 
phenotype, hypoxia-Responsive microRNAs, long non-coding RNAs and circular RNAs and hypoxia-
induced exosome generation. The hypoxic areas are more prone to develop into Epithelial Mesenchymal 
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Transition (EMT), where mobile invasive cancer stem cells invade the vessels and migrate to other organs, 
leading to distant metastasis. It is the site where cancer cells increase their invasiveness, motility, potential 
for metastases, stemness, and chemo-radio resistance. Hypoxia-adapted cancer cells are resistant to low as 
well as high linear energy transfer (LET) radiation due to certain phenotypes with specific regulation[10].

Despite the mechanism and effect of hypoxia being understood, the quantification of tumor hypoxia (TH) 
poses a diagnostic challenge for therapeutic manipulation. Different methods like polarographic technique, 
bioreductive agents, determination of HIF-1α, positron emission tomography (PET-CT) with hypoxic 
tracers (18F-labelled misonidazole (FMISO), fluoroazomycin arabinoside (FAZA), blood oxygen level-
dependent magnetic resonance imaging (BOLD-MRI) have been used for determining tumor hypoxia. 
However, there is no standard, most acceptable method of determining hypoxia, leading to decreased 
reliability in its determination. MicroRNAs (miRNAs) are short, endogenous non-coding RNAs found to be 
involved in the regulation of many biological processes such as cellular proliferation, development, cell 
death, metabolism, and oncogenesis. These miRNAs may help to determine hypoxia[11]. Of the 11 different 
miRNAs dysregulated in HNC, miR-210 is the only miRNA consistently induced and regulated by hypoxia 
and hence can be used as a predictor of hypoxia[12,13].

Another novel approach to detecting hypoxia and predicting response to hypoxic modification is hypoxic 
gene signature profiling. Toustrup et al. developed a 15-gene hypoxic classifier for predicting the impact of 
hypoxic modification, which has been validated in the Danish Head and Neck Cancer Group (DAHANCA) 
5 study cohort[14,15]. Another study of 26-gene hypoxia signatures in laryngeal cancer patients reported 
improved benefits with accelerated radiotherapy with carbogen and nicotinamide (ARCON) in tumors with 
higher hypoxia scores than those with lower scores[16]. Recently, P4HA1 has been proven to be a single gene 
surrogate of hypoxic signature in oral squamous cell carcinoma[17]. Different hypoxia markers can be 
detected in biopsy or resected specimens. The markers can be either endogenous such as HIF-1α, carbonic 
anhydrase IX (CAIX), glucose transporter 1 (GLUT-1), and vascular endothelial growth factor (VEGF) or 
exogenous such as pimonidazole and EF5, overexpression of which is associated with poor response/
treatment failure and thus poor prognosis in HNC patients.

Targeting hypoxia may lead to improved outcomes in HNC. Different strategies have been developed for 
targeting hypoxia, including vascular endothelial growth factor (VEGF) inhibitors, hyperthermia, 
hyperbaric oxygenation (HBO), erythropoietin stimulating agents, agents targeting tumor blood flow 
(pentoxifylline), use of bioreductive drugs, hypoxic cytotoxins, ARCON therapy and PR-104, CP-506. 
However, none of the methods have been widely accepted for clinical use as the basic idea of these methods 
is improving oxygen delivery[18,19]. However, there are some clinically useful and applicable strategies to 
target hypoxia, which are shown in Table 1. Phase II trials on ARCON reported it as the most promising 
therapy in improving tumor control of bladder and HN cancer[20,21]. A phase III randomized study showed 
that ARCON improves locoregional control and disease-free survival (DFS) in HNC patients with low 
expression of epidermal growth factor receptor (EGFR)[21-23]. Among the radiosensitizers, nimorazole is the 
only agent that has been adopted for clinical use, and that too only in Denmark. The confirmatory study, 
DAHANCA 29-EORTC 1219, done outside Denmark, to prove the efficacy of nimorazole in stage III-IV 
laryngeal, hypopharyngeal or p16-negative oropharyngeal SCC was not successful. The trial was closed 
prematurely due to the low conditional power associated with the hypothesized treatment effect. The 2-year 
locoregional control probability was not clinically different either in the entire population or in the 
subgroup of hypoxic-gene-positive patients[24]. However, DAHANCA 30, an ongoing non-inferiority trial, 
has gone one step further to evaluate the impact of hypoxia profile guided hypoxic modification with 
nimorazole in head and neck cancers (Clinicaltrials.gov Identifier: NCT02661152). Similarly, DAHANCA 

