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Abstract
The phase transition of cadmium selenide (CdSe) fromwurtzite to rocksalt structure has been the subject of extensive
research. In this study, we present a novel approach combining machine learning potentials with swarm intelligence-
based pathway sampling to elucidate the complex phase transition mechanisms in CdSe. We developed an accurate
machine-learning (ML) potential for CdSe, validated against density functional theory calculations, achieving mean
absolute errors (MAEs) of 1.8 meV/atom for energies and 33 meV/Å for forces. This potential was integrated with
the pathway sampling via swarm intelligence and graph theory (PALLAS) method to explore the potential energy
landscape and identify low-energy transition pathways. Our simulations revealed a complex network of transition
pathways, and we discovered a multi-step transition mechanism involving an unexpected zinc blende intermediate
phase, which appears to play a crucial role in facilitating the transition between wurtzite and rocksalt structures. This
finding provides new insights into the structural flexibility of CdSe and offers an explanation for experimentally ob-
served phenomena such as wurtzite/zinc blende coexistence in nanostructures. Our approach not only advances the
fundamental understanding of phase transitions in CdSe but also establishes a powerful computational framework for
exploring complex materials phenomena, opening new avenues for materials design and discovery in semiconductor
systems.
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INTRODUCTION
Cadmium selenide (CdSe), a pivotal II-VI semiconductor material, has been the subject of extensive research
due to its crucial applications in optoelectronics [1–3], photovoltaics [4–7], and nanostructured materials [8–11].
Its unique attributes, particularly at the nanoscale [8–11], have spurred a multitude of studies aimed at unrav-
eling and leveraging its potential for advanced technological applications. Among the critical phenomena
associated with CdSe, phase transitions, especially the transition fromwurtzite to rocksalt structures, have gar-
nered significant attention [11–27]. These transitions profoundly influence the electronic and optical properties,
necessitating a comprehensive understanding at the atomic level to optimize the performance and efficiency
of CdSe-based devices.

Significant progress has been made in understanding the phase transitions of CdSe across various scales and
conditions. For example, Fan et al. demonstrated the ability to control the phase transition from the zinc
blende to wurtzite phase in CdSe nanocrystals by varying the volume ratio of ethanolamine and water, pro-
viding valuable insights into the manipulation of phase and morphology in nanomaterials [20]. Durandurdu
et al. observed a phase transition from the wurtzite to rocksalt structure in CdSe using constant-pressure ab
initiomolecular dynamics (MD) simulations, proposing a transformation mechanism involving orthorhombic
intermediate phases [16]. Similarly, Li et al. investigated the structural phase transition sequence of CdSe under
high pressure, offering critical insights into the material’s behavior under extreme conditions [21]. Building on
this foundation, Tolbert et al. explored the size-dependent phase transitions in CdSe nanocrystals, revealing
how quantum confinement effects influence structural stability and phase behavior [22]. Their findings high-
lighted the pivotal role of surface energy and particle size in determining phase transition pressures, providing
valuable guidance for tailoring the properties of CdSe nanostructures. More recently, in situ high-pressure syn-
chrotron X-ray diffraction studies have elucidated the pressure-induced phase transitions in CdSe nanowires,
demonstrating how nanostructuring influences transition pathways and mechanical properties [23]. A very
recent study employed MD simulations with a machine-learning (ML)-based deep potential to uncover the
crystallizationmechanisms of CdSe, shedding light on the atomistic details of its structural transformations [27].
These advances collectively emphasize the diverse conditions and approaches that have been used to deepen
our understanding of CdSe phase transitions, paving the way for further exploration of its structural dynamics.
While much attention has been given to the effects of pressure and nanoscale features, a comprehensive under-
standing of the transition mechanisms in bulk CdSe remains critical. Bulk transitions provide a foundation
for interpreting the behavior of nanostructures and offer insights into the intrinsic properties of the material.
However, systematically sampling the phase transition pathway poses a challenging task due to the complexity
and computational demands of accurately mapping the transition mechanisms. Methods such as the nudged
elastic band (NEB) method [28,29] or transition path sampling (TPS) [30,31] have been employed to study phase
transitions in materials, but these approaches often require an initial path connecting the reactant and product
and may be computationally expensive for large systems. Standard MD simulations can provide insights into
the dynamics of phase transitions, but they may limited by the time scales required to sample rare events.

