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Abstract
The use of the BCL2 inhibitor venetoclax has transformed the management of patients with acute myeloid 
leukemia (AML) who are ineligible for intensive chemotherapy. By triggering intrinsic apoptosis, the drug is an 
excellent illustration of how our greater understanding of molecular cell death pathways can be translated into the 
clinic. Nevertheless, most venetoclax-treated patients will relapse, suggesting the need to target additional 
regulated cell death pathways. To highlight advances in this strategy, we review the recognized regulated cell death 
pathways, including apoptosis, necroptosis, ferroptosis and autophagy. Next, we detail the therapeutic 
opportunities to trigger regulated cell death in AML. Finally, we describe the main drug discovery challenges for 
regulated cell death inducers and their translation into clinical trials. A better knowledge of the molecular pathways 
regulating cell death represents a promising strategy to develop new drugs to cure resistant or refractory AML 
patients, particularly those resistant to intrinsic apoptosis.
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INTRODUCTION
Regulated cell death (RCD) is a biologically controlled process that differs from accidental cell death (ACD)
by its reliance on defined molecular signaling pathways and tight regulation. Its well-defined nature implies
that it can be modulated by pharmacological or genetic interventions contrary to ACD[1-3]. Schweichel and
Merker were the first to report the presence of three distinct cell death morphologies: type I (apoptosis),
type II cell (cell death associated with autophagy) and type III (necrosis)[4]. While apoptosis is the most well-
known RCD, many other pathways and molecular characteristics have subsequently been described[2]. A
better understanding of the mechanisms driving RCD may lead to the discovery of new anticancer  drugs or
the repositioning of older drugs to treat aggressive cancers.

Acute myeloid leukemia (AML) is a severe hematological malignancy driven by various molecular
alterations and mainly occurring in adults > 60 years old. Treatment modalities of newly diagnosed AML
depend on age, general conditions, comorbidities, and molecular risk factors based on cytogenetics and the
presence of molecular alterations. These mutations are integrated together with cytogenetic abnormalities in
the widely used and recently updated ELN 2022 classifications[5,6]. More than 60% of younger patients will be
cured by an intensive cytotoxic therapy (ICT) induction based on the association of anthracyclin and
cytarabine (7 + 3), followed by consolidations with high doses of cytarabine and/or allogeneic stem cell
transplantation[7]. Half of the patients > 65 years cannot receive ICT because of age, poor general status, 
or comorbidities. In this context, the hypomethylating agents (HMA) decitabine and azacytidine (AZA) 
have been associated with complete response rates of 20-30% and 10-month survival[8,9], highlighting the 
need for more effective treatments for older and not adequately fit patients.

BCL-2 inhibition is an excellent illustration of how the molecular understanding of RCD has led to the
rapid development of a drug that has transformed the therapeutic treatment landscape for older AML
patients. Venetoclax (VEN) in combination with the hypomethylating agent AZA has become part of
standard frontline therapy for patients not eligible for ICT by improving the rates of response and overall
survival compared with AZA monotherapy[10,11]. However, 10% to 50% of newly diagnosed patients with
AML will not respond to VEN-AZA. In addition, half of the patients have relapsed by 18 months and no
plateau is seen on overall survival curves. In the population of VEN-AZA refractory or relapsed patients,
response rate and overall survival are poor (20% and 2.4 months, respectively)[12,13]. The combination of
VEN with ICT is also associated with high response, but 3% to 15% of patients do not respond to the
treatment[14]. Altogether, these data show that targeting RCD is a valuable strategy and has already improved
the efficacy of the current AML therapeutic strategies. However, there is a real need to develop new drugs to
go beyond BCL2 inhibition in AML[13]. In this review, we will discuss the main RCD pathways, describe
their therapeutic targeting and discuss the main challenges for translating preclinical results into the clinic.