https://clinicaltrials.gov/
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Table 1. Selective strategies to target hypoxia in head and neck carcinoma

Strategy Targeted mechanism/molecular target Clinical trials [n] Clinical outcome Toxicity

HBOT 
(Hyperbaric Oxygen 
Therapy)

Physical increase in O2 supply by enhanced amount of 
dissolved O2

Benette et al.[31] 
Meta-Analysis 
[19 Clinical trials]

Reduced risk of death at 1 year and 5 year 
(RR = 0.83) 
Decrease local recurrence (RR = 0.66)

1. Claustrophobia  
2. Increased risk of severe radiation tissue injury (RT + HBOT) 
3. Risk of oxygen toxicity seizures

TPZ 
(Tirapazemine)

DNA strands breaks; HAP Rischin et al.[32] 
(TROG 02.02, Head 
START)

No difference in failure-free survival/time to 
locoregional failure

More hematologic and GI toxicities in TPZ arm

Kaanders et al.[21] 
[215 patients]

1. High local and regional control rates 
2. For T3-T4 tumors, LC rate 
    80% for larynx 
    60% for hypopharynx, 
    87% for oropharynx, 
    29% for oral cavity 
3. Regional Control rate 
    100% for N0,  
    93% for N1, 
    74% for N2 disease

1. Acceptable acute and late morbidity  
2. Grade 4 morbidities developed in 5% of patients

ARCON Carbogen (95% O2; 5% CO2) breathing can reduce 
chronic hypoxia 
Accelerated radiotherapy can counteract tumor cell 
repopulation 
Nicotinamide can decrease acute hypoxia

Janssens et al.[23] 
[345 patients]

Improved 5-year LRC (79% vs. 53%; 
P = 0.03) 
DFS (68% vs. 45%; P = 0.04) in patients 
with low pretreatment hemoglobin levels

1. Acceptable toxicities 
2. Patients' stratification is required; especially useful for 
anemic patients

Nimorazole Oxygen mimetic Toustrup et al.[33] 
(DAHANCA 5; 
phase III)  
[323 patients]

Improved 5year LRC (49% vs. 18%; 
P = 0.001) 
DSS (48% vs. 30%; P = 0.04) in more head 
and neck cancer with hypoxia

Minor nausea and 
vomiting

Nelfinavir Decreased HIF-1α and VEGF levels, suppresses 
angiogenesis, and suppresses Akt signaling

Hoover et al.[34] 
[15 patients]

No meaningful improvement in patients with 
recurrent ACC

1. Grade 3 or higher medical adverse events or toxicities 
experienced by 33% of the patients requiring dose modification 
2. Radio-sensitizing effect

HBOT: Hyperbaric oxygen therapy; RR: risk ratio; RT: radiation therapy; HAP: hypoxia activated prodrug; GI: gastrointestinal; LC: local control; LRC: locoregional control; DFS: disease-free survival; DSS: disease-
specific survival; HIF: hypoxia Inducible factor; VEGF: vascular endothelial growth factor; ACC: adenoid cystic carcinoma; ARCON: accelerated Radiotherapy with carbogen and Nicotinamide.