In response to this challenge, we have recently developed the pathway sampling via swarm intelligence and
graph theory (PALLAS) method [32], an innovative approach that combines swarm intelligence and graph the-
ory. The method is adept at identifying low-energy transition pathways between two minima without the pre-
requisite of specifying the transition mechanism a priori. It underscores the effectiveness of combining swarm
intelligence with computational strategies to elucidate phase transformations in solid-state systems. Builds
upon previous work in swarm intelligence algorithms, such as particle swarm optimization (PSO) [33] and ant
colony optimization [34], PALLAS adapts these techniques to the complex challenges of materials science.

Despite the ability of the PALLAS method in mapping transition pathways, the extensive sampling required is
computationally burdensome, highlighting the need for a more efficient and accurate method of energy and
force calculation. This computational challenge is not unique to our approach but is a common hurdle in ma-
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terials simulation, as noted in the review ofML potentials for atomistic simulations [35]. In recent years, several
studies have leveraged ML potentials to address this computational challenge and study phase transitions in
semiconductors[27,36–41]. These studies demonstrate the growing capability of ML potentials to capture com-
plex atomic interactions accurately while significantly reducing computational costs compared to traditional
ab initiomethods.

Our initial application of the PALLAS method used a force field approach [42] to discover new transition path-
ways for CdSe. However, while our previous study aimed to show the feasibility of the PALLAS method in
exploring complex energy landscapes, it was limited by the accuracy of the employed force field [32]. This work
addresses this need by applying a novel computational framework that combines ML-based potentials with
the PALLAS methodology for transition pathway sampling. This approach enables the systematic exploration
of phase transition pathways, uncovering insights into the structural transformations of CdSe at an unprece-
dented level of detail. Although our focus is on bulk transitions at ambient pressure and low temperatures,
this work establishes a computational methodology that can be extended to address the effects of pressure and
temperature as well as transitions in nanostructures. These extensions represent exciting avenues for future
exploration, which we briefly discuss in the concluding sections.

METHODS
Transition pathway prediction
Thetransition pathway predictionmethod in this study is based on the recently developedPALLAS approach [32],
which efficiently identifies low-energy transition pathways in solid-state systems without requiring predefini-
tion of the mechanism. PALLAS integrates several key components: the solid-state dimer method for saddle
point optimization [43]; a fingerprint method for quantifying structural dissimilarity [44]; multiobjective PSO
for pathway optimization [45]; and graph theory for network analysis [46].

The PALLAS algorithm begins by generating random velocities for the reactant and product structures to dis-
place them from their initial minima. The solid-state dimer method then locates saddle points and nearby
minima from these configurations. A crystal fingerprint technique, based on Gaussian overlap matrices, mea-
sures configurational distances between structures, quantifying their similarity or dissimilarity. This approach
captures both local atomic environments and global structural characteristics, allowing for an accurate rep-
resentation of the configurational space [44,47–51]. The minima, transition states, and their connections form
an undirected network graph. Graph algorithms, such as Kruskal’s algorithm [52] and breadth-first search [53],
analyze this network to identify optimal low-barrier transition routes. Multiobjective PSO guides the search
by optimizing both the configurational distance and energy barriers along pathways, enabling efficient explo-
ration of the potential energy surface (PES) for favorable transition mechanisms.

In the PALLAS method, several parameters remain fixed during the pathway sampling process to ensure con-
sistency and reliability. The system composition and lattice parameters are kept constant, focusing exclusively
on structural transformations without introducing compositional or volumetric changes. Additionally, in the
multiobjective PSO, the learning factors 𝑐1 and 𝑐2 are set to 2, and the inertia weight 𝜔 is maintained within
the range 0.4 ≤ 𝜔 ≤ 0.9, as this range is known to optimize performance. Random numbers 𝑟1 and 𝑟2 are
independently generated within the range (0, 1) for each iteration, ensuring dynamic but controlled updates
to the particle positions. These fixed parameters provide stability and guide the efficient exploration of the
PES.

