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Abstract
Millions of people throughout the world have been harmed by plastic pollution. There are microscopic pieces of 
plastic in the food we eat, the water we drink, and even the air we breathe. Every year, the average human 
consumes 74,000 microplastics, which has a significant impact on their health. This pollution must be addressed 
before it has a significant negative influence on the population. This research benchmarks six state-of-the-art 
convolutional neural network models pre-trained on the ImageNet Dataset. The models Resnet-50, ResNeXt, 
MobileNet_v2, DenseNet, SchuffleNet and AlexNet were tested and evaluated on the WaDaBa plastic dataset, to 
classify plastic types based on their resin codes by integrating the power of transfer learning. The accuracy and 
training time for each model has been compared in this research. Due to the imbalance in the data, the under-
sampling approach has been used. The ResNeXt model attains the highest accuracy in fourteen minutes.
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1. INTRODUCTION
Plastic finds itself in everyday human activities. The mass production of plastic was introduced in 1907 by 
Leo Baekeland, proved to be a boon to humankind[1]. Over the years, plastic has increasingly become an 
everyday necessity for humanity. The population explosion has a critical part in increasing domestic plastic 
usage[2]. Lightweight plastics have a crucial role in the transportation industry. Their usage in space 
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exploration gives enormous leverage over heavy and expensive alternatives[3]. The packaging industry widely 
uses plastics after the e-commerce revolution because they are lightweight, cheap, and abundant. In 2015, 
the packing sector produced 141 million metric tons of garbage, accounting for 97 percent of all waste 
produced concerning the total consumption in the packaging sector[4]. Discarded polyethylene terephthalate 
(PETE) bottles are a common source of household waste. In 2021, global waste plastic bottle consumption 
will surpass 500 billion as estimated[2].

The increasing use of plastics and their wastage negatively affect the global economy. This surge in 
consumption and the low degradability of plastic have resulted in massive plastic accumulation in the 
environment, which has harmed ecosystems and human health[5]. This has resulted in countries formulating 
strict policies for plastics and even banning some types of single-use plastics. Plastics are non-biodegradable 
and considerably take a longer time to degrade. Reusing and recycling are viable ways to stop contaminating 
the environment with plastic pollution[6]. Plastic wastes can be retrieved after entering the municipal 
treatment plants or before it. However, the plastic waste from the municipal treatment plants is usually 
contaminated and ends up in landfills or incineration centers. The plastic waste collected outside of such 
plants is relatively cleaner and can be reused or recycled. Recovered plastics from such wastes have varied 
types of plastic, making it extremely difficult to identify and sort different kinds of plastics.

By integrating transfer learning, the Dataset needs only a limited number of input images to acquire high 
accuracy, and it also accelerates the training of neural networks, consequently improving the classification 
of multiple classes in a dataset[7]. Balancing the number of images in each class compensates for the class 
imbalance problem. This research contributes towards benchmarking of pre-trained models and concluding 
that the ResNeXt model achieves the highest accuracy on the WaDaBa dataset from the list of pre-trained 
models specified in this paper.

1.1. Literature review
Seven different varieties of plastics exist in the modern day. They are classified as Polyethylene terephthalate 
(PET or PETE), high-density polyethylene (HDPE), polyvinyl chloride (PVC or Vinyl), low-density 
polyethylene (LDPE), polypropylene (PP), polystyrene (PS or Styrofoam) and Others, which does not 
belong to any of the above types, has been shown in Figure 1[3].

1.1.1. Traditional sorting techniques
Initially, segregation of wastes and separation of different types of plastics were done manually. However, 
this results in increased labor costs and time consumption[6]. Traditional macro sorting of plastics was 
performed with the aid of sensors which included near-infrared spectrometers[8,9], x-ray transmission sensor, 
Fourier transformed Infrared Technique[10], laser aided identification, and marker identification by 
identifying the resin type[11]. However, these approaches are limited to recognizing just particular types of 
plastics and are costly due to the large equipment required. The intricacy of mechanical sorting and its 
maintenance, as well as the high initial investment, are the drawbacks of traditional sorting methods.