33 is evaluating functional image-guided dose-escalated radiotherapy in patients with hypoxic squamous Cell carcinoma of the head and neck (Clinical 
trial.gov Identifier: NCT02976051). So, hypoxia can be used as a potential therapeutic target in improving the outcomes through hypoxia modification in HNC 
patients treated with radiotherapy in the future.  Recently, several molecular strategies have been proposed for hypoxia modification through direct or indirect 
modification of HIF-1α expression[25]. S-2-amino-3-(4′-N, N,-bis[2-chloroethyl] amino) phenyl propionic acid N-oxide dihydrochloride (PX-478) is one of the 
molecules assessed in phase I trials for direct modification of HIF-1α expression through the inhibition of glucose metabolism[26,27]. Phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling axis and Janus kinase/signal transducer and activator of transcription 
(STAT) signaling pathway can be a target for hypoxia therapy through indirect regulation of HIF-1α[28]. In head and neck malignancies, the phosphorylation 
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and concurrent HIF-1α expression induce STAT3 activation. This activation can be inhibited by STAT3 
inhibitor static, leading to suppression of tumor and enhanced tumor radio-sensitivity[29]. A DAHANCA 29 
EORTC 1219 study data fails to show any significant benefits of Nimorazole in the whole population, or in 
the sub-group with hypoxic gene signature[24].

Despite the aforesaid strengths and potential use of hypoxia targeting, several caveats and limitations still 
remain. To effectively target hypoxia, several requirements must be met, including the use of expensive 
dedicated equipment, repeated biopsies, multiple injections at tumoral sites, exogenous drug 
administration, and the implantation of particulate paramagnetic materials. We need to validate the 
usefulness of these various biomarkers in large clinical trials[30]. There are clinical trials which study those 
selective Strategies to target hypoxia in Head and Neck Carcinoma such as using HBOT (Hyperbaric 
Oxygen Therapy)[31], tirapazemine[32], ARCON (Accelerated Radiotherapy with carbogen and 
Nicotinamide)[21,23], Nimorazole[33] and Nelfinavir[34] [Table 1].

RADIOMICS
HNC poses a major challenge in radiation oncology due to the anatomic location of a target, surrounding 
critical normal structure and the wide heterogeneity in the tumor as well as the radio sensitivity. HNC, like 
all other solid cancers, have significant temporal and spatial heterogeneity within tumors of the same site 
and stage, which may be the key to varying responses to the same treatment. The heterogeneity is attributed 
to the different subpopulations of cells within the tumor with differential growth kinetics, microvasculature, 
expression of biomarkers, immunological characteristics, genetic profile, and tumor microenvironment[35,36]. 
This heterogeneity leads to phenotypic heterogeneity, which can likely cause treatment resistance, 
progression, and metastasis[37]. Usually, biopsies provide genetic and phenotypic information, but with 
several limitations. Biopsy samples collected represent a specific subpopulation of cells within the tumor 
taken at a specific time point, and this procedure involves an invasive technique. It does not provide 
adequate pathophysiological and genetic information on the entire tumor. Conversely, radiomics, an 
emerging field of precision oncology, is a non-invasive representation of the virtual biopsy of the entire 
tumor in all 3 dimensions, providing integrative information on genetic alteration and phenotypic 
characteristics[38]. Thus, radiomics will help us with the implementation of personalized treatment. 
Biomedical imaging such as CT, Magnetic Resonance Imaging (MRI) and PET has the potential for 
unraveling the genotypic characteristics hidden behind the phenotypic expression and predicting the 
outcome[39-42]. Radiomics helps in the extraction of high throughput quantitative tumor heterogeneity data 
from these images, such as intensity, shape, texture, and wavelet, using a data-characterization algorithm 
and thus supporting and enhancing the clinical decision-making process[40,43].