This systematic approach allows PALLAS to identify the most energetically favorable transitions between crys-
talline phases without requiring prior knowledge of the mechanism. However, it is important to note that,
similar to many computational methods, PALLAS has limitations. The identification of the global minimum
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energy pathway is a non-deterministic polynomial-time (NP)-hard problem, and the algorithm relies on a
practical halting criterion, terminating when no lower-energy pathway is found after ten consecutive genera-
tions. As a result, while PALLAS provides a comprehensive exploration of the energy landscape, it does not
guarantee identification of the absolute global minimum barrier. Additionally, the current study does not
incorporate entropy or temperature effects, which could influence transition pathways and metastable state
stability.

PES modeling
To model the PES of CdSe accurately for our study on phase transition pathways, we employed the neural
equivariant interatomic potentials (NequIP) framework [54]. NequIP represents a significant advancement in
ML potentials, offering precise predictions ofmaterial properties through its innovative use of E(3)-equivariant
neural networks. This approach is pivotal for simulating phase transitions by accurately predicting total ener-
gies and atomic forces while respecting the fundamental symmetries of the physical system.

Dataset generation
Our NequIP model was trained using an amalgamation of training data generated using different methods. A
total of 1,750 structures were generated using an entropy maximization technique [55]. In short, this technique
involves adding an entropy term to the total energy that is to be optimized. The entropy term comes from a
descriptor, which we have chosen as a structural fingerprint descriptor [44]. The fingerprint descriptor provides
a vector for every atom in the unit cell, with the Euclidean distance between two different atomic fingerprint
vectors indicating the dis-similarity of their chemical environments. The entropy term is then calculated as

𝑆({q}) = 1
𝑛

𝑛∑
𝑗=1

𝐿𝑛(𝑛min
𝑙≠ 𝑗

Δ𝑞 𝑗 ,𝑙) (1)

Where 𝑛 is the number of atoms in the unit cell, {q} is the set of all fingerprint descriptor vectors for each atom
in the unit cell, and min𝑙≠ 𝑗 Δ𝑞 𝑗 ,𝑙 represents the smallest Euclidean distance attainable between the fingerprint
vector of atom 𝑗 and some other atomic fingerprint vector of atom 𝑙.

The entropy term is then used to modify the total energy such that it becomes 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐷𝐹𝑇 + 𝐾𝑆({q})
where 𝐾 is an adjustable parameter used to control the effect of fingerprint entropy on the final structure, and
DFT refers to density functional theory. When K is positive, structures will tend towards dis-similar local
environments for each atom which leads to a more efficient training dataset. A total of 1,250 structures are
initialized in a 2 × 2 × 1 supercell of the conventional unit cell for the rocksalt configuration of CdSe and
500 structures are initialized in a 2 × 2 × 2 supercell of the wurtzite structure, which yields 16 Cd and 16 Se
atoms for all structures. Velocities for each atom are then chosen from a Maxwell-Boltzmann distribution for
a temperature of 10,000 K and annealed down to 0 K with a timestep of 2.5 femtoseconds over a time period
of 0.75 picoseconds. Simultaneously, the K term in the calculation for total energy is raised from 0 at 10,000 K
to 100 at 0 K. This allows structures to relax into random but maximally disordered configurations. Forces are
calculated by using Heynman-Fellman forces from DFT plus the entropy-generated forces which are simply
derivatives with respect to atomic positions of the entropy term.

An additional 500 structures are generated using the same technique, but with K going from 0 to 100. This
promotes highly symmetric structures, allowing the neural network to describe these types of configurations
more accurately. Furthermore, we performed MD simulations with both the rocksalt and wurtzite structures
to generate an additional 2,000 training points. An isothermal-isochoric (NVT) ensemble with an Andersen
thermostat was used to maintain a temperature of 5,000 K with a timestep of 2.5 femtoseconds over a time
period of 2.5 picoseconds. The MD simulations added structures that could be naturally attained by the CdSe
system rather than being artificially created by maximizing or minimizing entropy.
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A total of 4,250 training structures were generated which were then filtered for structures with a DFT energy
below 0 eV and a maximum force of 100 eV/Å. This filtering yields 3,753 structures which are then split into
2,700 training structures, 302 validation structures and 751 structures reserved for testing.