1.1.2. Modern sorting techniques
Deep learning has made classification easier, more efficient, and cost-effective, with less human 
intervention. The deep learning approach was enhanced by convolutional neural networks (CNN)[12]. CNNs 
are excellent for object classification and detection[13]. After the model has been trained on the data, the 
plastics may be sorted into the appropriate classes with the assistance of CNN. They do, however, require a 
huge quantity of training data, which might be difficult to get at times. When the input data is small, the 
problem of overfitting develops, resulting in inaccurate classifications[14]. Transfer learning reduces the 
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Figure 1. Types of plastic, its resin code and everyday examples of plastics. PETE: Polyethylene terephthalate; HDPE: high-density 
polyethylene; PVC: polyvinyl chloride; LDPE: low-density polyethylene; PP: polypropylene, PS: polystyrene.

training time of a CNN by pre-training the model using benchmark datasets such as ImageNet.

Bobulski et al.[15] proposed an end-to-end system with a micro-computer embedded with the vision to sort 
the PETE types of plastics in the WaDaBa dataset. The authors introduced data augmentation, which 
reduced the number of parameters but exponentially increased the number of samples, increasing the 
training time. Bobulski et al.[16] also proposed to classify distinct plastic categories based on a gradient 
feature vector. Agarwal et al.[17] presented Siamese and triplet loss neural networks to classify the WaDaBa 
dataset and succeeded with very high accuracy. However, this method requires a significant amount of time 
for training the neural networks. Chazhoor et al.[18] Anthony utilised transfer learning to compare the three 
most often used architectures (ResNeXt, Resnet-50-50 and AlexNet) on the WaDaBa dataset to select the 
optimal model; however, the K-fold cross validation technique was not applied; as a result, testing accuracy 
would vary widely.

The aim of the paper is to provide researchers with benchmark accuracies and the average time required to 
train on the WaDaBa dataset using the latest CNN models utilising cross-validation to categorise a range of 
plastics into their appropriate resin types. An unbiased and concrete set of parameters has been set to 
evaluate the Dataset to compare the models fairly[19]. This benchmark work will assist in gaining an 
impartial view of numerous recent CNN models applied to the WaDaBa dataset, establishing a baseline for 
future research. The models used in this paper are AlexNet[20], Resnet-50[21], ResNeXt[22], SqueezeNet[23], 
MobileNet_v2[24] and DenseNet[25].
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2. METHODS
2.1. Dataset
The WaDaBa dataset is a sophisticated collection that contains images of common plastics used in society. 
The dataset includes seven distinct varieties of plastic. Images show several forms of plastics on a platform 
under two lighting conditions: an LED bulb and a fluorescent lamp and is displayed in Figure 2. Table 1 
shows the distribution of the 4000 images in the dataset according to their classes. As there are no images in 
the PVC and PE-LD classes, both the classes have been excluded from the deep learning models. Deep 
learning models are trained on five class types with images in the current work i.e., PETE, PE-HD, PP, PS, 
and Other. The deep learning models are set up in such a way that each output matches one of the five class 
categories. When the images for PVC and PE-LD are released, these classes can be included in the models. 
The dataset’s classes are imbalanced, with the last class holding just 40 images and the PETE class consisting 
of 2000 images. The dataset is freely accessible to the public[15].

2.2. Transfer learning
A large amount of data is needed to get optimum accuracy in a neural network. Data needs to be trained for 
hours on a powerful Graphical Processing Unit (GPU) to get the results. With the advent of transfer 
learning[26], there has been a significant change in the learning processes in deep neural networks. The 
model which has been already trained on a large dataset like ImageNet[27], known as the pre-trained model, 
enhances the transfer learning process. The transfer learning process works by freezing[28] the initially 
hidden layers of the model and fine-tuning the final layers of the models. The layer’s frozen state indicates 
that it will not be trained. As a result, its weights will remain unchanged. As the data set used in this 
research is relatively small with a limited number of images in each class, transfer learning best suits this 
research. The pre-trained models used in the research are further explained in the subsection.

