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Abstract
Aim: The objective of our study was to assess the efficacy of immune checkpoint inhibitors (ICIs) on patients with 
non-small-cell lung cancer (NSCLC) harboring oncogenic alterations.

Methods: We retrospectively enrolled patients with advanced non-squamous NSCLC who were treated with anti-
PD-1-based monotherapy or combined immunotherapy. Major characteristics including PD-L1 expression, 
treatment, and survival were analyzed.

Results: In total, 309 non-squamous NSCLC patients with a median age of 61 years (range 20-88 years) including 
70.9% male were retrospectively enrolled. The molecular alterations involved epidermal growth factor receptor 
(EGFR) (n = 81), V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) (n = 31), anaplastic lymphoma 
kinase (ALK) (n = 1), human epidermal growth factor receptor 2 (HER2) (n = 12), V-raf murine sarcoma viral 
oncogene homolog (BRAF) (n = 2), rearranged during transfection (n = 4), and c-ros oncogene 1 (ROS1) (n = 3). In 
the EGFR subset, the ORR was 30.9% (n = 81) and PFS was significantly shorter than WT group (median PFS: 5.7 
months vs. 7.1 months; P = 0.0061). In subgroup analyses, ICI combined therapy was significantly correlated with a 
longer PFS compared with ICI monotherapy (median PFS: 7.7 months vs. 4.7 months; P = 0.0112). In KRAS patients, 
ORR was 51.6% (n = 31). No significant difference was found in subgroup analyses. The ORR and PFS were 16.7% 
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(n = 12) and 28.6% (n = 7), 7.8 months and 9.0 months for HER2 and EGFR Exon20 insertion patients, respectively. 
Three ROS1 patients were enrolled with a PFS of 16.0, 34.2, and 45.0 months individually, and one ALK patient with 
PFS of 4.4 months was identified. No response was found in two BRAF patients.

Conclusion: ICI-based combination therapy can bring benefit to patients with EGFR-mutant NSCLC. ICI-based 
combination therapy could be considered for patients with ROS1 rearrangement, HER2 mutation and EGFR Exon20 
insertion NSCLC.

Keywords: Non-squamous NSCLC, driver mutations, immune checkpoint inhibitor

INTRODUCTION
Lung cancer is the most common cancer worldwide, in terms of both incidence and mortality[1]. Over the 
past decades, great advancements have been achieved, which are attributed to the understanding of tumor 
biology and the molecular mechanism of tumor progression. The use of small molecule tyrosine kinase 
inhibitors (TKIs) has dramatically improved the prognosis of patients with specific genomic aberrations[2-5]. 
However, despite the high response of TKIs, acquired resistance inevitably occurs and limits the long-term 
benefits[6]. Once this happens, the subsequent anti-tumor treatment is limited.

Immune checkpoint inhibitors (ICIs), specifically those targeting PD-1 or programmed death-ligand 1 (PD-
L1), have rapidly transformed the treatment paradigm for non-small cell lung cancer (NSCLC). For driver-
negative NSCLC, ICIs are now the cornerstone of first-line therapy[7]. However, whether ICIs alone or in 
combination with other therapies would bring benefit to those with driver mutations is still to be elucidated. 
Gainor et al.[8] reported poor response of ICI monotherapy in patients with epidermal growth factor 
receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) rearrangements. In the phase II 
ATLANTIC study, durvalumab showed activity in driver-positive NSCLC according to final OS analysis[9]. 
Therefore, continued research is required to explore the optimal use of ICI therapy in patients with driver 
mutations to improve outcomes of this cohort.

In our study, we retrospectively analyzed patients with locally advanced or metastatic non-squamous 
NSCLC that were treated with anti-PD-1 based mono- or combined-immunotherapy in Shanghai 
Pulmonary Hospital to assess the efficacy of ICIs on patients with driver-positive NSCLC.

