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Abstract
Aim: The methodology proposed in this paper aims at analyzing the energy consumption, electricity costs, 
computation time, and accuracy associated with each forecasting algorithm and approach. Furthermore, a 
monitoring infrastructure is considered to provide inputs to the forecasting approach.

Methods: The main objective is to discuss to what extent it is reasonable to increase the consumption of the 
forecasting approach computation and monitoring infrastructure to achieve more accurate forecasts. Artificial 
neural networks are used as examples to illustrate the proposed methodology in a building equipped with 
electricity consumption and other parameters monitoring infrastructure.

Results: It has been shown that collecting many parameters and using very accurate forecasting approaches may 
cause an energy consumption higher than the energy consumption deviation resulting from the forecasting 
approach with lower accuracy.
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Conclusion: Finally, it has been shown that green computing, or green computation, requires considering the 
computation of data, the impact of collecting such data, and the need to perform highly consuming computation 
tasks.

Keywords: Building energy management, green computing, intelligent buildings, load forecast

INTRODUCTION
Green computing aims to reduce the environmental impact of computation to achieve a sustainable 
environment[1]. Therefore, it targets maximizing energy efficiency while minimizing operational costs. 
Green computing is integrated into several areas, including proper power management, servers 
virtualization, data centers design, recycling methods, eco-labeling, environment sustainability design, and 
energy-efficient resources[2]. Green computing has a positive impact on several activities including business 
and environmental management, virtualization of businesses, design of information technologies initiative, 
environment sustainability, energy efficiency, and cost-effectiveness[3]. Green computing technologies are 
further valued in several application domains due to their potential to improve energy efficiency and 
scalability, reliability, and high performance at lower costs[4].

The optimization of energy distribution and usage, using smart grid technologies, improves energy 
efficiency and reduces greenhouse emissions[5]. Smart grids technologies, for example, offer effective 
management of renewable energy sources. However, from an environmental point of view, it is critical to 
guarantee energy costs reduction and a decrease in CO2 emissions[6]. Commercial and institutional buildings 
research how human intervention may minimize energy losses through the adoption of energy saving 
techniques[7]. Therefore, it is vital to study both the impact of the user energy choices on the building energy 
demand and how these choices have the potential to reduce the building energy consumption using 
information systems[8]. Another application featuring this minimization consists of sorting customers’ tasks 
influenced by their time and power needed to minimize the power consumption when making scheduling 
decisions[9].

Looking at the electricity demand side, Demand Response (DR) programs are important to reduce 
greenhouse gas emissions and ensure effective environmental protection. DR programs can, for instance, 
provide incentives to residential customers encouraging these to reduce the energy load during peak load 
hours.

Customers’ participation in DR programs must be adequately supported with load forecasts, which can use 
artificial neural networks to predict consumer demand at different times of the day and/or for different days 
of the week[10]. At the same time, it is necessary to predict future renewable-based local electricity generation 
levels to take the best advantage of the locally generated energy[11]. Different methods are also used for 
predicting electricity prices. The unbiased model combines different machine learning techniques and 
creates clusters to increase prediction accuracy and decrease the categorical bias of these clusters as 
proposed in[12].

The energy management of data centers, another well-explored topic in the literature, considers two 
perspectives: minimizing overall energy consumption and reducing peak power demand during demand-
response periods[13]. Data centers employ power management strategies to maximize green energy 
utilization and minimize electricity costs, thus resulting in more sustainable energy management[14]. 
Moreover, the progress in digital transformation enables data centers to improve the efficiency of electrical 
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energy usage[9].

Cloud data centers can play a quite relevant role in prosecuting energy sustainability using green computing 
concepts for resource allocation. Basically, the main approaches in the literature can be divided into impact 
assessment and mitigation approaches. Forecasting is considered for resource needs to anticipate allocation 
issues[15]. On the other hand, cloud computing manages the green service-level agreements with the 
customers adequately using expenditure from green energy[16]. In parallel to this, it addresses and mitigates 
the impact of energy consumption on the environment, namely greenhouse gas emissions. A shadow 
replication model can help minimize energy consumption and reduce its impact on the environment[17]. A 
promising way to take advantage of the benefits of cloud computing is to develop a dynamic energy-aware 
cloudlet-based mobile cloud computing model[18]. Another approach for cloud computing is to focus on 
reducing the total energy consumption of the electric grid[19].