2.2.1. AlexNet
AlexNet is a neural network with three convolutional layers and two fully connected layers, and it was 
introduced in 2012 by Alex Krizhevesky. AlexNet increases learning capacity by increasing network depth 
and using multi-parameter tuning techniques. AlexNet uses ReLU to add non-linearity and dropout to 
decrease the overfitting of data. CNN-based applications gained popularity following AlexNet's excellent 
performance on the ImageNet dataset in 2012[23]. The architecture of AlexNet is shown in Figure 3.

2.2.2. Resnet-50
Residual networks (Resnet-50) are convolutional neural networks with skip connections with an extremely 
deep convolution and 11 million parameters. A skip connection after each block solves the vanishing 
gradient problem. The skip connection skips some layers in the network. With batch normalization and 
ReLU activation, two 3 × 3 convolutions are used in each block to achieve the desired result[21]. The 
architecture of Resnet-50-50 is displayed in Figure 4.

2.2.3. ResNeXt
Proposed by Facebook and ranking second in ILSVRC 2016, ResNeXt uses the repeating layer strategy of 
Resnet-5050, and it appends the split-transform-merge method[22]. The magnitude of a set of 
transformations is known as cardinality. Cardinality provides a novel approach to modifying model capacity 
by increasing the number of separate routes. Having width and depth as critical characteristics, ResNeXt 
adds on Cardinality as a new dimension. Increasing cardinality is a practical approach to enhance the 
accuracy of the model[22]. The architecture of ResNeXt is shown in Figure 5.
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Table 1. The number of images corresponding to each class in the WaDaBa dataset[15]

Resin code Class type Number of images

1 PETE 2200

2 PE-HD 600

3 PVC 0

4 PE-LD 0

5 PP 640

6 PS 520

7 Other 40

PETE: Polyethylene terephthalate; PVC: polyvinyl chloride; PP: polypropylene, PS: polystyrene; PE-HD: high-density polyethylene; PE-LD: low-
density polyethylene.

Figure 2. Examples of different types of plastics from the WaDaBa dataset in Figure 1. (A) Class 1 representing PETE (polyethylene 
terephthalate); (B) Class 2 representing HDPE (high-density polyethylene); (C) Class 5 representing PP (polypropylene); (D) Class 6 
representing PS (polystyrene) ; (E) Class 7 representing Others[15].

Figure 3. The architecture of AlexNet, having five convolutional layers and three fully connected layers. This figure is quoted with 
permission from Han et al.[29].

Figure 4. Architecture of Resnet-50-50. This figure is quoted with permission from Talo et al.[30].
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Figure 5. Architecture of ResNeXt. (Figure is redrawn and quoted from Go et al.[31])

2.2.4. MobileNet_v2
MobileNet_v2 is a CNN architecture built on an inverted residual structure, shortcut connections between 
narrow bottleneck layers to improve the mobile and embedded vision systems. A Bottleneck Residual Block 
is a type of residual block that creates a bottleneck using 1 × 1 convolutions. The number of parameters and 
matrix multiplications can be reduced by using a bottleneck. The goal is to make residual blocks as small as 
possible so that depth may be increased, and the parameters can be reduced. The model uses ReLU as the 
activation function. The architecture comprises a 32-filter convolutional layer at the top, followed by 19 
bottleneck layers[24]. The architecture of MobileNet_v2 is shown in Figure 6.

2.2.5. DenseNet
Using a feed-forward system, DenseNet connects each layer to every other layer. Layers are created using 
feature maps from all previous levels, and their feature maps are utilized in all future layers to create new 
layers. They solve the vanishing-gradient problem and improve feature propagation and reuse while 
reducing the number of parameters significantly. The architecture of DenseNet is shown in Figure 7.

2.2.6. SqueezeNet
SqueezeNet is a small CNN that shrinks the network by reducing parameters while maintaining adequate 
accuracy. An entirely new building block has been introduced in the form of SqueezeNet’s Fire module. A 
Fire module consists of a squeeze convolution layer containing only a 1 × 1 filter, which feeds into an 
expand layer having a combination of 1 × 1 and 3 × 3 convolution filters. Starting with an independent 
convolution layer, SqueezeNet then moves to 8 Fire modules before concluding with a final convolution 
layer. The architecture of SqueezeNet is shown in Figure 8.
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Figure 6. The architecture of MobileNet_v2. This figure is quoted with permission from Seidaliyeva et al.[32]

Figure 7. The architecture of DenseNet. This figure is quoted with permission from Huang et al.[25].