Radiomics has its place in different steps of HNC, from diagnosis and prognosis to therapy response 
assessment/prediction [Table 2]. Texture analysis can accurately describe the tumor phenotype in HNC. CT 
radiomics can distinguish between human papillomavirus (HPV) positive and negative oropharyngeal 
cancer (OPC) without the need for immune histochemistry and in-situ hybridization[44]. Even it can 
distinguish between HPV-positive and negative non-oropharyngeal cancer[45]. PET CT can also be reliably 
used as another non-invasive modality for classifying HNC based on HPV status[46]. Radiomics can provide 
insight into the tumor microenvironment. Tumor resistance to radiation is the worst nightmare of the 
radiation oncologist and hypoxia is one major culprit for the resistance. PET-labeled nitroimidazole 
compounds can precisely locate the spatial distribution of hypoxic sub-volumes within the tumor and thus 
provide an opportunity to escalate doses to those specific sub-volumes and a promise for better local 
control[47-50]. Accurate prognostic and predictive models in radiomics are vital steps in widening its 
application to clinical oncology.
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Table 2. Selected studies on applicability of radiomics in radiotherapy planning of head and neck cancer

Step Study [n] No of 
patients (n) Sites Features studied Outcome prediction

Pretreatment

HPV Status 
OPC

Buch et al.[44] 40 Oropharyngeal cancer Extracted 42 texture features 13 histogram features, 5 gray-level co-
occurrence matrix (GLCM) features, 11 gray-level run-length (GLRL) 
features, 4 gray-level gradient matrix (GLGM) features, and 9 Law's 
features

Significant difference in histogram parameters median (P = 
0.006), entropy (P = 0.016), squamous cell carcinoma 
entropy (P = 0.043) based on HPV status

Non-OPC Fujita et al.[45] 46 Oral cavity, Larynx, 
Hypopharynx (non- 
OPC)

42 texture features extracted Significant differences between (HPV)-positive and HPV-
negative non-oropharyngeal carcinoma (non-OPC) for 
5 histogram features(P ≤ 0.03), 3 GLCM features(P ≤ 0.02), 
1 GLRL features (P = 0.009), 2 GLGM features(P ≤ 0.02) 
and 5 law features (P ≤ 0.04)

Extra-nodal 
extension

Kann et al.[61] 200# 
Lymph nodes

HN ENE on pretreatment computed tomography (CT) imaging is 
identified by A deep learning algorithm

The algorithm achieved AUC of 0.9, outperforms the 
radiologists AUC

Distant Metastasis Zhou et al.[62] - HN Multifaceted Radiomics (M-Radiomics) 
Multiple base classifiers to build model

Outperforms current radiomic models in predicting distant 
metastasis

Prognosis Aerts et al.[43] 1,019* HN Prognostic radiomic signature, capturing intra-tumor heterogeneity These features are associated with underlying gene 
expression patterns. The routinely used imaging can 
improve decision support in cancer treatment at a low cost

Radiotherapy planning

Target volumes 
Delineation

Lu et al.[63] 40 Nasopharynx 21 FO intensity features,  
10 shape features 
57 SO and HO textural features

Acceptable reproducibility and stability across manual and 
various automated segmentation techniques.  
Discretization generated larger effects on features than 
segmentation in both tracers.  
Features extracted from [11C] choline were more robust than 
[18F] FDG for segmentation

Organ at risk (OAR) 
Delineation 21 OAR

Nikolov et al.[64] 513 HN 21 computed tomography scans from clinical practice, each with 21 
organs at risk segmented by 2 independent experts 
Surface Dice similarity coefficient, a new metric for the comparison 
of organ delineation

Deep learning model’s segmentations and those of 
radiographers did not show any clinically meaningful 
difference 
It will improve the efficiency, consistency, and safety of 
radiotherapy pathways

Intra-treatment

Daily CBCT and pCT Bagher-Ebadian et 
al.[65]

18 Oropharynx 165 Textural features extracted, smoothing, sharpening of the 
images and noise to evaluate changes in features

Interchangeability of pCT and CBCT for investigating 
radiomics features as possible biomarkers for outcome

Treatment 
Verification

Park et al.[66] 20 + 20 
Fluence Map 
of VMAT

HN+Prostate Six textural features like angular second moment, inverse difference 
moment, contrast, variance, correlation, and entropy were calculated 
for fluence maps of VMAT

Contrast and variance showed considerable correlations (P 
< 0.003) with the plan deliverability 
Can be used as an indicator for degree of modulation of 
VMAT plans and is better than the conventional modulation 
indices

From Two volumes including GTV-Recurrence and GTV-Control, we 
had extracted FO, SO and HO features. Bi-regional model was built. 