Currently, energy efficiency and sustainability are investigated and targeted by many proposed methods and 
applications; however, the current state-of-the-art still lacks a systematic evaluation of the impact of those 
approaches regarding the additional energy demand that they need to operate. The use of those solutions, in 
practice, can negatively impact the efficient use of green energy. A green energy application features 
forecasting the output performance degradation of proton exchange membrane fuel cells over time caused 
by impurities of hydrogen or fluctuation. It should be noted that a modified relevance vector machine is 
more effective in forecasting performance degradation compared to the classic support vector machine[20]. 
Financial forecasting accuracy and bias application intend to analyze the impact of green and sustainable 
measures on abnormal stock[21]. Urban scale is essential in energy system modeling for the green energy 
transition due to the spatial and temporal demand fluctuations as described in[22]. At the same time, cloud 
data centers aim at improving the quality of services in the field of environmentally sustainable computing. 
A promising way to achieve this is to minimize the energy consumption of data centers with the support of 
an optimization metaheuristic algorithm known as Ant Colony[23]. An alternative application proposes an 
adaptive fuzzy clustering algorithm to minimize energy consumption[24].

Energy management in buildings can be done intelligently with adequate artificial intelligence methods[25]. It 
is relevant to consider the energy production locally available, the variation of electricity prices along time, 
and demand response events[26,27]. Load forecasting is particularly important, and different approaches 
applied to buildings have been widely discussed in the literature. Recent works propose a contextual 
approach to the forecasting problem, which enables the forecasting methods’ accuracy to be as high as 
possible for a wide range of different contexts[28,29]. It is suggested that different forecasting models should be 
used in different contexts of building operation instead of the model that is found to be the most accurate 
on average for all the contexts of building operation. In fact, in many works, the existence of different 
contexts of building usage is overlooked or considered shallow, and forecasting results might present low 
accuracy for many actual contexts. Moreover, several other forecasting algorithms have been studied and 
compared to artificial neural networks-based ones including k-nearest neighbors. The aforementioned 
research concludes that the artificial neural networks-based method is the more appropriate forecasting 
algorithm[28,29]. This paper proposes an approach to analyze the energy consumption, electricity costs, 
computation time, and accuracy associated with each forecasting algorithm. The main objective is to discuss 
how much it is reasonable to increase the energy consumption of the forecasting approach and the related 
monitoring infrastructure to achieve more accurate forecasts.

The rest of the paper is organized as follows: First, we present the proposed methodology in Sect. 2. Sect. 3 
explains the energy monitoring infrastructure. Results are analyzed in Sect. 4. Finally, the discussion and the 
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conclusions are presented in Sect. 5 and Sect. 6, respectively.

FORECASTING COMPUTATION AND EVALUATION METHODOLOGY
In this section, it is described how the study was conducted methodologically. The main focus is to explain 
how the load forecast computation and evaluation studies were conducted. The proposed methodology is 
organized into the following steps:

• Load forecast task

○ Data collection - load consumption and other parameters available to support the load forecast (e.g., 
temperature, people’s presence, etc.) are collected from external services or databases.

○ Data processing - raw data are cleaned to correct outliers and missing values, as well as uniformize the size 
of timestamps, which can be different for distinct parameters.

○ Load forecast - one or more load forecasting algorithms are run for each target period. This task runs 
independently over time.