METHODS
Study population
Patients with locally advanced or metastatic non-squamous non-small cell lung cancer from July 2015 to 
July 2020 in Shanghai Pulmonary Hospital were retrospectively enrolled. Inclusion criteria included the 
following: (1) a pathologic diagnosis of non-squamous non-small cell lung cancer; (2) testing data (either 
direct sequencing or NGS on validated platforms) for EGFR, V-Ki-ras2 Kirsten rat sarcoma viral oncogene 
homolog (KRAS), ALK, human epidermal growth factor receptor 2 (HER2), V-raf murine sarcoma viral 
oncogene homolog (BRAF), rearranged during transfection (RET), and c-ros oncogene 1 (ROS1); and (3) 
anti-PD-1-based monotherapy or combined immunotherapy as first-line or posterior-line therapy. Patients 
treated with fewer than two circles of immunotherapies and had no available complete medical records were 
excluded. The patient screening process is shown in Figure 1. We reviewed the medical records and 
abstracted the following patient characteristics: age, gender, Eastern Cooperative Oncology Group 
Performance Status (ECOG-PS), smoking history, histological type, clinical stage, mutation type, PD-L1 
expression, details of treatment, and survival.
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Figure 1. Flow chart of patient screening.

PD-L1 analysis
PD-L1 immunohistochemistry was performed in Department of Pathology, Shanghai Pulmonary Hospital 
according to routine procedure. The antibody used was PD-L1 22C3 pharmDx (Dako, Carpinteria, CA, 
USA). PD-L1 positivity was defined as tumor proportion score cutoff of 1%.

Statistical analysis
Patient characteristics are expressed as median and range for continuous variables and as frequencies and 
percentages for categorical variables. Progression-free survival (PFS) was measured from the date of first 
administration of PD-1 inhibitor treatment to disease progression or death due to any cause or last follow-
up. Response Evaluation Criteria in Solid Tumors guidelines 1.1 (RECIST 1.1) was used to assess tumor 
response. The difference of response rate among different groups was calculated using Kruskal-Wallis test. 
Survival data were estimated using the Kaplan-Meier method and compared using the log-rank test in the 
overall cohort and subgroups. The data were analyzed using GraphPad Prism 8.0 and SPSS Statistics 20. A P 
value < 0.05 was considered statistically significant.

RESULTS
Patient characteristics
In this study, 309 non-squamous non-small cell lung cancer patients treated with anti-PD-1 based 
monotherapy or combined immunotherapy in Shanghai Pulmonary Hospital were identified. The median 
age was 61 years (range 20-88 years), 70.9% were male (219/309), and 55.7% (112/309) were never smokers. 
The majority of the patients had adenocarcinoma histology (98.4%, 304/309) and ECOG-PS of 0-1 at the 
start of immunotherapy (83.5%, 258/309). Detailed characteristics are shown in Table 1. In total, 182 
received anti-PD-1 combined with chemotherapy (pemetrexed combined with carboplatin 85.7%, 156/182; 
paclitaxel-based chemotherapy 14.3%, 26/182), 42 received anti-PD-1 combined with antiangiogenic 
therapy (apatinib 90.5%, 38/42; bevacizumab 9.5%, 4/42). None of the enrolled patients received a 
combination of ICIs, chemotherapy, and antiangiogenic therapy. Among the whole cohort, 134 had genetic 
alteration, which involved EGFR (n = 81), KRAS (n = 31), ALK (n = 1), HER2 (n = 12), BRAF (n = 2), RET 
(n = 4), and ROS1 (n = 3). Among the 81 EGFR mutation patients, 42 had exon 19 deletions, 29 had exon20 
L858R, and 10 had other mutations; 14 were harboring T790M mutation at the same time and 67 were not. 
The details of each subgroup are shown in Table 1.

PD-L1 expression
PD-L1 expression status was available for 132 patients, of whom 54.5% (72/132) had less than 1% PD-L1 
expression, 31.1% (41/72) had PD-L1 expression of 1%-49%, and 14.4% (19/132) had PD-L1 expression 
more than 50% [Figure 2A]. Looking into each subgroup, patients with EGFR mutation seemed to have a 
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Table 1. Characteristics of patients according to molecular alterations

All cases EGFR KRAS ALK HER2 BRAF RET ROS1
19del 20 L858R Other G12C G12D EML4-ALK 20ins V600E RET-KIF5B CD74-ROS1

n = 309 n = 42 n = 29 n = 10 n = 30 n = 1 n = 1 n = 12 n = 2 n = 4 n = 3

Age 61 (20-88) 61 (20-72) 60 (40-75) 57 (38-73) 61 (49-75) 71 62 59 (45-68) 49, 61 49 (26-61) 41 (41-64)

