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Abstract
Antibiotics generally cause drug-resistant genes (ARGs) and drug-resistant bacteria (ARBs). With a complex class 
of antibiotics, it is very crucial to select specific adsorbents for different kinds of antibiotics. Zn-Al layered double 
hydroxide (LDH) and calcined layered double hydroxide (LDO) were prepared as absorbents for tetracycline 
hydrochloride (TCH) and ofloxacin (OFX), which were two antibiotics with different structures. According to the 
results of the adsorption experiments, LDO has the best adsorption capacity on TCH, reaching 322.58 mg/g. Acid-
base titration, XRD, TEM, SEM, BET, and FI-TR analyses indicate that LDO has more active sites on the surface, the 
“memory effect”, and a larger specific surface area. In contrast, the removal rate of OFX by LDO is low because 
OFX has a more stable quinolone ring structure. Furthermore, after five adsorption-desorption cycles, the 
adsorption rate of TCH remains at 94.9%, demonstrating that LDO has good cyclic adsorption capacity for TCH. 
This study creatively combines acid-base buffering characteristics to study the mechanism of the adsorption of 
antibiotics by hydrotalcite, and proposes that LDO can be used as a special adsorbent for TCH.
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INTRODUCTION
More and more antibiotics are found in natural water bodies, and they always lead to an increase in drug-
resistant genes (ARGs) and drug-resistant bacteria (ARB), which result in long-term persistent ecological 
toxicity[1]. According to survey data, in 2019, residual antibiotics caused more than 2.8 million infections 
and 35,000 fatalities in the United States[2]. Membrane separation[3], photocatalytic degradation[4], 
adsorption[5], electrochemical oxidation[6] and others are widely used for antibiotic wastewater treatment. 
Adsorption with low-cost adsorbents is considered to be the most suitable method[5]. Hu et al.[7] concluded 
that magnetic conjugated microporous polymer hollow spheres (CMP-HSs@Fe3O4) potentially adsorb 
antibiotic molecules effectively. However, not every kind of adsorbent is suitable for antibiotics including 
quinolones, aminoglycosides, macrolides, oxazolidinones, tetracyclines, etc. Therefore, it is particularly 
important to use specific adsorbents for various antibiotic wastewater.

Hydrotalcite-type clays belong to a member of layered structure clays, which are also known as layered 
double hydroxides. It was first discovered in schist deposits in 1,842 by Hochstetter[8], and its catalytic action 
on hydrogen addition attracted the attention of researchers. Nowadays, various types of layered double 
hydroxides (LDHs) have been synthesized,  and their  chemical  formula is  general ly  
[MII

1-X
2+MIII

X
3+(OH)2]X+[AX/n]n-.mH2O[9]. LDH is a two-dimensional, layered material that can be divided into 

lamellar cations and interlamellar anions. The interlamellar anions neutralize the positive charges in the 
main layer, contributing to the electrical neutrality of LDH[10]. The good properties of LDH, including 
adjustability, alkalinity, thermal stability, and memory effect, result from its unique lamellar structure, 
which also provides it with an excellent adsorption capacity[11]. Mg-Al-CO3 LDH/Chitosan composite[12] 
synthesized by Ribeiro was efficient in phosphate removal. Yuan et al.[13] applied the hydrotalcite-like 
compound composed of magnesium and iron (MF-HT) to reduce toxicities for water microorganisms in 
groundwater with H2S. Layered double hydroxide (LDO), prepared by calcination of LDH at a high 
temperature, has more pores, a larger specific surface area, and more stable products after adsorption[14].

The chemical properties of the solid surface play a decisive role in physical and chemical processes such as 
solid adsorption, desorption, and ion exchange[15]. The surface complexation models (SCMs) are mainly 
used to study the chemical reactions occurring at the solid-liquid interface. Hydroxy proton transfer occurs 
in the aqueous solution, some located on the surface of the metal are called Lewis acid, and others losing 
protons are called Lewis base, both of which react with ligands in the solution[16,17]. Protonation and 
deprotonation of surface functional groups on the material make a significant contribution to the acid-base 
buffering capacity. At present, acid-base buffering characteristics of materials are commonly used to reflect 
the surface chemical properties of solid materials[18].

tetracycline hydrochloride (TCH)[19] and ofloxacin (OFX)[20] are typical representatives of tetracyclines (TCs) 
and quinolone antibiotics, respectively, which are two common antibiotics. Therefore, in this study, a 
special adsorbent for the specific antibiotic will be proposed, and the acid-base buffering properties of the 
materials will be investigated to study the adsorption mechanism.
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EXPERIMENTAL
Materials
Urea, Zn(NO3)2·6H2O, Al(NO3)3·9H2O, HNO3, HCl, NaNO3, NaOH, Na2CO3, potassium hydrogen 
phthalate, phenolphthalein indicator, bromocresol green, methyl- red and anhydrous ethanol were 
purchased from Sinopharm Chemical Reagent Co. (Shanghai, China) and were analytical grade. Deionized 
water (around 15 MΩ/cm) was used in experiments.