The AUC of local radiomics for detection of noncontrolled 
sub-volumes in the training and validation sets was 0.66 

Treatment Delivery Bogowicz et al.[67] 40 HN



Page 7 of Swain et al. J Cancer Metastasis Treat 2023;9:31 https://dx.doi.org/10.20517/2394-4722.2022.119 15

Local radiomics was implemented (95%CI: 0.56-0.75) and 0.70 (95%CI: 0.53-0.86), 
respectively 
Local radiomics can detect sub-volumes with decreased 
radiosensitivity and dose escalation

Adaptive planning Guidi et al.[68] 40 
1,200 MVCT

HN Support vector machine (SVM) and cluster analysis have identified 
cases where there are dose and volume discrepancies between 
fractions in certain treatment sessions

Whenever the patient needs a new dosimetric scan to adapt 
the volumes in head and neck cancer patients, these 
automated tools for adaptive treatment help to raise an alert

Post-treatment

Survival Parmar et al.[54] 101 
(Training 
cohort) 
95 
(Validation 
cohort)

HN 440 features extracted. 
Different feature selection and classification methods were used, 
such as Minimum redundancy maximum relevance (MRMR), Mutual 
information feature selection (MIFS), Conditional infomax feature 
extraction (CIFE)

MRMR, MIFS, CIFE had high prognostic performance and 
stability. 
Identified prognostic and reliable machine-learning methods 
for the prediction of overall survival of head and neck cancer 
patients

Post treatment 
Toxicity 
(Xerostomia)

van Dijk et al.[59] 249 HN Patient-specific characteristics, based on CT image biomarkers 
(IBMs) including geometric, CT intensity and textural characteristics 
of the parotid and submandibular glands

Prediction of Moderate-to-severe xerostomia and sticky 
saliva at 12 months was improved by including IBMs 
representing heterogeneity and density of the salivary 
glands

*1,019 includes Head Neck cancer and Lung Cancer. #A total of 200 lymph nodes were examined (not a number of patients). HPV: Human papilloma virus; CT: computed tomography; AUC: area under the receiver 
operating characteristic curve; CBCT: cone beam computed tomography; pCT: planning Computed tomography; HN: head and Neck; non-OPC: non oropharyngeal; LN: lymph node; LRC: locoregional recurrence; 
HNSCC: head and neck squamous cell carcinoma; CT: computed tomography; FO: first order; SO: second order; HO: higher order; MRMR: minimum redundancy maximum relevance; MIFS: mutual information 
feature selection; CIFE: conditional infomax feature extraction.

Different PET-CT and CT radiomic studies have been able to predict the risk of failure in different models. In a large study, Aerts et al. extracted 440 radiomic 
features in four phenotypes (tumor image intensity, texture, shape and wavelet formation) from the CT database of 1,019 patients of different cancers, 
including HNC, which showed a strong prognostic association of tumor heterogeneity and the underlying gene signature[43]. This radiomic signature was well 
validated externally in another cohort of 542 oropharyngeal cancer patients[51]. Besides the CT scan, it has been shown that texture analysis of PET-CT is a 
better predictor of outcome than the mere standardized uptake values (SUV)[52]. Radiomic machine learning classifiers have predicted the risk of local failure 
and distant metastasis in HNC[53,54]. This provides insights into treatment intensification or de-intensification on an individual basis, allowing for tailoring the 
treatment. Advanced tumor shape signature radiomics has also been shown to be a predictor of local recurrence in locally advanced HNC, which has also been 
validated in a cohort of 86 patients from TCGA databases[55].