Gender

Male 219 (70.9%) 24 (57.1%) 18 (62.1%) 7 (70%) 27 (90%) 1 (100%) 1 (100%) 7 (58.3%) 2 (100%) 2 (50%) 1 (33.3%)

Female 90 (29.1%) 18 (42.9%) 11 (37.9%) 3 (30%) 3 (10%) 0 (0%) 0 (0%) 5 (41.7%) 0 (0%) 2 (50%) 2 (66.7%)

ECOG performance status

0-1 258 (83.5%) 36 (85.7%) 24 (82.8%) 7 (70%) 26 (86.7%) 1 (100%) 0 (0%) 11 (91.7%) 0 (0%) 3 (75%) 3 (100%)

≥ 2 51 (16.5%) 6 (14.3%) 5 (17.2%) 3 (30%) 4 (13.3%) 0 (0%) 1 (100%) 1 (8.3%) 2 (100%) 1 (25%) 0 (0%)

Smoking history

Current or former 137 (44.3%) 27 (64.3%) 22 (75.9%) 7 (70%) 11 (36.7%) 1 (100%) 0 (0%) 4 (33.3%) 1 (50%) 0 (0%) 2 (66.7%)

Never 172 (55.7%) 15 (35.7%) 7 (24.1%) 3 (30%) 19 (63.3%) 0 (0%) 1 (100%) 8 (66.7%) 1 (50%) 4 (100%) 1 (33.3%)

Histological type

Adenocarcinoma 304 (98.4%) 41 (97.6%) 29 (100%) 10 (100%) 30 (100%) 1 (100%) 1 (100%) 11 (91.7%) 2 (100%) 4 (100%) 3 (100%)

NOS 5 (0.6%) 1 (2.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (8.3%) 0 (0%) 0 (0%) 0 (0%)

Clinical Stage

Stage IIIB 2 (0.7%) 0 (0%) 1 (3.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Stage IIIC 5 (1.6%) 1 (2.4%) 1 (3.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Stage IV 302 (97.7%) 41 (97.6%) 27 (93.1%) 10 (100%) 30 (100%) 1 (100%) 1 (100%) 12 (100%) 2 (100%) 4 (100%) 3 (100%)

PD-L1 expression

< 1% 72 (23.3%) 11 (26.2%) 5 (17.2%) 2 (20%) 5 (16.7%) 0 (0%) 0 (0%) 5 (41.7%) 0 (0%) 3 (75%) 2 (66.7%)

1%-49% 41 (13.3%) 2 (4.8%) 2 (6.9%) 0 (0%) 5 (16.7%) 0 (0%) 0 (0%) 2 (16.7%) 0 (0%) 0 (0%) 1 (33.3%)

≥ 50% 19 (6.1%) 3 (7.1%) 1 (3.4%) 0 (0%) 5 (16.7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (25%) 0 (0%)

Unknown 177 (57.3%) 26 (61.9%) 21 (72.4%) 8 (80%) 15 (50%) 1 (100%) 1 (100%) 5 (41.7%) 2 (100%) 0 (0%) 0 (0%)

Line of ICIs

1 106 (34.3%) 1 (2.4%) 1 (3.4%) 4 (40%) 15 (50%) 0 (0%) 0 (0%) 6 (50%) 0 (0%) 2 (50%) 3 (100%)

2 127 (41.1%) 26 (21.9%) 17 (58.6%) 2 (20%) 12 (40%) 1 (100%) 0 (0%) 3 (25%) 0 (0%) 2 (50%) 0 (0%)

≥ 3 76 (24.6%) 15 (35.7%) 11 (37.9%) 4 (40%) 3 (10%) 0 (0%) 1 (100%) 3 (25%) 2 (100%) 0 (0%) 0 (0%)

Treatment modality

Anti-PD-1 monotherapy 85 (27.5%) 2 (4.8%) 5 (17.2%) 1 (10%) 9 (30%) 1 (100%) 1 (100%) 4 (33.3%) 2 (100%) 1 (25%) 0 (0%)

Anti-PD-1 plus chemotherapy 182 (58.9%) 39 (92.9%) 22 (75.9%) 7 (70%) 17 (56.7%) 0 (0%) 0 (0%) 7 (58.3%) 0 (0%) 3 (75%) 3 (100%)