Different load consumption forecasting approaches can be used, namely artificial intelligence or statistic-
based methods. An artificial neural network-based forecasting model proposed by the study in Ref.[28] has 
been used in this paper with the support of TensorFlow and Keras libraries. In fact, the authors have 
previously tested other approaches in research, as the ones published in Ref.[28], and they concluded that 
neural networks are more adequate for this application. The artificial neural networks model is composed of 
an input layer with ten neurons, two hidden layers with sixty-four neurons and a rectified linear unit 
activation function, and finally, an output layer. The input layer receives the variables of ten consumptions 
placed in sequential periods preceding the consumption output and two additional variables placed in the 
period preceding the consumption output with CO2 and light sensors data. The light sensor indicates if 
there is a light activity in at least one room of the building. The information is presented to the input layer, 
which is then processed to the hidden layers with the support of the rectified linear unit activation function. 
The gradient descent algorithm is readapted in this model with a learning rate assigned to 0.001 to perform 
rigorous searches on how to minimize the forecasting error. A maximum of 500 epochs were used as a 
parameter to train the artificial neural network-based model with an early stopping procedure that stops the 
training before the end of the 500 epochs once no training improvements are observed. The output layer 
depends on the model configuration and can return a single forecasted energy value for a specific period or 
multiple energy values if the model forecasts multiple periods at once.

• Energy consumption assessment task

○ Measurement of computation energy consumption - the electrical energy consumption of computers 
related to the load forecast method/algorithm being run is monitored.

○ Measurement of monitoring infrastructure energy consumption - the electrical energy consumption of the 
monitoring infrastructure is monitored and stored.

This task can be performed when needed, collecting all the required data, whether it is necessary to estimate 
the consumption for a day, a week, or a month.
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• Discussion of the results

○ Accuracy analysis - the accuracy of the used load forecasting approaches is evaluated and discussed, and 
the accuracies of the different approaches are compared.

○ Computation time - the forecasting computation time is determined for the used load forecasting 
approaches and the computation times of the different approaches are compared.

○ Energy consumption analysis - the energy consumption is determined for the used load forecasting 
approaches and the energy consumption of the different approaches is compared.

○ Electricity cost evaluation - the electricity cost is evaluated for the used load forecasting approaches. The 
electricity costs of the different approaches are compared too. This evaluation includes the consideration of 
different electricity tariffs, covering time-of-use and dynamic/real-time tariffs when available.

○ Whenever the consumer is changing the consumption, in response to a demand response event, the 
respective benefit is assessed during this task. Such an aspect is quite relevant as the accurate calculation of 
the consumption can enable more intelligent energy management in the context of participation in a 
demand response event.

As referred to in the load forecast task description, such a task runs independently over time. Additionally, 
it can be run for several load forecasting approaches to provide an integrated discussion of the most relevant 
forecasting approach in each building or context of building operation. Such discussion considers the 
accuracy, energy consumption, electricity cost, and time required for each forecasting approach.

In the end, the key objective is to decide to what extent it is relevant to consume energy in computation and 
monitoring infrastructures, considering the accuracy obtained for each forecasting approach.

INFRASTRUCTURE
Installation of devices to monitor and control energy in smart buildings is becoming a reality as initiatives 
and new energy management models are promoted as potential energy savings. However, there is a lack of 
critical analysis able to examine the relation between the energy consumption of these new solutions versus 
the energy consumption without a monitoring and control system.

To enable smart, remote, and/or automatic monitoring and control, hardware sensors, usually supported by 
gateways, are needed to enable the digitalization of smart buildings. In addition, computer infrastructure is 
also required to enable the processing of data locally or using remote resources, such as cloud computing. 
Almost every piece of equipment for monitoring and/or control will increase the building consumption, 
except the devices that work without a communication infrastructure (e.g., WiFi network) and have energy 
harvesting abilities. Besides the direct energy consumption of the device, there are indirect increases in 
energy consumption in gateways, routers, and computational infrastructure. Nonetheless, most of the 
impact studies only focus on the infrastructure acquisition costs, and they are not related to energy 
consumption.

The building used in this study is a living lab where research activities take place. This building has eleven 
offices, one meeting room, one server room, one kitchen, two labs, two bathrooms, two halls, and two 
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hallways. The building has a supervisory control and data acquisition (SCADA) system, supported by 
programmable logic controllers (PLCs), where additional IoT devices are integrated to enable a complete 
digitalization of the building context (i.e., user and usage context and energy context)[30]. The SCADA 
system integrates several energy analyzers from Saia Burgess Controls (SBC) (ALE3D5FD10C3A00) that 
provide a reading every 10 seconds. The building is shown in Figure 1A, the interactive console that allows 
the partial visualization and control is presented in Figure 1B, and the physical installation of the SCADA 
system is shown in Figure 1C. The SCADA system also integrates the photovoltaic generation panels 
installed in the roof, which has a total peak of 7.5 kW. The generation energy is injected into the building 
without the use of storage units.