An important and most challenging issue in head and neck radiotherapy is the critical location of normal organs. Radiomics has the potential to detect the 
physiologic and functional alteration in normal organs during radiotherapy. In a texture analysis study of nasopharyngeal cancer, Scalco et al. have shown a 
correlation between the dosimetric parameters and the structural changes in the parotid gland[56]. They have also shown that the early textural changes in the 
parotid gland can predict the final shrinkage with an accuracy of about 71.4%[57]. A similar study by Pota et al. has predicted parotid shrinkage and 12-month 
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xerostomia from CT radiomics[58]. van Dijk et al. suggested that the mid-treatment changes in the parotid 
gland are better predictors of late xerostomia as quantified by delta radiomic features[59]. Thus, for the 
implementation of personalized treatment, radiomics has a critical role to play in different stages of 
radiotherapy planning, from pretreatment patient section to intratreatment and post-treatment radiomics, 
which is beyond the scope of this review. However, radiomics-guided radiotherapy (RGRT) may lead to 
more effective radiation therapy and its usage in radiotherapy is increasing over the years[60]. The radiomics 
has been applied using different parameters in pretreatment[43-45,61,62], during radiotherapy planning[63,64], 
during treatment[65-68] and even in posttreatment setting[54] [Table 3].

Hybrid machine learning radiomics also helps in detecting molecular subtypes of Low-Grade Glioma 
(LGGs) using 726 raw features on MRI[69]. Radiomics-based models like eXtreme Gradient Boosting 
(XGBoost) help to detect molecular prognostic factors such as 1p/19q codeletion status on MRI[70].

The quantitative approach using radiomics has been widely investigated as a non-invasive and objective 
imaging biomarker in cancer patients; however, Because of a lack of standardization and validation of image 
acquisition protocols, features segmentation, extraction, processing, and data analysis, it is not applied as 
clinical routine practice. In the future, radiomics might be a reliable application in oncologic imaging for 
each type of cancer[71].

Artificial intelligence (AI), which uses deep machine learning to create “algorithms”, has helped us to study 
image texture analysis, which is ultimately a part of radiomics. AI will help to facilitate pattern recognition 
in images, detection in biomarker data, and integration with non-imaging variables, which will flourish the 
field of radiomics. Though radiomics has greater potential in the field of precision oncology, there are 
several unmet challenges to be addressed. These include processing and reproducibility of large amounts of 
high-quality imaging data, application in the clinic and integration of genomics data. But these radiomics 
features do have some limitations due to their sensitivity to acquisition modes and reconstruction 
parameters. Hence, all of them are not recommended for use. We should investigate the topic such as the 
impact of harmonization and standardization on the quantification and predictive values of radiomic 
features. This still remains a challenging aspect[72].

BIOLOGIC ADAPTATION AND TARGETED THERAPY
Head and neck radiotherapy poses a great challenge subjecting to variation in the planned dose and dose 
delivered due to the ongoing anatomic changes related to tumor shrinkage and weight loss through the 
course of treatment delivery. With the advent of IGRT, adaptive radiotherapy (ART) has been the proposed 
solution to account for these changes with yet-to-be-proven benefits, given the subjective variations in the 
practice and indications of ART. ART would probably play a prominent role in controlling doses to the 
OAR without compromising the doses to the target volumes; however, there is significant uncertainty 
regarding the time of adaptation and is currently subject to physician discretion[73].

Although ART has been practiced for a long time and seems a logical step during radiotherapy based on 
volumetric (physical) changes, biological adaptation would play a more important role in precision 
oncology. Several trials have looked at trying to address the biological differences between oropharyngeal 
tumors based on HPV status and adapt the treatment accordingly. Different methods of dose de-escalation 
were evaluated in an attempt to treat this favorable group of relatively younger patients to reduce toxicity 
without compromising treatment-related outcomes. The different strategies include reduction in all the 
components of triple modality treatment[74].
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Table 3. Selected studies on applicability of big data in head and neck cancer management

Study No. of patients Primary Major findings

Robertson et al.[87] 684 Head and Neck 
cancer 

Data-mining algorithm confirmed the following well-known OAR-dose/outcome 
relationships:  
• dysphagia/larynx,  
• voice changes/larynx, 
• esophagitis/esophagus, 
• xerostomia/parotid glands  
• mucositis/oral mucosa

Cavalieri et al.[89] 1,537 Stage III�IV 
HNSCC

Represents the HNSCC largest available repository. It will allow for:  
• Developing/validating a decision support system integrating multiscale data to explore 
through classical and machine learning models their prognostic role

Resteghini et al.[94] - Head and Neck 
cancer

Computational strategies derived from big data science hold the promise 
• Identifying new prognostic and predictive factors 
• Discovering potential therapeutics  
• Identifying new molecular mechanisms driving head and neck cancer pathogenesis

HNSCC: Head and neck squamous cell carcinoma.