Preparation
Compared with other preparation methods, the urea synthesis method achieves a larger yield and higher 
crystallinity[21]. 250 mL deionized water, 0.525 mol urea, 0.15 mol Zn (NO3)2·6H2O, and 0.075 mol Al 
(NO3)3·9H2O were added into a 500 mL beaker, which was stirred at 105 °C in an oil bath. When the system 
hit 95 °C, urea decomposed into CO3

2- and NH3, and gas escaped. After 1h, the mixture gradually turned to 
a milky white color. The mixture was stirred for 10 h and aged at 90 °C for 20 h. After washing, filtering, 
and drying, Zn-Al LDH was synthesized. The LDH was put into the muffle furnace and calcined at 450 °C 
for 4 h to obtain LDO.

Characterizations
The crystal structures of materials were characterized with XRD (D8, Brucker, Germany). The 
microstructures of the materials were characterized by TEM (Talos F200S, Thermo Scientific, America) and 
SEM (JSM 7100F, Jeol, Japan). The specific surface areas were determined by BET (ASAP2020, 
Micromeritics, America). FT-IR spectrometer (Vector-22, Bruker, Germany) was used to study the 
adsorption mechanism.

Acid-base titration
The automated potentiometric titrator (907 Titrano, Metrohm Corporation, Switzerland) was used to 
determine the titration data. The material was exposed to 0.1 mo1/L NaNO3 solution in a water bath at 
25 °C for 30 min. Then, the suspension was titrated with the standard 0.1 M HNO3 until pH to 3.5. After 
stabilization for another half an hour, 0.1 M NaOH was dropwise added to the solution to bring the pH 
to 11. Stability of 0.005 pH/min was obtained for each titration[22]. Additionally, a control solution of 0.1 
mo1/L NaNO3 was required[23,24].

Batch adsorption experiments
HCl and NaOH were utilized to regulate the pH of the solutions for the batch adsorption experiments. The 
effects of original pH (TCH: 2.5, 4.5, 6.5, 8.5, 10.5; OFX:3, 5, 7, 9, 11) on the adsorption abilities of LDH and 
LDO were studied, respectively. Different dosages of materials ranging from 0.02 g to 0.12 g were added to 
the antibiotic solutions to investigate the effects of adsorbent dosages on the adsorption effect. Samples were 
exposed to a range of antibiotic concentrations (TCH: 5-500 mg/L; OFX: 5-120 mg/L) for the kinetics 
experiments. The isotherm experiments were carried out at 293.15 K. The adsorption ability (qe) and 
adsorption rate (R) are calculated as Equations (1) and (2).

where C0 (mg/L) and C1 (mg/L) are the concentration of antibiotics before and after adsorption; m (g)  and 
V (L) are the mass of adsorbent and the volume of antibiotic, respectively.
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In order to study the cyclic adsorption performance, LDO after adsorption of TCH was calcined at 450 °C 
for 4 h for desorption. Considering the material loss during operation, TCH-LDO liquid-solid ratio was 
fixed at 0.25 g/L during the five-cyclic adsorption experiment[25].

RESULT AND DISCUSSION
Microstructural characterization LDH and LDO
XRD analysis
According to Figure 1A, LDH was synthesized with high crystallinity (JCPDS 48-1021). After calcination, 
characteristic peaks such as (003), (006), and (009) disappear and are replaced by low strength and scattered 
diffraction peaks, indicating that LDO lost its lamellar structure to form Zn oxide and Zn-Al composite 
oxides[26].

TEM analysis
The morphologies of LDH and LDO are shown in Figure 2. The obvious layered structure of LDH can be 
seen in Figure 2A. The crystal plane spacings of d1 = 7.6200 nm and d2 = 3.8100 nm correspond to (003) and 
(006) of LDH as in Figure 2C (JCPDS 48-1021), which also indicates that LDH was successfully prepared. 
Some lamellar structures are still observed in the TEM images of LDO [Figure 2B] due to “the memory 
effect” under the influence of ethanol during TEM measurement[27]. In Figure 2D, d1 = 2.4759 nm and d2 = 
2.6033 nm correspond to (101) and (002) of ZnO (JCPDS 36-1451), d3=2.442 nm corresponded to (311) of 
ZnAl2O4 (JCPDS 74-1138). The results are consistent with XRD characterization results.