Figure 8. The architecture of SqueezeNet. This figure is quoted with permission from Nguyen et al.[33].

2.3. Experimental settings and the experiment
All the experiments were run on Ubuntu Linux operating system. The models were trained on Intel i7,
3.60 GHz, 32 GB ram and the graphical processing unit used was the Nvidia GeForce RTX 2080 Super. The
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deep learning framework used in this research is PyTorch[34]. The images from the WaDaBa dataset are 
input to the pre-trained models after performing under-sampling in the dataset. The batch size chosen for 
this experiment is 4 such that the GPU doesn’t run out of memory while processing. The learning rate is 
0.001 and is decayed by a factor of 0.1 every seven epochs. Decaying the learning rate aids the network’s 
convergence to a local minimum and also enhances the learning of complicated patterns[35]. Cross-Entropy 
loss is utilized for training, accompanied by a momentum of 0.9, which is widely used in the machine 
learning and neural network communities[36]. The Stochastic Gradient Descent (SGD) optimizer[37], a 
gradient descent technique that is extensively employed in training deep learning models, is used. The 
training is done using a five-fold cross-validation technique, and the result is generated, along with graphs 
showing the number of epochs vs. accuracy and number of epochs vs. loss. On the WaDaBa dataset, each 
model was subjected to twenty epochs.

Before being forwarded on to the training, the data was normalized. These approaches, which were applied 
to the data, included random horizontal flipping and centre cropping.

The size of the input picture is 224 × 224 pixels [Figure 9].

2.3.1. Imbalance in the dataset
The number of images for each class in the dataset is uneven. The first class (PETE) contains 2200 photos, 
while the last class (Others) contains only 40. Due to the size and cost of certain forms of plastic, obtaining 
datasets is quite tricky. Because of the class imbalance, the under-sampling strategy was used. Images were 
split into training and validation sets, eighty percent for the training and twenty percent for the testing 
purposes.

2.3.2. K-fold cross-validation
The 5-fold cross-validation was considered for all the tests to validate the benchmark models[38]. The data 
was tested on the six models and the training loss and accuracy, validation loss and accuracy and the 
training time was recorded for 20 epochs with identical model parameters. The resultant average data was 
tabulated, and the corresponding graphs were plotted for visual representation. The flow chart of the 
experimental process is displayed in Figure 8.

3. RESULTS
3.1 Accuracy, loss, area under curve and receiver operating characteristic curve
The metrics used to benchmark the models on the WaDaBa dataset are accuracy and loss. The accuracy 
corresponds to the correctness of the value[39]. It measures the value to the actual value. Loss is a prediction 
of how erroneous the predictions of a neural network are, and the loss is calculated with the help of a loss 
function[40]. The area under curve (AUC) measures the classifier’s ability to differentiate between classes and 
summarize the receiver operating characteristic (ROC) curve. ROC plots the performance of a classification 
model’s overall accuracy. The curve plots the True Positive Rate against the False Positive Rate.

Table 2 clearly shows that the ResNeXt architecture achieves the maximum accuracy of 87.44 percent in an 
average time of thirteen minutes and eleven seconds. When implemented in smaller and portable devices, 
smaller networks such as MobileNet_v2, SqueezeNet, and DenseNet offer equivalent accuracy. AlexNet 
trains the model in the shortest period but with the lowest accuracy. In comparison to the other models, 
DenseNet takes the longest to train. With a classification accuracy of 97.6 percent, ResNeXt comes out as 
the top model for reliably classifying PE-HD. When compared to other models, MobileNet_v2 classifies PS 
with more accuracy. Also, from Table 2, we can see that PP has the least classification accuracy for all the 
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Table 2. The mean and class wise accuracies of the models pretrained on the ImageNet dataset, along with the time taken for 
training for 20 epochs. The standard deviation indicates the average deviation in accuracy across the five-folds in the respective 
model along with the total number of parameters for each model