The SCADA system used in the building allows the energy monitoring using detailed readings each second. 
The data is then stored in a database using 10-second periods. Figure 2 shows the consumption profile, of a 
day, for three individual zones of the building. The profile considers the month of July 2021. Figure 2 
addresses zone 1, zone 2, and zone 3, whose consumptions are represented in Figures 2A-C, respectively. 
The consumption is divided into three categories: electrical sockets (represented in grey), heating, 
ventilating, and air conditioning units (represented in blue), and artificial lighting (represented in orange). 
The consumption of the SCADA system is also measured. The consumption presented on the chart 
corresponds to a monthly average, representing the building’s profile during summertime. Noting that, 
zone 1 has a meeting room and two offices, zone 2 has a server room and two offices, and zone 3 has three 
offices. Thus, it is visible a permanent air conditioning in zone 2, which is the refrigeration of the server 
room. All the zones are from the interior of the building, and there is no ventilation equipment operating. 
Ventilation is done naturally through the windows. This infrastructure has been used in several research 
projects for validation and consumer and load modeling, providing a relevant platform for the green 
computing assessment regarding the running algorithms (e.g., forecasting algorithms).

RESULTS
The case study of this paper is used to evaluate the monthly energy cost of forecasting energy consumption 
using the artificial neural network-based approach proposed in[29], considering all the needed equipment. 
The load forecasting application uses TensorFlow platform and is running on a server with four NVIDIA® 
Tesla® K80, as it is the hardware regularly used in the research facilities for research projects nowadays. 
Running the forecasting model requires two main steps: accessing the database and executing the 
forecasting algorithm. The advantage of using this model is that it can be executed for a day-ahead, hour-
ahead, 15-min-ahead, or 5-min-ahead. However, the type of execution is dictated by an input variable, and 
the model’s output is only a single value, in kWh, that forecasts the consumption for the targeted period. 
Figure 3 shows the power related to the energy consumption of the forecasting algorithm training. The grey 
area represents the baseline load of the server, which consumes 168.00 Wh on standby. All the 
measurements were monitored using the ALE3D5FD10C3A00 S SBC energy analyzer, read and stored by a 
Python script.

To test the impact that the monitoring (i.e., SCADA) system and the forecasting models have on the 
building, six scenarios were considered. First, using the algorithm once per day to provide a day-ahead 
result; Second, using it for an hour-ahead forecast; Third, using it for a 15-min-ahead; Forth, using a day-
ahead forecast with an hour-ahead; Fifth, a 15-min-ahead from 8 a.m. till 8 p.m., for a 5-min-ahead forecast; 
Sixth, using a day-ahead forecast with an hour-ahead and 5-min-ahead from 8 a.m. till 8 p.m. In these 
scenarios, the algorithm is used in the indicated frequency, and it is trained every week. In the scenarios 
where more than one forecasting neural network is used, a trained per network is performed. The 
calculations were done using the month of July 2021 and considering a flat tariff of 0.22 EUR/kWh.
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Figure 1. Building infrastructure: (A) the building, (B) the interactive console, and (C) an electrical board with PLCs. PLCs: Programmable 
logic controllers.

Figure 2. Consumption profile of the building: (A) zone 1, (B) zone 2, and (C) zone 3.

The energy consumption of the PLCs is 31.00 Wh, while the consumption of the interactive console is 10.78 
Wh. Therefore, the SCADA system (i.e., PLCs and the console) had a monthly cost of 6.62 EUR. 
Furthermore, the metering of the SCADA system was made manually using an energy analyzer.
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Figure 3. Forecast training model load profile.