Besides treatment adaptation based on HPV status, radiobiologic tumor targeting is a new and emerging 
concept in precision oncology. Genome-based biologic targeting is being used in medical oncology to 
quantify the benefits of specific agents in specific groups of the population. Genome-adjusted radiation dose 
(GARD) is a relatively recent concept in radiation oncology, similar to genome-based targeting in medical 
oncology. Scott et al. used the gene-expression-based radiation-sensitivity index and the linear quadratic 
model to derive the GARD[75]. The postulation was that high GARD values predict a higher therapeutic 
effect with radiotherapy, which would relate to clinical outcomes. GARD is a genome-based model 
developed to predict the optimal radiation dose for a particular tumor using the linear quadratic model and 
radiosensitivity index; hence, the dose and fractionation schedule can be planned for each individual in the 
future.

The radiosensitivity index was developed as a molecular marker of cellular survival at 2 Gy[76]. This has been 
systematically validated as a predictor of clinical outcomes in HNC[77]. This multigene expression model of 
intrinsic radiosensitivity successfully proved to improve 2-year locoregional control (LRC) in the predicted 
radiosensitive group (86% vs. 61%, P = 0.05). Hence, the radiosensitive index could be used to segregate 
those patients who would benefit from radiotherapy vs. those who would not. Another study by Scott et al. 
demonstrated a wide variation in the radiosensitive index in HNC between the most sensitive and most 
resistant tumors, which indicates that the one-size-fits-all strategy is no longer applicable in radiation 
oncology and the radiation dose needs to be tailored in the era of precision oncology[75]. Another aspect of 
radiobiologic targeted therapy is combining the molecular-targeted agents with radiotherapy. Currently, the 
two targets for targeted therapy are epidermal growth factor receptor (EGFR) and vascular endothelial 
growth factor receptor (VEGFR)[78]. Combining the EGFR monoclonal antibody, cetuximab, with radiation 
showed improved survival in HNC and has been approved by the Food and Drug Administration (FDA). 
VEGFR tyrosine kinase inhibitor (TKI), vandetanib, has been shown to enhance the antitumor efficacy of 
radiotherapy and restore the radiosensitivity of HNC cells by increasing the apoptosis and decreasing the 
microvessel density in HNC cells in preclinical studies[79,80]. A phase II trial is ongoing in advanced HNC to 
test the efficacy of vandetanib[81]. Similarly, sunitinib, sorafenib and linifanib have shown efficacy in 
preclinical studies and need to be tested in the future[81-83]. Restoring the p53 function is also another 
attractive area of manipulation in HNC[84] and several studies are ongoing. Several of these molecular-
targeted therapies are under active investigation and the results may improve the effectiveness of current 
therapeutic strategies.
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BIG DATA
Implementation of precision oncology needs the highest quality, evidence-based guidelines for application 
in patients. The more specific the approach, it decreases the pool of “like patients” to be tested for specific 
therapies. “Big Data” plays a major role in generating a pool of “like patients”. Big Data is defined as a 
moving semi-quantitative target, and in computer memory terms, the total amount of data is in terms of 
terabytes or petabytes or more[85]. The patient data studied is much larger. Different sources of Big Data 
include the Surveillance, Epidemiology and End Results (SEER) database, the American College of 
Surgeon’s National Cancer Database, other national cancer databases and different large completed clinical 
trials[86]. Most clinicians make decisions based on outcomes of available randomized control trials (RCTs), 
and patients and relatives are informed about the relative effectiveness of specific modalities over others 
based on the trial results. However, it may not always be possible to conduct large RCTs to answer clinical 
questions in a timely manner. Therefore, Big Data can be utilized for retrospective data analysis with large 
patient cohorts and at a faster rate. Data from large sources of Big Data can be generalized to the general 
population and can benefit the patients early and much before RCT proves the benefit. The benefit may be 
in terms of treatment adoption, improved efficacy, and fewer logistic issues. Big Data can overcome the 
problem of a smaller number of “like patients” when testing specific targeted therapy in these groups of 
patients. The result would be treating a smaller number of patients with specific therapy and sparing a large 
cohort of patients from unnecessary, ineffective treatments.