AlexNet Resnet-50 ResNeXt MoblineNet_v2 DenseNet SqueezeNet

Mean 
accuracy (%)

80.08 85.54 87.44 87.35 85.58 82.59

PETE (%) 84.8 85 85 85 88.8 84.4

PE-HD (%) 85.0 95.4 97.6 94.2 95.6 91.4

PP (%) 67.2 68.6 74 74.8 66.4 66.8

PS (%) 80.2 86.0 83.2 89.6 85.4 82.2

Other (%) 100 100 100 100 100 97.5

Time 
(min)

11.8 12.05 13.11 12.06 17.33 12.01

Std. deviation 
σ (%)

7.5 4.9 5.4 6.0 5.3 1.7

No. of parameters 
(in million)

57 23 22 2 6 0.7

PETE: Polyethylene terephthalate; PP: polypropylene, PS: polystyrene.

Figure 9. Flowchart summarizing the experiment.

models. In Table 2, the standard deviation, σ, is displayed, which is a measure of how far values deviate from 
the mean. The standard deviation is given by the following unbiased estimation:
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xi = accuracy at the ith epoch

   = mean of the accuracies

n = total number of epochs (e.g., 20)

4. DISCUSSION
In the results section from Table 2, we can observe that ResNeXt architecture performs better than all the 
other architectures discussed in this paper. MobileNet_v2 architecture falls behind ResNeXt architecture 
with 0.1 % accuracy. Considering the time factor, MobileNet_v2 trains faster than ResNext by a minute’s 
advantage. When the data is considerably large, the difference in time factor will increase, giving the 
MobileNet_v2 architecture dominance.

The validation loss of AlexNet architecture from Table 3 and SqueezeNet architecture from Table 4 does not 
significantly drop compared to other models used in the research and from the graph, it can be observed 
from Figure 10 and Figure 11 that there is a diverging gap between its accuracy loss and validation loss 
curves for both models. Fewer images in the Dataset and multiple classes cause this effect on the AlexNet 
architecture. Similar results can be observed for SqueezeNet from Table 4 and Figure 11, which have a 
similar architecture to AlexNet. Table 5 and Figure 12 represent the training and validation accuracies and 
loss values and their corresponding graphs for the pre-trained Resnet-50 model. From Table 6 and 
Figure 13, we can observe the training and validation accuracy and loss values and their plots for ResNeXt 
architecture. Similarly, from Table 7 and Figure 14, the accuracies and their graphs for MobileNet_v2 can be 
observed. The DenseNet architecture represented in Table 8 and Figure 15 takes the longest time to train 
and has a good accuracy score of 85.58%, which is comparable to the Resnet-50 architecture, having an 
accuracy of 85.54%. The five-fold cross-validation approach tests every data point in the dataset and helps 
improve the overall accuracy.

Figure 16 shows the AUC and ROC for all the models in this paper. The SqueezeNet and AlexNet 
architecture display the lowest AUC score. MobileNet_v2, Resnet-50, ResNext and DenseNet have a 
comparable AUC score. From the ROC curve, it can be inferred that the models can correctly distinguish 
between the types of plastics in the Dataset. ResNeXt architecture achieves the largest AUC.

5. CONCLUSION
When we compare our findings to previous studies in the field, we find that including transfer learning 
reduces total training time significantly. It will be simple to train the existing model and attain improved 
accuracy in a short amount of time if the WaDaBa dataset is enlarged in the future. This paper has 
benchmarked six state-of-the-art models on the WaDaBa plastic dataset by integrating deep transfer 
learning. This work will be laid out as a baseline work for future developments on the WaDaBa dataset. The 
paper focuses on supervised learning for plastic waste classification. Unsupervised learning procedures are 
one area where the article has placed less focus. The latter might be beneficial for pre-training or enhancing 
the supervised classification models using pre-trained feature selection. Pattern decomposition methods[41] 
like nonnegative matrix factorization[42] and ensemble joint sparse low rank matrix decomposition[43] are 
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Table 3. The mean training and validation accuracies and losses for AlexNet architecture for 20 epochs