The 3 zones of the building have the following monthly energy costs: 157.31 EUR for zone 1, 324.38 EUR 
for Zone 2, and 74.57 EUR for zone 3. The energy costs 0.22 EUR per kWh and taxes were not included. 
Table 1 shows the algorithm execution cost for a single execution (and the respective training) and the cost 
of each of the four scenarios. The column "cost variation" is calculated according to equations (1) and (2):

Where buildingMonthCost represnets the monthly energy cost of the building without the SCADA system 
and the forecasting consumption; SCADAcost represents the SCADA monthly energy cost; forecastCost 
represents the forecast energy monthly cost.

This paper considers both the SCADA solution and a forecasting model. Although the results do not 
consider the needed optimization and scheduling models used to manage energy loads and resources, the 
use of these models will also increase the computational consumption causing an increase of energy cost.

These results allow us to discuss the green computation of forecasting algorithms, as running the forecast 
approach several times will increase electricity consumption. Further discussion is provided in Sect. 5.

DISCUSSION
The results of the case study demonstrate that the SCADA system represents an increase of 1.20% in the 
monthly energy cost and that the forecasting model for 5-min-ahead will increase the monthly cost by 
1.31%. These results only consider the server consumption increase during the algorithm execution. 
Nothing that the server baseline consumption was not regarded in this value calculation, as it is seen as a 
part of the normal building consumption. The 1.31% increase in the monthly energy cost is not significant 
in the tested building, which has three independent zones. However, if only zone 3 is considered, having a 
monthly energy consumption of 338.98 kWh (closer to a residential building), the impact of a SCADA 
solution with the forecasting execution increases to 10.63%. This critical high value can become an issue 
when managing energy in smaller buildings as the savings of the management models need to surpass their 
computational cost.

To lower this impact on the monthly energy costs, it is possible to use a combination of forecasts, avoiding 
the exclusive use of 5-min-ahead forecasting. The authors propose three alternatives that can lead to lower 
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Table 1. Energy costs

Scenario
Consumption of 
forecasting 
algorithm (Wh)

Trainings in 
a month

Consumption of the 
SCADA system 
(kWh)

Consumption of 
the building 
(kWh)

Total 
energy 
cost (EUR)

Cost 
variation 
(%)

One daily run 38.54 1 556.27 1.21

Day-ahead forecast - 
whole month

161.97 4 556.34 1.21

Hour-ahead forecast - 
whole month

368.97 4 556.30 1.22

15-min-ahead forecast - 
whole month

1016.97 4 5556.49 1.24

Day-ahead, hour-ahead, 
and 15-min-ahead (from 8 
a.m. till 8 p.m.) - whole 
month

698.31 12 556.87 1.23

5-min-ahead forecast - 
whole month

2744.97 4 556.42 1.31

Day-ahead, hour-ahead, 
and 5-min-ahead (from 8 
a.m. till 8 p.m.) - whole 
month

727.11 12

30.08 2,498.39

556.42 1.23

energy costs in a smart building.

The forecast of energy can be done using a combination of ahead periods depending on both the needs of 
the building and on the error values obtained in the last executions. For instance, if the night periods have 
lower forecast error, then the hour-ahead algorithms can be used. However, in periods with higher 
variation, such as the beginning and end of the working day, the 5-min-periods can be used. It is worth 
noting that this will decrease the number of forecasting executions. Another approach is to have the 
forecasting algorithm running according to the needs of external events, such as demand response programs 
where careful management of the building must be made.

This work proposes a second alternative in which the forecast runs during periods where the local 
renewable generation surpasses the building’s consumption. To apply this solution, the forecasting 
algorithms must be adapted to allow execution at any time. For instance, the hour-ahead forecast for 12:00 
p.m. could be executed at 02:00 p.m. where and if the local generation allowed. This scheduling of forecasts 
can be applied using energy prices indexed to the market prices (i.e., real-time pricing or hourly prices) too.

Furthermore, our work introduces a third alternative which is monitoring devices’ management, turning 
them off when not needed, or when the forecast shows smaller errors. Turning off the monitoring system in 
the used infrastructure is not an applicable solution because the monitoring system has a lower 
consumption than the forecasting algorithm. However, for more complex systems, the monitoring system 
can have a consumption above the forecast algorithm. In these cases, and only for periods where forecasting 
errors are close to zero, the forecast algorithm can predict the consumption while the monitoring system is 
turned off. However, suppose forecasting errors are far from zero. In that scenario, it is recommended to 
keep the monitoring system on to closely monitor the smart building consumption and to allow efficient 
real-time management of its loads and resources.