REGULATED CELL DEATH PATHWAYS
Intrinsic apoptotic pathway
Proapoptotic and antiapoptotic members of the BCL2 protein family share one to four BCL2 homology 
(BH) domains and control intrinsic apoptosis[15,16]. Under physiological conditions, BCL2-associated X 
(BAX) resides in the cytosol in an inactive conformation while BCL2 antagonist/killer 1 (BAK) is inserted at 
the outer mitochondrial membrane (OMM) via an α9 helix that connects with voltage-dependent anion 
channel 2 (VDAC2)[17]. In response to apoptotic stimuli, BAX and BAK associate to form pores in the 
OMM, inducing mitochondrial outer membrane permeabilization (MOMP, Figure 1).

MOMP is regulated by the members of the BCL2 protein family containing a single BH3 domain named 
BH3-only proteins. The main representatives of this class are  p53-upregulated modulator of apoptosis 
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Figure 1. Mechanisms of regulated cell death pathways.

(PUMA), BCL2-like 11 (BCL2L11), also called BCL2-interacting mediator of cell death (BIM), phorbol-12-
myristate-13-acetate-induced protein 1 (PMAIP1, also called NOXA) and BH3 interacting domain death 
agonist (BID)[18]. All these proteins have a proapoptotic role by directly interacting with BAX and/or BAK to 
induce MOMP. Conversely, MOMP is blocked by a series of proteins that have an antiapoptotic role. This 
includes BCL2, BCL2-like 1 (BCL2L1, also known as BCL-XL), MCL1, BCL2 like 2 (BCL2L2, also known as 
BCL-W), and BCL2 related protein A1 (BCL2A1, also known as BFL-1)[19]. Other BH3-only proteins, 
including BCL2-associated agonist of cell death (BAD), BCL2 modifying factor (BMF), or harakiri, BCL2 
interacting protein (HRK), have the ability to induce MOMP in the absence of direct interaction with BAX 
or BAK by limiting the ability of the antiapoptotic BCL2 family members to sequester BAX BAK, or BH3-
only activators[20].

MOMP promotes the cytosolic release of cytochrome c (Cyt c) and diablo IAP-binding mitochondrial 
protein (DIABLO), also known as second mitochondrial activator of caspases, SMAC[16]. The cytosolic pool 
of Cyt c binds to apoptotic peptidase activating factor 1 (APAF1) and pro-caspase 9 to form the 
multiprotein complex called the “apoptosome” responsible for caspase 9 activation. Activated caspase 9 
catalyzes the proteolytic activation of the executioner caspase 3 and caspase 7, inducing apoptotic cell death. 
Blocking post-mitochondrial caspase activation with Z-VAD-fmk and Q-VD-OPh caspase inhibitors delays 
but does not completely rescue apoptosis in vitro and in vivo as it induces a switch to other types of RCD[2].

Extrinsic apoptosis
The extrinsic apoptosis pathway is initiated by cell membrane proteins known as death receptors (DR). 
Proapoptotic death receptors include FAS, also known as APO1 and CD95, the tumor necrosis factor (TNF) 
receptors TNFR1 and TNFR2 and the TNF-related apoptosis-inducing ligand (TRAIL) receptors DR4 and 
DR5. DR ligation allows for the assembly of the “death-inducing signaling complex” (DISC), a multiprotein 
complex that activates caspase 8. At this point, the execution of extrinsic apoptosis driven by DR follows 
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two distinct pathways. In most cancer cells, caspase 8-mediated cleavage and activation of BID converges 
with intrinsic apoptosis by triggering a BAX/BAK-dependent MOMP[21]. However, in some cells, (for 
instance, mature lymphocytes), the caspase 8-dependent activation of caspase 3 and caspase 7 is sufficient to 
promote cell death independently of mitochondria and BCL2-family of proteins[22]. In DR-induced 
apoptotic intrinsic pathway, caspases are the main executioner of cell death, causing rapid proteolysis, DNA 
fragmentation and chromatin condensation, which are the hallmarks of apoptosis.