Mean_AlexNet
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.5815 0.57302 1.00228 1.1308

2 0.6675 0.64806 0.80658 1.09448

3 0.7177 0.5804 0.69244 1.1246

4 0.73384 0.64656 0.6721 1.01474

5 0.77882 0.67598 0.55144 0.9506

6 0.78652 0.66568 0.51194 1.04706

7 0.79548 0.7093 0.50188 0.84044

8 0.84654 0.7696 0.36054 0.82302

9 0.87302 0.7642 0.30162 0.89168

10 0.87962 0.77646 0.28896 0.90384

11 0.87458 0.77746 0.29108 0.92258

12 0.88206 0.78874 0.28282 0.8886

13 0.88462 0.78236 0.26542 0.99196

14 0.88192 0.78532 0.26406 0.99434

15 0.89248 0.78972 0.25636 0.98168

16 0.89126 0.78972 0.2576 0.98266

17 0.88914 0.79118 0.25864 0.95596

18 0.897 0.79608 0.24166 0.95004

19 0.89344 0.79706 0.24634 0.9735

20 0.89602 0.79414 0.24826 0.98582

Table 4. The mean training and validation accuracies and losses for SqueezeNet architecture for 20 epochs

Mean SqueezeNet
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.47992 0.7281 1.02608 1.32476

2 0.64688 0.7437 0.78012 0.96076

3 0.7134 0.718 0.68612 1.05972

4 0.74428 0.67796 0.6426 1.14184

5 0.76116 0.7003 0.5903 0.81164

6 0.79006 0.70916 0.53186 0.88014

7 0.81026 0.65862 0.51222 0.89182

8 0.85586 0.69658 0.42766 0.81594

9 0.87364 0.70138 0.3871 0.89832

10 0.87874 0.70724 0.37834 0.99886

11 0.88684 0.6838 0.3752 0.9401

12 0.89062 0.69988 0.36256 0.93402

13 0.89798 0.69218 0.3465 0.94986

14 0.88878 0.7183 0.36842 0.8951

15 0.89504 0.70776 0.35906 0.97796

16 0.89798 0.70376 0.35146 1.0066

17 0.89896 0.70712 0.35242 0.99574

18 0.90166 0.70396 0.34732 1.00284

19 0.90422 0.70202 0.34508 1.01182

20 0.90238 0.70606 0.34562 0.9707
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Table 5. The mean training and validation accuracies and losses for Resnet-50 architecture for 20 epochs

Mean Resnet-50 values
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.5515 0.6706 1.12794 1.04068

2 0.69346 0.70782 0.81024 0.96718

3 0.7455 0.7691 0.66772 0.86036

4 0.77918 0.76568 0.5758 0.82058

5 0.80062 0.77648 0.52012 0.66052

6 0.8256 0.75932 0.44886 0.85278

7 0.83992 0.74364 0.42794 1.16314

8 0.87704 0.82598 0.32214 0.60218

9 0.89198 0.82254 0.2835 0.6571

10 0.90986 0.82942 0.24506 0.62152

11 0.90324 0.83382 0.2566 0.58042

12 0.91498 0.83234 0.23156 0.63032

13 0.91182 0.81626 0.23618 0.6429

14 0.91476 0.83726 0.23086 0.65462

15 0.9151 0.83484 0.2235 0.6636

16 0.91464 0.82894 0.22348 0.70444

17 0.91684 0.8343 0.21748 0.65494

18 0.91684 0.83776 0.21546 0.6189

19 0.91708 0.83482 0.22578 0.68982

20 0.91352 0.83922 0.22412 0.61236

Table 6. The mean training and validation accuracies and losses for ResNeXt architecture for 20 epochs

Mean ResNeXt values
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.57454 0.71078 1.09714 0.97576