SEM
LDH shows a distinct lamellar structure [Figure 3A], but LDO loses its lamellar structure and instead 
appears as a collapsed state with many micropores [Figure 3B]. The alteration of the structure of LDO may 
potentially enhance the adsorption capability.

BET
Based on the IUPAC classification[28], the N2 adsorption and desorption isotherms curves of the materials 
are categorized as type IV, as demonstrated in Figure 4. Compared with LDH, LDO exhibits superior 
performance attributed to its larger surface area and pore volume, as outlined in Table 1. The result explains 
the SEM images and indicates that LDO has a superior adsorption capacity than LDH[29].

Batch adsorption experiments
Effects of pH and adsorbent dosage on adsorption
According to Figure 5A and B, pH has little effect on the stability of TCH and OFX but has significant 
effects on the adsorption abilities of the adsorbents. The performances of adsorbents for TCH and OFX 
reach the maximum at pH 8.5 and pH 7, respectively. Compared with the acidic condition, an alkaline 
environment has a more negative influence on the removal rate.

The adsorbent dosage also plays an important role in the adsorption process [Figure 3C and D]. Overall, the 
adsorption performance of LDO is better than that of LDH. When the dosages of LDH and LDO reach 0.1 g 
and 0.06 g, respectively, the removal rates of TCH and OFX tend to be steady.

Adsorption kinetics
The pseudo-first-order model and the pseudo-second-order model are applied to explore the adsorption 
kinetic behavior and provide a basis for the adsorption mechanism[30].
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Table 1. Specific surface area (BET), capillary diameter, and volume capillaries of LDH and LDO

Materials Surface area BET (m2/g) Porous diameter (nm) Porous volume (cm3/g)

LDH 21.11 26.10 0.14

LDO 96.15 7.77 0.19

LDH: Layered double hydroxide; LDO: layered double hydroxide.

Figure 1. XRD patterns of (A) LDH, LDO; (B) before and after adsorption of LDH on TCH and OFX; (C) LDH, before and after adsorption 
of LDO on TCH and OFX; (D) LDH, LDO, before and after adsorption of LDO on TCH at the fourth and fifth times. LDH: Layered double 
hydroxide; LDO: layered double hydroxide; OFX: ofloxacin; TCH: tetracycline hydrochloride.

For the pseudo-first-order model[31]

For the pseudo-second-order model[32]

where qe and qt are the abilities of the material adsorbing antibiotics at equilibrium and  at time t (min). K1 
and K2 separately are the constants of the two dynamics.

As shown in Figure 6 and Table 2, the correlation coefficients of the pseudo-second-order model are greater 
than those of the pseudo-first-order model. It demonstrates that the adsorptions are primarily chemical 
processes, in which the concentration of adsorbents and antibiotics jointly control the adsorption rates. In 
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Table 2. The kinetic parameters of antibiotics on LDH and LDO

Pseudo-first-order model Pseudo-second-order model
Materials qe (mg/g) K1 R2 qe (mg/g) K2 R2

LDH-TCH 4.86 0.013 0.886 8.028 0.125 0.982

LDH-OFX 12.12 0.025 0.868 10.018 0.100 0.990

LDO-TCH 5.67 0.055 0.927 11.132 0.090 0.989

LDO-OFX 8.10 0.019 0.970 8.774 0.114 0.983

LDH: Layered double hydroxide; LDO: layered double hydroxide; OFX: ofloxacin; TCH: tetracycline hydrochloride.

Figure 2. TEM images of (A) LDH at bar = 200 nm; (B) LDO at bar = 5 nm; (C) LDH at bar = 5 nm; (D) LDO at bar = 5 nm.

Figure 3. SEM images of (A) LDH; (B) LHO.
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Figure 4. N2 adsorption/desorption isotherms of LDH and LDO. LDH: Layered double hydroxide; LDO: layered double hydroxide.

Figure 5. Effects of pH on absorption of (A) TCH (30 mg/L) and (B) OFX (20 mg/L) by LDH and LDO; effects of LDH and LDO dosage 
on the absorption of (C) TCH and (D) OFX. CK: Blank control group; LDH: layered double hydroxide; LDO: layered double hydroxide.

other words, the sharing and transferring of electrons between the absorbents and the antibiotics are most 
likely the main factors[33].