Anti-PD-1 plus antiangiogenic therapy 42 (13.6%) 1 (2.4%) 2 (6.9%) 2 (20%) 4 (13.3%) 0 (0%) 0 (0%) 1 (8.3%) 0 (0%) 0 (0%) 0 (0%)

ICIs: Immune checkpoint inhibitors; NOS: not otherwise specified; EGFR: epidermal growth factor receptor; KRAS: V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; ALK: anaplastic lymphoma kinase; HER2: 
human epidermal growth factor receptor 2; BRAF: V-raf murine sarcoma viral oncogene homolog; RET: rearranged during transfection; ROS1: c-ros oncogene 1; ECOG: Eastern Cooperative Oncology Group.
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low PD-L1 expression (26 patients: 69.2%, 18/26 with PD-L1 < 1%, 15.4%, 4/26 with PD-L1 1%-49%, and 15.4%, 4/26 with PD-L1 ≥ 50%) [Figure 2B]. In the 
KRAS subgroup, the percentages of PD-L1 < 1%, 1%-49%, and ≥ 50% were all 33.3% (5/15) [Figure 2C]. Of the seven HER2 cases, 71.4% (5/7) had < 1% PD-L1 
expression, while 28.6% (2/7) had a PD-L1 expression of 1%-49% [Figure 2D].

Response rate
Based on RECIST 1.1, the ORR of the patients with wild type (WT) was 34.9% and DOR was 50.3% (n = 175), while, in the EGFR subset, the ORR was 30.9% 
and DOR was 77.8% (n = 81). For KRAS patients, ORR was 51.6% and DOR was 83.9% (n = 31). The response rates in both the EGFR group and the KRAS 
group were statistically different from the WT group (P = 0.029 and P = 0.004, respectively) [Figure 3A]. In EGFR patients, the ICI combination therapy subset 
seemed to have better response rate compared to those who received ICI monotherapy (P = 0.020) [Figure 3B]. However, the difference was not found in 
KRAS patients [Figure 3C]. In 12 HER2 patients, ORR was 16.7% and DCR was 91.7%. While ORR was 28.6% and DCR was 85.7% in EGFR Exon20 insertion 
patients [Figure 3A].

Progression-free survival
EGFR
We investigated the outcomes of ICIs on patients with EGFR mutations. PFS of the EGFR subset was significantly shorter than that of the WT group (median 
PFS: 5.7 months vs. 7.1 months; P = 0.0061) [Figure 4A]. Regarding PD-L1 expression, PFS was not significantly different (P = 0.3721) [Figure 4B]. ICI 
combined therapy was significantly correlated with a longer PFS compared with ICI monotherapy (median PFS: 7.7 months vs. 4.7 months; P = 0.0112) 
[Figure 4C]. PFS was 5.5 months in L858R, 5.9 months in 19del, and 9.0 months in Exon20 insertion and other mutations, but the difference was not 
statistically significant among the three groups (P = 0.3411) [Figure 4D]. There was no difference in PFS between patients with or without T790M mutation 
(median PFS: 5.6 months vs. 5.9 months; P = 0.8381) [Figure 4E].

KRAS
KRAS was not associated with a benefit on PFS compared to those harboring no gene alteration (median PFS: 11.0 months vs. 7.1 months; P = 0.5714) 
[Figure 5A]. In subgroup analyses, PD-L1 positive patients seemed to have longer PFS than PD-L1 negative ones, but the difference was not statistically 
significant (median PFS: 15.8 months vs. 5.6 months; P = 0.0670) [Figure 5B]. ICI combined therapy had no advantage in PFS compared with ICI monotherapy 
(median PFS: 12 months vs. 7.25 months; P = 0.5714) [Figure 5C].
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Figure 2. Categorical distribution of tumor PD-L1 expression: the whole cohort (A); EGFR-mutant NSCLC tumors (B); KRAS-mutant 
NSCLC tumors (C); and HER2-mutant NSCLC tumors (D). EGFR: Epidermal growth factor receptor; NSCLC: non-small-cell lung cancer; 
KRAS: V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; HER2: human epidermal growth factor receptor 2.