Intrinsic and extrinsic apoptosis are both regulated by the class of inhibitors of apoptosis proteins (IAPs). 
Among the 8 IAP family members described in humans, the best known is XIAP which inhibits caspases 3, 
7, and 9[23]. IAP proteins are antagonized by SMAC/DIABLO, which is released by mitochondria during 
MOMP[24].

Necroptosis
Tumor necrosis factor alpha (TNF-α) is a potent trigger for apoptosis, but it was observed that cells treated 
with TNF-α and the caspase inhibitor zVAD-fmk were still dying without caspase activation, suggesting the 
presence of an alternative RCD pathway[25]. In 2005, Degterev et al. coined the term necroptosis by 
demonstrating that this unique RCD distinct from necrosis and apoptosis[26] is initiation by the receptor-
interacting protein RIPK1 and could be inhibited by the pharmacological agent necrostatin-1. Indeed, 
necroptosis is initiated by the activation of the cell death receptors such as TNFR1 and RIPK1 (if caspase 8 
is inactive) and depends on the subsequent activation of RIPK3 and the protein complex termed mixed 
lineage kinase domain-like pseudokinase (MLKL), resulting in the formation of pore on the cell membrane 
followed by cell death. Nevertheless, several of the upstream signaling elements of extrinsic apoptosis and 
necroptosis are shared, and sensitivity to each death pathway is regulated by the same set of regulatory 
molecules, including FLIP, the cellular inhibitors of apoptosis proteins cIAP1 and SMAC/DIABLO[27].

Ferroptosis
The term ferroptosis was coined in 2012 to describe a cell death that can be triggered by inactivation of the 
cystine/glutamate antiporter (also known as SLC7A11), leading to depletion of intracellular glutathione 
(GSH) or direct inhibition of glutathione peroxidase 4 (GPX4). GPX4 inhibition induces an accumulation 
of reactive oxygen species (ROS), ultimately leading to lipid peroxidation via the iron-dependent Fenton 
reaction, where H2O2 and iron react to generate hydroxyl radicals[28,29]. Inactivation of GPX4 through 
depletion of GSH with Erastin or with the direct GPX4 inhibitor RSL3 ultimately results in overwhelming 
lipid peroxidation that can be rescued by the use of antioxidant ferrostatin-1 or liprostatin-1 that block lipid 
peroxidation[30,31]. Ferroptosis is regulated at several levels, including amino acids, lipids (particularly 
polyunsaturated fatty acids (PUFA)) and iron metabolism[32-36]. In addition, ferroptosis is regulated by the 
suppressor protein 1 (FSP1) and dihydroorotate dehydrogenase (DHODH) that reduce ubiquinone (CoQ) 
to ubiquinol (CoQH2) on the plasma membrane and inner mitochondrial membrane, respectively. CoQH2 

acts as a hyperoxide radical-trapping antioxidant and decreases lipid peroxidation, resulting in ferroptosis 
suppression[37,38]. Finally, GTP cyclohydrolase-1 (GCH1) and its metabolic derivatives tetrahydrobiopterin/
dihydrobiopterin (BH4/BH2) are also potent antioxidants protecting against ferroptosis[39,40]. Ferroptosis is 
also regulated by the non-canonical activities of TP53 on cellular metabolism in a context-specific 
manner[41]. TP53 enhances ferroptosis by inhibiting SLC7A11 expression or increasing expression of 
spermidine/spermine N1-acetyltransferase 1 (SAT1) and glutaminase 2 (GLS2). Likewise, TP53 can inhibit 
ferroptosis by reducing dipeptidyl peptidase 4 (DPP4) activity or inducing cyclin-dependent kinase 
inhibitor 1 A (CDKN1A/p21) expression. Unlike the other RCDs, it remains to be determined whether 
ferroptosis is a consequence of physiological processes or necessary for development as opposed to only 
pathophysiological situations[42].
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Autophagy
Macroautophagy (hereafter autophagy) is a ubiquitous catabolic process that involves the degradation of 
cytoplasmic components, including intracellular organelles, via the lysosomal pathway. The first step of 
autophagy is the formation of phagophores, followed by the generation of double-membrane 
autophagosomes regulated by a series of well-conserved autophagy-regulated genes (ATG). Late steps 
involved the fusion of autophagosomes to lysosomes, leading to cargo degradation by lysosomal enzymes 
and the recycling of intracellular contents providing fuels for cell growth[43]. The autophagic response 
provides cytoprotective effects, as indicated by the fact that blocking autophagy with pharmacological or 
genetic interventions generally induces cell death through the accumulation of toxic proteins, damaged 
organelles or undigested autophagosomes toxic for tumor cells[43]. Autophagy is often activated alongside 
other RCD, such as ferroptosis, which can be promoted by the autophagic degradation of ferritin, extrinsic 
apoptosis or necroptosis[2]. The main features of RCD are summarized in Table 1.