Adsorption isotherms
Adsorption isotherms are used to describe the relationship between adsorption capacity and adsorption 
equilibrium concentration[30]. Langmuir model and Freundlich model are commonly adsorption isotherm 
models, which are represented as follows.



Page 8 of Zhang et al. Miner Miner Mater 2023;2:3 https://dx.doi.org/10.20517/mmm.2022.1014

Figure 6. (A) Adsorption kinetics of LDH and LDO absorbing TCH/OFX. (A) The pseudo-first-order model; (B)the pseudo-second-
order model. LDH: Layered double hydroxide; LDO: layered double hydroxide; OFX: ofloxacin; TCH: tetracycline hydrochloride.

For Langmuir model[22]:

where Ce (mg/L), Qe (mg/g), QM (mg/g) represent equilibrium concentration, equilibrium adsorption 
capacity, and maximum adsorption capacity, respectively.

Meanwhile, based on the Langmuir adsorption isotherm, the dimensionless factor RL can be used to 
characterize the difficult degree of adsorption. When RL is in the range of 0-1, it indicates that the 
adsorption is easy to carry out[34].

where KL is Langmuir constant and C0 (mg/L) is the initial concentration.

For Freundlich model[31]:

where KF expresses the Freundlich constant; 1/n represents adsorption intensity[35].

According to Figure 7 and Table 3, the Langmuir model is more suitable for the adsorption process than the 
Freundlich model. The saturated adsorption capacities of materials on TCH and OFX are 112.87, 55.04, 
324.68, and 72.89 mg/g, respectively. Moreover, the dimensionless factors RL of adsorbents adsorbing TCH 
and OFX calculated by Equation (6) are 0.42, 0.73, 0.259, and 0.09 mg/g, which are in the range of 0-1. It 
demonstrates the effective adsorption of materials and antibiotics.
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Table 3. The isotherm parameters of antibiotics on LDH and LDO

Langmuir Freundlich
Materials QM (mg/g) KL R2 1/n KF R2

LDH-TCH 112.87 0.046 0.961 0.334 15.782 0.927

LDH-OFX 55.04 0.019 0.974 0.434 13.000 0.892

LDO-TCH 324.68 0.096 0.928 0.323 58.545 0.902

LDO-OFX 72.89 0.526 0.949 0.262 27.424 0.809

LDH: Layered double hydroxide; LDO: layered double hydroxide; OFX: ofloxacin; TCH: tetracycline hydrochloride.

Figure 7. Adsorption isotherms of adsorbents absorbing TCH and OFX (A) Langmuir model; (B) Freundlich model. LDH: Layered double 
hydroxide; LDO: layered double hydroxide; OFX: ofloxacin; TCH: tetracycline hydrochloride.

Cyclic adsorption experiment
According to Figure 8, LDO has a good adsorption effect on TCH during five adsorption cycles. At the 
fourth adsorption, the adsorption rate begins to slow down, and the adsorption equilibrium time is 
extended from 50 min to 100 min. At the fifth adsorption, the removal rate decreases from 95.19% to 
94.89%. Therefore, the LDO4 finishing the fourth adsorption, and the LHO5 finishing the fifth adsorption 
are characterized by XRD [Figure 1D].

LDO4 as well as LDO5 recover lamellar structures with the unique “memory effect”[36]. Compared with LDH, 
the diffraction peak intensity of LDO4 and LDO5 decreased significantly. Moreover, the characteristic peaks 
of Zn oxide and Zn-Al composite oxides appeared at 31.79° and 36.24°, which show that multiple high-
temperature desorptions weaken its reconstruction performance. It explains why the fourth and fifth 
adsorption rates in the cyclic adsorption process have a lower adsorption rate and an extended equilibrium 
time. However, its obvious diffraction peaks are still observed, and the removal rate of TCH remains at 
94.9%, indicating that LDO can achieve multiple cyclic adsorptions. Meanwhile, a new peak is generated at 
37.29°, indicating that new substances are produced during the adsorption of TCH.