2 0.69518 0.74312 0.8304 0.87308

3 0.752 0.67498 0.66784 1.3998

4 0.79228 0.76764 0.57174 0.93114

5 0.81336 0.78234 0.52164 0.7225

6 0.83306 0.83136 0.4542 0.70478

7 0.84494 0.81374 0.42144 0.7807

8 0.88366 0.8564 0.30548 0.5644

9 0.89836 0.85442 0.28038 0.64594

10 0.90642 0.85294 0.26156 0.62974

11 0.90826 0.85834 0.2503 0.65006

12 0.9145 0.85 0.2385 0.6518

13 0.9084 0.84118 0.2411 0.64972

14 0.91084 0.8544 0.24424 0.59668

15 0.91316 0.85246 0.2417 0.55656

16 0.92564 0.84854 0.2097 0.58186

17 0.91156 0.85882 0.23282 0.58778

18 0.916 0.85688 0.22358 0.63122

19 0.91598 0.84658 0.223 0.62936

20 0.92014 0.85246 0.21606 0.65276
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Table 7. The mean training and validation accuracies and losses for MobileNet_v2 architecture for 20 epochs

Mean MobileNet_v2
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.55528 0.66322 1.12416 0.97572

2 0.64264 0.71714 0.94286 0.79604

3 0.6871 0.77108 0.806 0.77816

4 0.72912 0.7392 0.70786 0.89686

5 0.75566 0.74462 0.6542 0.8389

6 0.7858 0.78334 0.57576 0.75382

7 0.78846 0.7799 0.54498 0.86344

8 0.8392 0.83332 0.4141 0.62084

9 0.85942 0.8495 0.36976 0.57796

10 0.8649 0.85296 0.35118 0.57304

11 0.87458 0.84954 0.33336 0.57328

12 0.87606 0.85734 0.32184 0.5281

13 0.8768 0.86618 0.3207 0.50986

14 0.88106 0.84902 0.31194 0.545

15 0.88464 0.85344 0.30746 0.53638

16 0.88756 0.86178 0.2966 0.5141

17 0.88804 0.8613 0.30038 0.50172

18 0.88342 0.8608 0.30566 0.52828

19 0.88512 0.85688 0.30972 0.53054

20 0.8822 0.86176 0.31576 0.50632

Table 8. The mean training and validation accuracies and losses for DenseNet architecture for 20 epochs

Mean DenseNet
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.55724 0.6446 1.0884 1.04494

2 0.68426 0.73088 0.81858 0.74552

3 0.7488 0.72302 0.6718 1.14064

4 0.76168 0.75196 0.64602 0.90288

5 0.7874 0.79118 0.5675 0.69646

6 0.81936 0.76862 0.50594 0.85718

7 0.82216 0.77744 0.48568 0.76844

8 0.87188 0.79952 0.36034 0.66998

9 0.87814 0.83136 0.31836 0.51186

10 0.8911 0.80736 0.30766 0.5814

11 0.8954 0.82354 0.28282 0.58526

12 0.90164 0.83874 0.27306 0.59644

13 0.89908 0.8392 0.2748 0.5592

14 0.9019 0.84118 0.27446 0.57224

15 0.90704 0.83578 0.25116 0.5755

16 0.9096 0.84366 0.24786 0.5398

17 0.90582 0.84216 0.24938 0.5301

18 0.9063 0.84316 0.26094 0.60658

19 0.91196 0.8299 0.24698 0.57962

20 0.9079 0.84364 0.24388 0.52476
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Figure 10. Accuracy and loss curves for AlexNet architecture.

Figure 11. Accuracy and loss curves for SqueezeNet architecture.

examples of unsupervised learning strategies. Higher order decomposition approaches, such as low-rank 
tensor decomposition[44,45] and hierarchical sparse tensor decomposition[46], can result in improved 
performance. This would be the future path of study to improve plastic waste classification.
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Figure 12. Accuracy and loss curves for Resnet-50 architecture.

Figure 13. Accuracy and loss curves for ResNeXt architecture.
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Figure 14. Accuracy and loss curves for MobileNet_v2 architecture.

Figure 15. Accuracy and loss curves for DenseNet architecture.
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Figure 16. Area under curve and receiver operating characteristic for Resnet-50, ResNeXt, DenseNet, SqueezeNet, MobileNet_v2 and 
AlexNet models. AUC: Area under curve; ROC: receiver operating characteristic.
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