DFT calculations
Energy and force calculations for the training dataset were performed using DFT within the Vienna ab initio
simulation package (VASP) [56]. The projector augmented wave (PAW) method was employed to describe the
electron-ion interactions [57]. The Perdew-Burke-Ernzerhof revised for solids (PBEsol) functional [58,59] was
used to model the electron-electron interactions. A plane-wave basis set with a kinetic energy cutoff of 400
eV was utilized to expand the electronic wavefunctions. Monkhorst-Pack 𝑘-point meshes [60] with a grid of
spacing 0.03×2𝜋Å−1 for Brillouin zone samplingwere chosen after checking for convergence. The convergence
criteria for the electronic self-consistent field calculationwere set to 10−6 eV.The total energy and atomic forces
were calculated for each structure in the training dataset, providing the reference values for training the ML
potential.

NequIP model training
With the dataset in place, we proceeded to train the NequIP model. The process involved the following key
steps:

1. Data Preprocessing: Atomic numbers are first one-hot encoded into feature vectors of length 48, which are
built from direct sums of the irreducible representations of the O(3) symmetry group.

2. Model Architecture: The one-hot encoded feature vector is then refined through four interaction blocks,
which encode interactions between atoms in the unit cell and neighbors within the cutoff radius of 5 Å
through a convolution filter. The convolution filter involves a tensor product with a learnable radial func-
tion and spherical harmonics. Since the convolution filters involve tensor products with spherical harmonic
functions, a maximum rotation order is set to 𝑙𝑚𝑎𝑥 = 2. Tensor products that produce irreducible repre-
sentations with 𝑙 > 𝑙𝑚𝑎𝑥 are discarded. The learnable radial functions are implemented as a multi-layer
perceptron with two radial layers, each containing 64 neurons with SiLU activation functions. Eight basis
functions were used in the basis embedding of the interatomic distances. Finally, the 𝑙 = 0 features of
the final convolution layer are passed to two atom-wise self-interaction layers which produce each atom’s
contribution to the total energy. Forces can be computed by taking the derivative with respect to atomic
positions.

3. Training Process: We used the Adam optimizer with an initial learning rate of 5×10−3 and a batch size of 5.
The learning rate was reduced by a factor of 0.5 every 100 epochs if no improvement in validation loss was
observed. Training continued until convergence, which was defined as when error of the validation dataset
reached below 2 meV/atom. One model was trained on energies and forces, with another being trained
purely on stresses.

Integration with PALLAS
The trained NequIP model was the foundation for investigating the phase transition pathways of CdSe using
the PALLAS method. By providing a fast and accurate approach for calculating the energies and forces of vari-
ous atomic configurations encountered during the transition, the NequIP model enabled efficient exploration
of the PES. To achieve seamless integration, a custom interface was developed to connect the NequIP model
with the PALLAS method. This synergy allowed rapid evaluation of the energies and forces for intermediate
structures along potential pathways, offering a computationally efficient means of exploring the energy land-
scape. The high accuracy of the NequIPmodel ensured precise identification and characterization of transition
states andmetastable intermediates, uncovering novel transitionmechanisms thatmight have been overlooked
by traditional methods. The computational efficiency of NequIP, combined with the systematic pathway ex-
ploration of PALLAS, enabled us to investigate regions of the PES that would be prohibitively expensive using
ab initiomethods alone.
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Figure 1. Graph of comparison of neural network predictions for (A) energies and forces and (B) stress versus the DFT calculated energies,
forces and stresses for the 751 structures in the testing set. The black dashed line represents perfect agreement between the prediction by
the neural network and the DFT calculated value. MAEs of the energies and the forces were 1.8meV/atom and 33meV/Å, respectively. The
stress plot shows predictions versus DFT values for each Voigt component of the stress, with average errors for every component below
10−5 eV/Å

3
. DFT: Density functional theory; MAEs: mean absolute errors.