Adsorption mechanisms
FT-IR
After absorbing the antibiotics [Figure 9A], the peak at 3,447 cm-1 is blue-shifted, which indicates that 
hydrogen bonds formed between the adsorbents and the electronegative atoms of the two antibiotics. After 
the adsorption of TCH and OFX, the characteristic amino group peaks at 3,064 cm-1, 3,060 cm-1, and 
2,190 cm-1 can be observed. It is caused by coordination complexation between the exposed aluminum as 
well as zinc ions at the end of the LDH and the amino groups in the structure of the two antibiotics[37]. A 
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Figure 8. Cyclic adsorption experiment of TCH absorption by LDO.

Figure 9. FT-IR spectrum comparison of (A) LDH and (B) LDO adsorbed antibiotics. LDH: Layered double hydroxide; LDO: layered 
double hydroxide; OFX: ofloxacin; TCH: tetracycline hydrochloride.

similar situation happens during the adsorption of LDO [Figure 9B]. In addition, after LDO adsorbing 
TCH, absorption peaks at 1,235 cm-1 and 1,176 cm-1 are generated in the 1,300-400 fingerprint region, which 
may be single bonds such as C-O, N-H, and OH- originating from TCH[38].

XRD
After the adsorption of antibiotics, the characteristic diffraction peaks intensities of LDH, particularly TCH-
LDH, clearly decrease in Figure 1B. And new peaks appear, and measurements of the crystal plane spacings 
(d1 = 2.4172 nm and d2 = 2.0631 nm) confirm the complexation reaction between LDH and TCH. As shown 
in Figure 1C, the unique “memory effect” allows LDO to recover the layered structure during the adsorption 
of antibiotics. The fact that the distinctive peak of Zn/Al spinel is still present at 36.70° shows that LDO has 
not completely reverted. At the same time, new peaks also appear at 37.39° (d = 2.3989 nm) and 44.15° (d = 
2.0482 nm), which indicate that antibiotics were absorbed by LDO due to “memory effect” and coordination 
reaction[39].

Acid-base buffer capacity
An automatic potentiometric titration instrument is used to perform the acid-base titration experiments on 
the adsorbents before and after adsorbing antibiotics, and the total acid concentration (Ht) is calculated. 
The Ht-pH diagrams are made by taking the Ht value as the X-axis and the pH measured at each drip point 



Page 11 of Zhang et al. Miner Miner Mater 2023;2:3 https://dx.doi.org/10.20517/mmm.2022.10 14

Figure 10. Ht-pH function of (A) LDH, LDO, CK; (B) CK, before and after LDH adsorbing antibiotics; (C) CK, before and after LDO 
adsorbing antibiotics. CK: Blank control group; LDH: layered double hydroxide; LDO: layered double hydroxide; OFX: ofloxacin; TCH: 
tetracycline hydrochloride.

as the Y-axis to present the acid-base buffering performance of materials[18]. Ht (mo1/L) is calculated as 
Equation (8)

where Ca, Cb (mo1/L) separately are concentrations of  HNO3 and NaOH; V0, Va, and Vb (mL) are the 
volume of solutions before titration, the volume of consumed acid, and the volume of consumed base.

Compared with the blank control group, the suspensions of adsorbents show a stronger buffering ability to 
acids and bases. However, LDO performs better at acid-base buffering than LDH [Figure 10A], particularly 
alkaline environment, which may be related to the existence of metal oxides in LDO. The greater acid-base 
buffering capacity indicates more active sites on the LDO surface than LDH[18,40].

After absorbing antibiotics, the buffering abilities of LDH and LDO are significantly weakened 
[Figure 10B and C], indicating that their active sites on the surface are diminished. The reason for the 
phenomenon is that the functional groups (like Al-OH and Zn-OH) form complexes with the amino groups 
of antibiotics on the surface of materials, supporting the FT-IR results.
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CONCLUSIONS
LDH was prepared by the urea method, and LDO was obtained by calcining LDH at 450 °C. According to 
the adsorption experiments of TCH and OFX, the maximum adsorption capacities of LDH and LDO for 
TCH are 116.28 mg/g and 322.58 mg/g at pH 8.5, and for OFX were 25.06 mg/g and 43.37 mg/g at pH 7, 
respectively. XRD, TEM, SEM, FI-TR, BET, and especially acid-base titration experiments indicate that the 
adsorption performance of LOD on the two antibiotics is better than that of LDH, which is due to more 
active sites on the surface, “memory effect” and bigger specific surface area. Due to the more stable 
quinolone ring structure of OFX, the adsorption capacity of materials to OFX is weaker than TCH. 
Furthermore, after five cycles of adsorption and desorption, the adsorption rate of LDO to TCH remains at 
94.9%. Thus, LDO can be employed as a special adsorbent for TCH.
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