Other cell death pathways
Pyroptosis is an inflammatory form of lytic RCD that frequently occurs in response to microbial infection 
by forming a multiprotein complex termed the inflammasome, which activates caspase 1 and forms 
Gasdermin D (GSDMD) dependent plasma-membrane pores[44]. Pyroptosis is mechanistically distinct from 
apoptosis and characterized by the absence of DNA fragmentation and the presence of nuclear 
condensation coupled with cell swelling. Large bubbles eventually form at the plasma membrane and 
rupture to expel cellular contents.

Mitotic catastrophe is a physiological mechanism by which the cells avoid aneuploidy and hence decrease 
tumorigenic potential. Accordingly, induction of mitotic catastrophe both precipitates oncogenesis and 
constitutes a therapeutic endpoint in cancer cells[45].

Inter-regulation and hierarchy between cell death pathways is complex and not completely understood. For 
instance, mitotic catastrophe is closely related to apoptosis by their common induction by cellular stress and 
DNA damage. For this reason, some authors suggest that mitotic catastrophe is not a distinct mechanism of 
death, but one that can occur through necrosis or apoptosis depending on the molecular profile of the 
cells[46]. Other examples of cross-talk between RCD include the link between ferroptosis and autophagy, in 
particular through ferritin degradation or the involvement of lysosomes in iron storage and 
redistribution[47,48]. Depletion of the ferroptosis trigger GPX4 also sensitizes cells to pyroptosis[49], 
necroptosis[50] and apoptosis[51]. Apoptosis and necroptosis are also linked through caspase 8 cleavage 
[Figure 1]. Caspase 8 is also an important player in pyroptosis induction, as it has been shown that genetic 
lesions in XIAP result in increased inflammation and death-associated caspase-8 and GSDMD processing in 
diseased tissue[52]. Common stimuli can also result in different RCD depending on the cell type. For 
instance, blockage of iron transport into the lysosome can induce ferroptosis in breast cancer stem cells, 
whereas it induces mitochondrial BAX/BAK-dependent cell death in AML models[53,54].

RCD INDUCERS IN AML
Apoptotic inducers
Agents targeting intrinsic pathway
Most chemotherapies and radiotherapies are known to induce apoptosis of cancer cells in response to DNA 
damage or cellular stress[55]. As a consequence, in vitro and in vivo evidence indicates that TP53-mutated 
cells have impaired apoptosis signaling pathways, and these cells are typically less susceptible to cytotoxic 
chemotherapy[56].
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Table 1. Summary of the main regulated cell death mechanisms

Type of 
RCD Trigger Facilitator Inhibitor Executioner

Intrinsic 
apoptosis

Mitochondrial outer membrane 
permeabilization by BAX/BAK 
macropores and cytochrome c release

Proapoptotic factors from 
the BCL2 family

Antiapoptotic factors from 
the BCL2 family, Inhibitors of 
apoptosis (IAPs)