RESULTS AND DISCUSSION
Validation of machine learning potential
Building on the detailed methodology involving the use of machine-learned interatomic potentials, we pro-
ceeded to validate the accuracy and reliability of our ML potential for CdSe. The validation was conducted
through the analysis of 751 diverse configurations, representing a broad spectrum of the material phase space.
This subset, spanning a large energy range (-3.0 to -0.5 eV/atom), was instrumental in evaluating the robustness
of the model across different structural motifs of CdSe. The evaluation included a comparative analysis of the
energies and atomic forces predicted by ourMLmodel against those derived fromDFT calculations [Figure 1].
Specifically, we observed mean absolute errors (MAEs) in energy predictions to be minimal, closely aligning
withDFT benchmarks, thereby indicating a high level of accuracy in the energy landscape representation. Sim-
ilarly, the atomic forces predicted by the model demonstrated a strong correlation with DFT-calculated forces,
underscoring the precision of our model in capturing dynamic interactions within the CdSe system.

Further validation was conducted through the analysis of several key structures, including the wurtzite, rock-
salt, and zinc blende phases of CdSe. The total energy differences between DFT and the ML potential were 12,
5, and 16 meV/atom, respectively. Validation was also performed on several transition states predicted by the
PALLAS method, with total energy differences between DFT and the ML potential being 9 meV/atom. This
comprehensive validation process affirmed the capability of the NequIP-trained ML potential in accurately
modeling the PES of CdSe and highlighted its potential in facilitating advanced studies of material properties
and phase transitions.

Phase transition pathway network in CdSe
The application of the PALLAS method to the wurtzite to rocksalt phase transition in CdSe revealed a complex
network of transition pathways, as illustrated in Figure 2. This network provides a comprehensive view of the
potential energy landscape connecting the wurtzite and rocksalt phases of CdSe. The transition pathway net-
work spans an energy range of approximately 1.6 eV/atom, with the wurtzite and rocksalt structures positioned
at the lower energy regions of the network. This energy spread indicates the presence of numerous metastable
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Figure 2. Transition pathway network for thewurtzite to rocksalt transformation in CdSe. Nodes represent distinct structural configurations,
while edges indicate transition pathways. The color gradient from blue to red represents increasing energy, with energy values given in
eV/atom relative to the wurtzite structure. Blue triangles indicate the energy differences (in meV/atom) between the corresponding nodes
and the wurtzite phase. Many metastable structures are observed, with several nodes exhibiting energies close to that of the wurtzite
phase; however, none are lower in energy than wurtzite. These nodes correspond to metastable structures that may become accessible
during the phase transition under certain external conditions (e.g., pressure or temperature). The orange line represents the lowest-energy
pathway connecting the wurtzite and rocksalt structures.

intermediate states and transition pathways connecting the two phases. The network topology reveals several
key features. The existence of numerous interconnected nodes between the wurtzite and rocksalt structures
suggests multiple possible transition mechanisms, each with varying energy barriers. Several nodes in the
mid-energy range of the network likely represent metastable intermediate structures, which could play crucial
roles in the transformation process, potentially serving as kinetic traps or facilitating the overall transition.

The transition pathway network allows for the identification of the lowest energy pathway connecting the
wurtzite and rocksalt phases. This optimal path, highlighted in orange in Figure 2, represents the most ther-
modynamically favorable transition mechanism. The colors of nodes in the network provide insight into the
energy barriers associated with different transition steps. Higher-energy nodes along a pathway indicate sig-
nificant barriers that may kinetically hinder the transformation. Furthermore, the network structure provides
information about potential kinetic bottlenecks and metastable states that could influence the transformation
dynamics. Intermediate nodes in the network represent predicted metastable structures of CdSe, some of
which may be experimentally accessible and exhibit interesting properties. The identified pathways and inter-
mediate states may offer guidance for experimental efforts aimed at controlling the phase transition process
and potentially accessing novel metastable forms of CdSe.
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Figure 3. (A) Energy barriers of transition pathways extracted from the pathway network. The lowest energy pathway is highlighted with a
thick blue line. The dashed blue line represents the barrier calculated using DFT for the lowest-energy pathway; (B) Graph of comparison of
neural network predictions for energies theDFT calculated energies for the crucial points along the transition pathway, includingmetastable
states and transition states depicted in (A). MAE of the energies was 9 meV/atom. DFT: Density functional theory; MAE: mean absolute
error.