These three alternatives are still in research progress, where some results have already been obtained. 
Preliminary results, comparing the Symmetric Mean Absolute Percentage Error (SMAPE) and training time 
dedicated to historic training and cleaning operations with the support of two forecasting algorithms have 
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been obtained. At the same time, artificial neural networks and k-nearest neighbors based algorithms were 
also compared.

The forecasting errors of the first alternative propose two possible approaches: one to predict for different 
periods either for 5 min intervals, only during activity hours, where the consumption has a high variation, 
or on hour schedules for night hours where the consumption has a low variation. Using SMAPE as the 
featured error metric, both for artificial neural networks and k-nearest neighbors based algorithms, the 
forecasting error was lower than 7.35%. In parallel to this, an hour ahead forecasting on night hours resulted 
in higher precision with SMAPE forecasting errors equal to 4.98% and 5.06%, and a computation time of 
3400s and 13s for artificial neural networks and k-nearest neighbors, respectively. Similarly, for 5 min ahead 
forecasts on activity hours resulted in less precision, with SMAPE forecasting errors equal to 7.35% and 
6.25% for artificial neural networks and k-nearest neighbors based ones, respectively. On the other hand, the 
second alternative updates the historic training and saves it to the storage disk before events where the local 
renewable generation surpasses the building’s consumption. During these events, forecasting executions are 
required with the training loaded in RAM. The forecasting is very precise for this approach on hour 
schedules presenting forecasting errors of 3.88% and 3.05% for artificial neural networks and k-nearest 
neighbors based algorithms, respectively.

CONCLUSIONS
This work focuses on analyzing the energy consumption, electricity costs, computation time, and accuracy 
associated with each forecasting algorithm or approach, proposing a methodology to perform such analysis. 
A monitoring infrastructure was presented, which provided inputs to the forecasting approach. Artificial 
neural networks have been used as an example to illustrate the proposed methodology in a building 
equipped with electricity consumption and other parameters monitoring infrastructure. It can be concluded 
that collecting many parameters and using very accurate forecasting approaches can cause an energy 
consumption higher than the energy consumption deviation resulting from the forecasting approach with 
lower accuracy. Therefore, contributing to green computing, it is required to consider the computation of 
data, the impact of collecting such data, and the need to perform highly consuming computation tasks. 
Furthermore, increasing the consumption related to forecasting algorithms’ computation will increase the 
electricity bill, possibly above the cost paid without optimizing energy management. Above all, the use of 
energy should be optimized so that the one only uses the needed energy, even if it comes from green energy 
sources. Such energy can be used for other relevant purposes instead of irrelevant computation tasks.

DECLARATIONS
Authors’ contributions
Made substantial contributions to conception and design of the study and performed data analysis and 
interpretation: Vale Z, Gomes L, Ramos D, Faria P.

Availability of data and materials 
Data will be made available upon request.

Financial support and sponsorship
This work was supported by the MAS-Society Project (PTDC/EEI-EEE/28954/2017) co-funded by Portugal 
2020 Fundo Europeu de Desenvolvimento Regional (FEDER) through PO CI, and under grant 
UIDB/00760/2020.



Page 11Vale et al. J Smart Environ Green Comput 2022;2:34-45 https://dx.doi.org/10.20517/jsegc.2022.06

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2022.

REFERENCES
Pedrycz W. Welcome to the exciting world of “Green Computing and Smart Environments”. J Smart Environ Green Comput 
2021;1:1-2.  DOI

1.     

‘Aini NN, Subriadi AP. Governance and practice approach of green information technology. Procedia Computer Science 
2022;197:650-9.  DOI

2.     

Patel YS, Mehrotra N, Soner S. Green cloud computing: a review on green IT areas for cloud computing environment. Available from: 
https://scirp.org/reference/referencespapers.aspx?referenceid=2547633 [Last accessed on 25 Apr 2022].