Figure 3. Response to ICIs according to Response Evaluation Criteria in Solid Tumors guidelines 1.1 (RECIST 1.1): (A) response to ICIs 
across molecular alterations; (B) response rate by treatment modality in EGFR patients; and (C) response rate by treatment modality in 
EGFR patients. ICIs: Immune checkpoint blockades; PD: progressive disease; SD: stable disease; PR: partial response; CR: complete 
response; WT: wild type. EGFR: epidermal growth factor receptor; KRAS: V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog.

Figure 4. PFS of ICIs in EGFR-mutant NSCLC: (A) PFS in tumors with WT NSCLC or EGFR-mutant NSCLC; (B) PFS by PD-L1 expression 
levels; (C) PFS by treatment modality; (D) PFS by mutation type; and (E) PFS by T790M mutation status. ICIs: Immune checkpoint 
blockades; PFS: progression-free survival; WT: wild type; EGFR: epidermal growth factor receptor; NSCLC: non-small-cell lung cancer.
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Figure 5. PFS of ICIs in KRAS-mutant NSCLC: (A) PFS in tumors with WT NSCLC or KRAS-mutant NSCLC; (B) PFS by PD-L1 expression 
levels; and (C) PFS by treatment modality. ICIs: Immune checkpoint blockades; PFS: progression-free survival; WT: wild type; KRAS: V-
Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; NSCLC: non-small-cell lung cancer.

Other molecular alterations
All three patients with ROS1 rearrangements and ECOG 1 who received ICIs combined with chemotherapy 
as first-line treatment had response of PR. The PFS was 16.0, 34.2, and 45.0 months, respectively. The 
response of the patient with the longest PFS (45 months) was ongoing [Figure 6]. Four patients with RET 
rearrangements had PFS of 1.5, 1.8, 4.3, and 9.8 months. Three of them had ECOG 1 and one had ECOG 2. 
They received first-line (n = 2) and second-line (n = 2) ICI monotherapy (n = 1) or ICIs combined with 
chemotherapy (n = 3). No response was found in two BRAF patients, who received after second-line ICI 
monotherapy. Most HER2 patients had ECOG 1 (n = 11). Seven of them received ICIs combined with 
chemotherapy, four received ICI monotherapy, and one received ICIs combined with antiangiogenic 
therapy. ICIs as first-line therapy were observed in six patients, as second-line in three patients, and after 
second-line in three patients. The median PFS was 7.8 months (range 1.0-26.9 months). ALK 
rearrangements was identified in only one patient, whose PFS was 4.4 months, with ECOG 3, who received 
ICI monotherapy as after second-line treatment. We also enrolled seven patients with EGFR Exon20 
insertion. The median PFS was nine months (range 2.2-20.1 months). They received ICIs combined with 
chemotherapy (n = 5) or antiangiogenic therapy (n = 1) or ICI monotherapy (n = 1), as first-line (n = 4), 
second-line (n = 1), or after second-line treatment (n = 2), with ECOG 1 (n = 5), 2 (n = 1), or 3 (n = 1).

DISCUSSION
Targeted therapies against oncogene-driven NSCLC, including EGFR[2], BRAF[10], and HER2 mutations[11] or 
ALK[3], ROS1[5], and RET[12] rearrangements, have been proved to improve outcomes, and they form the 
standard first-line treatment in patients with advanced disease. However, progression inevitably occurs, and 
chemotherapy is currently the main subsequent treatment after TKI resistance. Considering the remarkable 
long-term benefits of ICI treatments, scientists have made lots of efforts to integrate ICIs into the treatment 
course of patients with oncogene-driven NSCLC. Mazieres et al.[13] explored the activity of ICIs across 
NSCLC harboring oncogenic alterations and found driver-positive NSCLC exhibited poor response to ICI 
monotherapy. Hastings et al.[14] reported more favorable outcomes of exon 21 mutations compared with 
exon 19 deletions in NSCLC treated with immunotherapy. Until now, the results on this topic are 
controversial.