Microscopic mechanism of CdSe phase transitions
The PALLAS method has provided valuable insights into the microscopic mechanisms of the wurtzite to rock-
salt phase transition in CdSe. Figure 3A illustrates the energy profile of several transition pathways, with the
lowest energy pathway highlighted by a thick blue line. Figure 3B further validates the accuracy of themachine-
learned potential by comparing the predicted energies along the transition pathway to DFT-calculated values.
The close agreement, with aMAE of only 9meV/atom, highlights the reliability of the PALLAS+NequIP frame-
work in capturing the intricate details of the PES. The energetic landscape, coupled with the structural config-
urations along the pathway shown in Figure 4, offers a comprehensive view of the transformation process.

The lowest energy pathway reveals a complex, multi-step transformation that challenges the notion of a simple,
direct transition between the wurtzite and rocksalt phases. Beginning with the hexagonal wurtzite structure
(𝑃63𝑚𝑐 space group), the system first evolves through a transition state with 𝑃1 symmetry. This low symmetry
configuration suggests a distortion of the wurtzite lattice, likely involving a shear deformation that breaks the
initial hexagonal symmetry. Intriguingly, the pathway then passes through a stable intermediate minimum
with 𝐹4̄3𝑚 symmetry. This face-centered cubic structure, recognized as the zinc blende phase, plays a pivotal
role in the transition process. Its presence indicates that the wurtzite to rocksalt transformation in CdSe can
involve a metastable intermediate phase, rather than proceeding directly.

An interesting feature of our PALLAS simulations is the prevalence of the zinc blende intermediate across the
majority of identified transition pathways. This consistent appearance suggests that the zinc blende structure
serves as a crucial facilitator in the wurtzite to rocksalt transformation, potentially providing a lower energy
kinetic pathway between the hexagonal and cubic phases. The importance of the zinc blende phase in our com-
putational results aligns with experimental observations in the literature. For example, wurtzite/zinc blende
mixed phase CdSe structures have been reported in various studies, indicating the coexistence of these two
phases under certain conditions [18,61]. Studies also demonstrated controlled synthesis of CdSe nanocrystals
in both wurtzite and zinc blende phases through careful selection of ligands and reaction temperatures [61].

Following the zinc blende intermediate, the system traverses a second transition state with𝐶𝑚 symmetry. The
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Figure 4. (Upper panel) Structural configurations along the lowest-energy transition pathway from wurtzite (WZ) to rocksalt (RS) in CdSe.
Red and green spheres represent Cd and Se atoms, respectively. (Middle panel) Calculated phonon dispersion curves for the transition
states of CdSe. (Lower panel) Arrows indicate the eigenvectors of the softened phonon modes at the Y point of the P1 structure and at the
A and M points of the Cm structure.

low symmetry in this configuration points to a complex atomic rearrangement, likely involving significant
distortions of the crystal lattice. Finally, the system reaches the highly symmetric rocksalt structure (𝐹𝑚3̄𝑚
space group), completing the phase transition. The contrast between the 𝐶𝑚 transition state and the final
rocksalt structure suggests a sudden symmetrization in the final stage of the transformation. This two-stage
transformation mechanism is consistent with the previous study performed using NEB calculations [28].

To further elucidate the dynamical properties of the key transition states along the pathway, we conducted
phonon calculations for the two transition states using the Phonopy code [62]. For the 𝑃1 structure, the phonon
dispersion curve reveals the most softened phonon mode at the Y point [Figure 4]. The corresponding eigen-
vector indicates a shear motion of Cd and Se atoms, consistent with the lattice distortions expected during the
transition from wurtzite to the zinc blende intermediate. Similarly, for the 𝐶𝑚 structure, phonon dispersion
reveals softened modes at the A and M points. The eigenvectors of these modes suggest concerted atomic
displacements, likely corresponding to compressive and shear strains that drive the transformation toward the
rocksalt phase. The presence of these soft modes emphasizes the importance of lattice instabilities in enabling
the multi-step transition pathway.

Our study provides a detailed characterization of the phase transition pathways in CdSe, focusing on the trans-
formation from thewurtzite to rocksalt phase. While it is well-established that the wurtzite structure represents

http://dx.doi.org/10.20517/jmi.2024.45


Page 10 of 13 Wang et al. J Mater Inf 2024;4:29 I http://dx.doi.org/10.20517/jmi.2024.45

the ground state and that the zinc blende phase is a close metastable structure, our findings introduce new in-
sights into the transition mechanism. Specifically, we identify zinc blende as an intermediate structure along
the wurtzite-to-rocksalt transition pathway. This theoretical prediction highlights a previously unrecognized
role of zinc blende in facilitating the transition by providing a lower-energy kinetic pathway between the two
phases.