3.     

Radu L. Green cloud computing: a literature survey. Symmetry 2017;9:295.  DOI4.     
Byun J, Hong I, Kang B, Park S. A smart energy distribution and management system for renewable energy distribution and context-
aware services based on user patterns and load forecasting. IEEE Trans Consumer Electron 2011;57:436-44.  DOI

5.     

Lamnatou C, Chemisana D, Cristofari C. Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings 
and the environment. Renewable Energy 2022;185:1376-91.  DOI

6.     

Soomro AM, Bharathy G, Biloria N, Prasad M. A review on motivational nudges for enhancing building energy conservation 
behavior. J Smart Environ Green Comput 2021;1:3-20.  DOI

7.     

Soomro A, Paryani S, Rehman J, Echeverría R, Prasad M, Biloria N. Influencing human behaviour to optimise energy in commercial 
buildings. Available from: https://www.semanticscholar.org/paper/Influencing-Human-Behaviour-to-Optimise-Energy-in-Soomro-
Paryani/3843f438956fffa349c5d94d35290b39169ddd68 [Last accessed on 25 Apr 2022].

8.     

Alarifi A, Dubey K, Amoon M, et al. Energy-efficient hybrid framework for green cloud computing. IEEE Access 2020;8:115356-69.  
DOI

9.     

Collotta M, Pau G. An innovative approach for forecasting of energy requirements to improve a smart home management system 
based on BLE. IEEE Trans on Green Commun Netw 2017;1:112-20.  DOI

10.     

Liu Z, Zhang C, Dong M, Gu B, Ji Y, Tanaka Y. Markov-decision-process-assisted consumer scheduling in a networked smart grid. 
IEEE Access 2017;5:2448-58.  DOI

11.     

Marszałek A, Burczynski T. Forecasting day-ahead spot electricity prices using deep neural networks with attention mechanism. J 
Smart Environ Green Comput 2021;1:21-31.  DOI

12.     

Basmadjian R. Flexibility-based energy and demand management in data centers: a case study for cloud computing. Energies 
2019;12:3301.  DOI

13.     

Kiani A, Ansari N. Toward low-cost workload distribution for integrated green data centers. IEEE Commun Lett 2015;19:26-9.  DOI14.     
Chou L, Chen H, Tseng F, Chao H, Chang Y. DPRA: dynamic power-saving resource allocation for cloud data center using particle 
swarm optimization. IEEE Systems Journal 2018;12:1554-65.  DOI

15.     

Hasan MS, Kouki Y, Ledoux T, Pazat J. Exploiting renewable sources: when green SLA becomes a possible reality in cloud 
computing. IEEE Trans Cloud Comput 2017;5:249-62.  DOI

16.     

Cui X, Mills B, Znati T, Melhem R. Shadow Replication: an energy-aware, fault-tolerant computational model for green cloud 
computing. Energies 2014;7:5151-76.  DOI

17.     

Gai K, Qiu M, Zhao H, Tao L, Zong Z. Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing. 
Journal of Network and Computer Applications 2016;59:46-54.  DOI

18.     

Fan Q, Ansari N, Sun X. Energy driven avatar migration in green cloudlet networks. IEEE Commun Lett 2017;21:1601-4.  DOI19.     
Wu Y, Breaz E, Gao F, Miraoui A. A modified relevance vector machine for PEM fuel-cell stack aging prediction. IEEE Trans on Ind 
Applicat 2016;52:2573-81.  DOI

20.     

Coën A, Desfleurs A. The relative performance of green REITs: evidence from financial analysts’ forecasts and abnormal returns. 
Finance Research Letters 2022;45:102163.  DOI

21.     

Peng J, Kimmig A, Niu Z, Wang J, Liu X, Ovtcharova J. A flexible potential-flow model based high resolution spatiotemporal energy 
demand forecasting framework. Applied Energy 2021;299:117321.  DOI

22.     