Proteolysis by executioner 
caspases

Extrinsic 
apoptosis

Activation of membrane cell death 
receptors 

Death-inducing signaling 
complex (DISC). 
SMAC/DIABLO 

Inhibitor of apoptosis (IAPs), 
FLIP

Proteolysis by executioner 
caspases

Necroptosis Activation of membrane cell death 
receptors 

RIPK1, RIPK3, 
SMAC/DIABLO

Caspase 8 Plasma membrane 
disruption by MLKL 

Ferroptosis Inhibition of GPX4, decrease of cystine 
uptake

hydroxyl radicals 
generation through Fenton 
reaction

Glutathione (GSH), 
antioxidant defense

Lipid peroxidation of plasma 
and intracellular membranes

Autophagy Phagophore formation and fusion to 
the lysosome

Autophagy-related 
proteins (ATG)

Inhibition of lysosome 
acidification

Accumulation of toxic 
proteins or organelles 
leading to cellular stress

Inhibitors of BCL2 family members

Besides VEN, several newly developed BCL-2 inhibitors are currently in various stages of investigation in 
AML and other leukemia models [Table 2][13,57-60]. In addition to BCL-2, other members of the BCL-2 family 
of antiapoptotic proteins (MCL-1, BCL-XL, BFL-1) are the target of small molecules with the goal of 
inducing BAK/BAX activation and promote intrinsic apoptosis. The antiapoptotic protein MCL-1 plays a 
critical role in inhibiting BAX/BAK activation. MCL1 dependency on leukemia blasts is associated with 
resistance to BCL2 inhibition by VEN. Several highly potent direct MCL-1 inhibitors have recently entered 
preclinical and clinical development [Table 2][61-64]. The therapeutic window of these inhibitors is narrow 
because of  the high expression of MCL1 in cardiac and hepatic tissues[65]. Due to these safety concerns, 
indirect MCL1 inhibitors are also under evaluation. CDK9 inhibitors are in various stages of evaluation in 
AML [Table 2][66-73]. Addition of alvocidib to ICT improved response rates but not survival in a recently 
published phase 2 clinical trial[67]. Novel CDK9 inhibitors are currently in early phase trials [Table 2][74-78]. 
BCL-XL inhibition by navitoclax has been shown to be active in preclinical AML models[79,80]. Toxicity for 
platelets limited its clinical development; nevertheless, navitoclax in combination with ICT or targeted 
therapy is still under evaluation in acute lymphoblastic leukemia[81] or myelofibrosis (TRANSFORM-1, 
NCT04472598). Navitoclax in combination with VEN and decitabine may be a valuable option for VEN-
refractory AML patients (NCT NCT05222984). Finally, BFL1 (BCL2A1) inhibition may also be an 
interesting option since the recent discovery of specific inhibitors, but the drug has not been specifically 
tested in leukemia models[82,83].

BAX/BAK activators

BAK and BAX are crucial agents in promoting MOMP through protein oligomerization across the OMM. 
Recent findings showed direct activation of BAX by BTSA1, a pharmacological BAX activator that binds 
BAX with high affinity and specificity to the N-terminal activation site and induces conformational changes 
to BAX, leading to BAX-mediated apoptosis[84]. The histone deacetylase SAHA and its derivatives also have 
an affinity for BAX and induce its activation [Table 2] but have not been validated in AML models[85]. Other 
preclinical studies suggested a mitochondrial membrane-mediated spontaneous model of BAX activation. 
In this model, MOM plays a big role in orchestrating the turnover between cytosolic and membrane-bound 
BAX, its interaction through the α9 helix and the formation of macropore into the membrane. It is likely 
that lipids such as cardiolipin play a crucial role in this model[86]. Voltage Dependent Anion Channels 
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Table 2. Drugs targeting main regulated cell death mechanisms in acute myeloid leukemia

Therapeutic 
class Mechanism of action Drug Trademark Phase of development References

BGB-11417 - Phase 1 (NCT04771130) [57]

S65487 - Phase 1 (NCT03755154, NCT04742101) [58]

APG-2575 Lisaftoclax Phase 1 (NCT03537482) [59]