The zinc blende intermediate might be stabilized under certain conditions, potentially allowing for the isola-
tion of this metastable phase or the creation of mixed-phase CdSe with tunable properties. The importance of
the zinc blende structure in the transition pathways may also help explain the often-observed coexistence of
wurtzite and zinc blende phases in CdSe nanostructures [18,61]. Our simulations suggest that nanoscale CdSe
might readily fluctuate between these two structures. The transition through the zinc structure could be a
mechanism for stacking fault formation in CdSe, as incomplete transitions could result in mixed wurtzite/zinc
blende regions. Controlled synthesis methods, such as chemical vapor deposition [63] or solution-phase syn-
thesis [64], may enable the formation of the zinc blende phase as a metastable state. Furthermore, transient
detection of the zinc blende intermediate during phase transitions may be possible using advanced charac-
terization techniques. For example, time-resolved spectroscopy could track structural changes dynamically,
while in situ high-pressure X-ray diffraction experiments might reveal intermediate phases under appropriate
thermodynamic conditions [65,66]. These approaches provide promising avenues for validating our findings
experimentally and for exploring the broader relevance of the zinc blende intermediate in phase transition
mechanisms.

It is worth noting that our study focused on the phase transition at ambient pressure and low temperatures.
At finite temperatures, the free energy landscape may differ significantly from the zero-temperature potential
energy landscape. Entropic contributions can stabilize or destabilize certain metastable states, potentially al-
tering the transition pathways or introducing new mechanisms. Future extensions of this framework could
incorporate free energy calculations to account for temperature effects. Techniques such as thermodynamic
integration [67], or enhanced sampling methods (e.g., metadynamics [68,69]) could be used to compute the finite-
temperature free energy landscape. These methods would allow for a more comprehensive understanding of
phase transitions, including how temperature-dependent effects influence the stability of metastable states and
the dynamics of the transformation process.

CONCLUSIONS
This study has demonstrated the power of combining ML potentials with swarm intelligence-based pathway
sampling methods to elucidate the complex phase transition mechanisms in CdSe. By integrating the NequIP
ML potential with the PALLAS method, we have achieved a detailed understanding of the wurtzite to rock-
salt phase transition at an unprecedented level of accuracy and computational efficiency. Our ML potential
showed excellent agreement with DFT calculations, ensuring reliable exploration of the CdSe PES. The PAL-
LAS method revealed a complex network of transition pathways between the wurtzite and rocksalt phases,
highlighting the intricate nature of the phase transition landscape in CdSe. A key finding of our work is the
identification of a novel, multi-step transition mechanism involving an unexpected zinc blende intermediate
phase. This zinc blende structure appears to play a crucial role in facilitating the transition between wurtzite
and rocksalt phases. The prevalence of the zinc blende intermediate across multiple pathways suggests its im-
portance in the structural flexibility of CdSe, aligning with experimental observations of wurtzite/zinc blende
coexistence in CdSe nanostructures and offering an explanation for the formation of stacking faults. Our re-
sults provide new insights into the energetics and kinetics of the phase transition, identifying key transition
states and energy barriers that could be targeted for controlling the transformation process.

These findings have implications for both fundamental materials science and practical applications of CdSe.
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The detailed transition pathway network provides a roadmap for experimental efforts aimed at controlling
phase transitions in CdSe, potentially enabling the synthesis of novel metastable forms or mixed-phase mate-
rials with tailored properties. Our methodology demonstrates the potential for ML-enhanced computational
techniques to accelerate materials discovery and optimization, particularly in systems with complex phase
behavior. The synergy between ML potentials and swarm intelligence-based pathway sampling opens new
avenues for materials design and discovery. Future work could focus on experimental validation of the pre-
dicted transition mechanisms, exploration of pressure and size-dependent effects on the transition pathways,
and extension of this methodology to other technologically relevant materials systems.
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