Farahnakian F, Ashraf A, Pahikkala T, et al. Using ant colony system to consolidate VMS for green cloud computing. IEEE Trans Serv 23.     

https://dx.doi.org/10.20517/jsegc.2020.01
https://dx.doi.org/10.1016/j.procs.2021.12.186
https://scirp.org/reference/referencespapers.aspx?referenceid=2547633
https://dx.doi.org/10.3390/sym9120295
https://dx.doi.org/10.1109/tce.2011.5955177
https://dx.doi.org/10.1016/j.renene.2021.11.019
https://dx.doi.org/10.20517/jsegc.2020.03
https://www.semanticscholar.org/paper/Influencing-Human-Behaviour-to-Optimise-Energy-in-Soomro-Paryani/3843f438956fffa349c5d94d35290b39169ddd68
https://www.semanticscholar.org/paper/Influencing-Human-Behaviour-to-Optimise-Energy-in-Soomro-Paryani/3843f438956fffa349c5d94d35290b39169ddd68
https://dx.doi.org/10.1109/access.2020.3002184
https://dx.doi.org/10.1109/tgcn.2017.2671407
https://dx.doi.org/10.1109/access.2016.2620341
https://dx.doi.org/10.20517/jsegc.2021.02
https://dx.doi.org/10.3390/en12173301
https://dx.doi.org/10.1109/lcomm.2014.2369459
https://dx.doi.org/10.1109/jsyst.2016.2596299
https://dx.doi.org/10.1109/tcc.2015.2459710
https://dx.doi.org/10.3390/en7085151
https://dx.doi.org/10.1016/j.jnca.2015.05.016
https://dx.doi.org/10.1109/lcomm.2017.2684812
https://dx.doi.org/10.1109/tia.2016.2524402
https://dx.doi.org/10.1016/j.frl.2021.102163
https://dx.doi.org/10.1016/j.apenergy.2021.117321


Page 12 Vale et al. J Smart Environ Green Comput 2022;2:34-45 https://dx.doi.org/10.20517/jsegc.2022.06

Comput 2015;8:187-98.  DOI
Kashyap P, Kumar S, Dohare U, Kumar V, Kharel R. Green computing in sensors-enabled internet of things: neuro fuzzy logic-based 
load balancing. Electronics 2019;8:384.  DOI

24.     

Vale Z, Gomes L, Faria P, Ramos C. Artificial Intelligence to solve pervasive internet of things issues. Available from: 
https://www.elsevier.com/books/artificial-intelligence-to-solve-pervasive-internet-of-things-issues/kaur/978-0-12-818576-6 [Last 
accessed on 25 Apr 2022].

25.     

Faria P, Vale Z. Distributed energy resource scheduling with focus on demand response complex contracts. Journal of Modern Power 
Systems and Clean Energy 2021;9:1172-82.  DOI

26.     

Gazafroudi A, Soares J, Fotouhi Ghazvini MA, Pinto T, Vale Z, Corchado JM. Stochastic interval-based optimal offering model for 
residential energy management systems by household owners. International Journal of Electrical Power & Energy Systems 
2019;105:201-19.  DOI

27.     

Ramos D, Teixeira B, Faria P, Gomes L, Abrishambaf O, Vale Z. Using diverse sensors in load forecasting in an office building to 
support energy management. Energy Reports 2020;6:182-7.  DOI

28.     

Ramos D, Khorram M, Faria P, Vale Z. Load forecasting in an office building with different data structure and learning parameters. 
Forecasting 2021;3:242-54.  DOI

29.     

Vale Z, Faria P, Abrishambaf O, Gomes L, Pinto T. MARTINE - a platform for real-time energy management in smart grids. Energies 
2021;14:1820.  DOI

30.     

https://dx.doi.org/10.1109/tsc.2014.2382555
https://dx.doi.org/10.3390/electronics8040384
https://www.elsevier.com/books/artificial-intelligence-to-solve-pervasive-internet-of-things-issues/kaur/978-0-12-818576-6
https://dx.doi.org/10.35833/mpce.2020.000317
https://dx.doi.org/10.1016/j.ijepes.2018.08.019
https://dx.doi.org/10.1016/j.egyr.2020.11.100
https://dx.doi.org/10.3390/forecast3010015
https://dx.doi.org/10.3390/en14071820