Big Data can be utilized for personalizing treatment plans for individual patients in radiation oncology. The 
quality and efficiency of treatment planning can be improved by previous patient treatment plans. 
Initiatives have been taken for collating large-scale data from dose-volume histograms for correlating and 
predicting toxicity[87,88]. Big Data provides greater hope for predicting normal tissue toxicities beyond the 
normal tissue complication probability (NTCP) models. To use multiparametric variables for predicting 
prognosis and guiding the optimal choice of treatment, the international European Consortium has built 
Bigdata to Decide (BD2Decide) project (“Big Data and Models for Personalized Head and Neck Cancer 
Decision (BD2Decide) Support; NCT02832102). This represents the largest available HNSCC repository of 
1,537 patients with transcriptomic and radiomic data available for 1,284 (83%) and 1,239 (80%) of the 
patients. For patients who were enrolled prospectively, data were collected using quality of life 
questionnaires (QLQ) such as EORTC QLQ 30, EORTC HN 35, and EQ-5D-5L[89]. Big Data also plays a 
major role in basic and clinical research; the findings of Big Data research will reach the clinic in the coming 
5-10 years[90]. The BD4QoL (Big Data for Quality of Life in Head and Neck Cancer), an ongoing study, aims 
to reduce and anticipate the proportion of HNC survivors experiencing a clinically meaningful reduction of 
QoL (Clinicaltrials.gov Identifier: NCT05315570). Though big data is not being routinely used in HNC 
research, specific applications like radiomics and genomics have leapt in recent years.

The features of data sets such as complexity, volume, velocity variety, and veracity determine the value of 
big data. We need to integrate these sources in order to improve biomedical research, patient care and 
monitoring the quality of care[91]. Big data is playing a big role in different steps of HNC radiation planning 
such as, OAR-dose/outcome relationships, identifying new prognostic and predictive factors and 
discovering potential therapeutics [Table 3].

Big Data requires the collection of large amounts of data from the patient at each patient encounter. It 
requires consent from the patients and their family, and a large effort to collect the data correctly from the 
patients and make them understand the need for it. This may also affect the patient-physician relationship 
as it puts their health information system in the public domain. These are the major challenges for big 
data[92]. These procedures call for different aspects of addressing ethical questions regarding patient 
information.

https://clinicaltrials.gov/
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The large database has design and analysis issues such as selection bias, immortal time bias and several 
confounding factors during data collection[93]. Although Big Data poses some challenges to uniform data 
collection, it will provide a greater advantage of delivering better care for patients on an individual basis, 
extending patients’ life expectancy and enhancing the quality of their years. The radiation oncologist will be 
able to use clinical, imaging, dosimetric, and genomic analyses for treatment recommendations, leading to a 
knowledge-guided radiotherapy approach and may become an indispensable component of precision 
oncology in the years to come.

CONCLUSION
Patients with the same TNM stage often have variable responses to the same therapy, which can be 
attributed to the large heterogeneity within the tumors of similar histology and even within a single tumor. 
Incorporation of precision and personalized medicine into clinical practice would be of great promise in 
improving the outcomes of HNC. Though there are lots of limitations and challenges in implementation, 
there is still a need to move beyond mere physical precision and adapt to biological precision with the 
application of hypoxia modification, radiomics, genomics, biologic treatment adaptation and Big Data 
whenever feasible.
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