In EGFR-driven NSCLC, initial clinical results indicate that ICIs have no clinical benefits. Meta-analysis[15,16] 
of EGFR-mutated patients in Keynote 010, CheckMate 057, OAK, and POPLAR studies showed ICIs have 
poorer outcomes in cohorts with EGFR mutations compared to chemotherapy. We found similar findings 
in our research that patients with EGFR mutations had poor response to ICIs. This may be explained by the 
immunosuppressive and uninflamed tumor microenvironment (TME) and low tumor mutational burden 
(TMB), therefore being less immunogenic in the context of oncogenic addiction[17,18]. Besides the effect of 
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Figure 6. Swimmer’s plot of PFS across molecular alterations. PFS: Progression-free survival; ALK: anaplastic lymphoma kinase; HER2: 
human epidermal growth factor receptor 2; BRAF: V-raf murine sarcoma viral oncogene homolog; RET: rearranged during transfection; 
ROS1: c-ros oncogene 1; ECOG: Eastern Cooperative Oncology Group; ICI: immune checkpoint blockade.

oncogene mutation on TME, studies have shown that EGFR TKIs, chemotherapy, and antiangiogenic 
therapy also influence the TME. EGFR TKIs could increase infiltration of CD8+ T cells, dendritic cells, and 
M1 TAMs and inhibit regulatory T cells infiltration[19]. Bevacizumab, an antiangiogenic therapy, has been 
observed in melanoma to increase circulating CD8+ T cells and interleukin-6 levels so as to change the TME 
in combination with chemotherapy[20]. Therefore, the use of ICI-based combined therapy as post-line 
treatment after TKI resistance may be more effective. In the IMpower150 study, we did see prolonged PFS 
and OS in the ABCP (atezolizumab, bevacizumab, carboplatin, and paclitaxel) group compared with the 
BCP (bevacizumab, carboplatin, and paclitaxel) group in patients with EGFR-driven NSCLC[21]. In our 
study, we also found ICI combined therapy was correlated with better outcome than ICI monotherapy in 
EGFR-driven NSCLC patients.

In our study, we did not find any correlation between KRAS mutation and better survival, which is 
inconsistent with previous studies. This may be explained by the heterogeneity of KRAS-mutant NSCLC. 
KRAS mutation subtypes include G12C, G12D, G12V, G12A, and G13D, among others, and different KRAS 
mutations can activate distinct signaling pathways, leading to different downstream effects, which may 
result in different response to therapies[22]. Besides, KRAS mutation is always accompanied by different 
patterns of co-occurring mutations, which display different immune profiles and show varying sensitivities 
to ICIs. In KRAS-TP53 co-mutated tumors, increased expression of PD-L1, higher TMB, and a remarkable 
clinical benefit of ICIs was observed[23,24]. Conversely, KRAS-STK11 has always been associated with poor 
clinical response to ICIs[24,25]. Further studies are needed to differentiate patients suitable for different 
treatment options.
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HER2 mutations have been reported in approximately 2%-5% of lung adenocarcinomas[26,27] and correlated 
with poor prognosis[27]. The efficacy of ICIs in HER2-mutant NSCLC is ambiguous. Guisier et al.[28] reported 
23 patients harboring HER2 mutation treated with ICI monotherapy who had a response rate of 27%, which 
is close to that observed in unselected patients with NSCLC. Mazieres et al.[13] reported an ORR of 7% and a 
median PFS of 2.5 months in 29 patients with HER2 mutation NSCLC treated with ICI monotherapy. In 
our study, ICI-based therapy displayed certain curative effect with 16.67% ORR, 91.7% DCR, and PFS of 7.8 
months (range 1-26.9 months). For other rare driver mutations, the efficacy of ICIs on patients with ROS1 
rearrangements or EGFR Exon20 insertion was rarely reported. In our study, three patients with ROS1 
rearrangements had response of PR and durable PFS of 16.0, 34.2, and 45.0 months. Seven patients with 
EGFR Exon20 insertion had PFS of 9 months (range 2.2-20.1 months), ORR was 28.6%, and DCR was 
85.7%. Therefore, ICI-based therapy may provide choices for these patients. As to BRAF, RET, and ALK, 
which represent a small subgroup of NSCLC, because of the limited number of patients, we could not draw 
a conclusion.

ICI-based combined therapy can bring benefit to patients with EGFR-mutant NSCLC. ICIs, especially ICI-
based combination therapy, should not be excluded for patients with ROS1 rearrangement, HER2 mutation, 
and EGFR Exon20 insertion NSCLC. To achieve maximum benefit for these patients, better predictive 
biomarkers to select patients and combination modes of therapies should be explored.
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