BCL2 inhibition by small 
molecule

LP-108 - Phase 1 (NCT04139434) [60]

S63845 - Phase 1 (NCT02979366, NCT03672695, 
NCT04629443)

[61]

AZD5991 - Phase 1 (NCT03218683) [62]

AMG176 Tapotoclax Phase 1 (NCT02675452) [63]

BH3-mimetics

Direct MCL1 inhibition by 
small molecule

AMG397 Murizatoclax Phase 1 (NCT03465540) [64]

Flavopiridol, 
HMR-1275

Alvocidib Phase 1 (NCT00407966, NCT03298984), 
phase 2 (NCT01349972)

[66,69]

SCH-727965 Dinaciclib Preclinical [70,71]

P 1446A 05 Voruciclib Phase 1 (NCT03547115) [72,73]

AZD4573 - Phase 1 (NCT03263637) [74]

CYC065 Fadraciclib Phase 1 (NCT04017546) [75,77]

CDK9 kinase 
inhibitor

Indirect MCL1 inhibition by 
small molecule

TG02-101 - Preclinical [78]

BH3 mimetics BCL-XL inhibition ABT-263 Navitoclax Phase 1 (NCT05222984) - 

BH3 mimetics BFL1 inhibition - - Preclinical [82,83]

BTSA1 - Preclinical [84]Direct BAX activation

WEHI-9625 - Preclinical [87,88]

BAX/BAK 
activator

Mitochondrial iron depletion AM5 Ironomycin Preclinical [53]

Death Receptor 5 (DR5) 
antibody

IGM-8444 - Phase 1 (NCT04553692) [89]TRAIL agonist

TRAIL receptor agonist 
fusion protein

ABBV-621 Eftozanermin alfa Phase 1 (NCT03082209) [79,80]

FLIP inhibition Direct FLIP inhibition - - Preclinical [92,93]

LY2181308 Gataparsen Phase 2 (NCT00620321) [98]Antisense oligonucleotide

AEG35156 Phase 1 NCT00363974, phase 2 
NCT01018069

[99,100]

TL32711 Birinapant Phase 1 NCT01828346 phase 2 
NCT01486784, NCT02147873

[102,103]

ASTX660 Tolinapant Phase 1 NCT02503423 [105]

SMAC/DIABLO mimetics 

LCL161 Phase 2 (NCT02098161) [107]

SMAC/DIABLO mimetics + 
caspase 8 inhibition

TL32711 Birinapant Preclinical [108]

XIAP inhibition

SMAC/DIABLO mimetics BV6 Preclinical [109]

epigenetic 
therapies

Endogenous retroelements 
reactivation

- Epigenetic therapies Preclinical [116]

Class 1 FIN System xc
- 

cystine/glutamate 
antiporter inhibition

- Sulfasalazine FDA approved in another indication [118]

Class 2 FIN GPX4 inhibition ML162 Altretamine FDA-approved in another indication [122]

Class 3 FIN GSH metabolism inhibition APR-246 - Phase 2 (NCT03931291) [124]

Class 4 FIN CoQ oxidoreductase FSP1 
inhibition

- - Preclinical [37,38]

Lysosomal acidification 
blockade

- Hydroxychloroquine FDA-approved in another indication [138,139]Autophagy 
inhibitors

PIK3C3/Vps34 inhibition SAR405 - Preclinical [140,141]

- Sirolimus FDA-approved in another indication, phase 
1 (NCT01869114)

[143]Autophagy 
inducers

mTOR inhibition

RAD001 Everolimus FDA-approved in another indication, phase 
1/2 (NCT00819546, NCT02638428, 
NCT01869114)

[144]
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(VDACs) are a family of membrane proteins that allow passage of both negatively and positively charged 
ions, NADH, ATP/ADP and other metabolites across the MOM. In particular, VDAC2 plays a role both in 
recruiting BAK to the MOM and in inhibiting its activation[17]. WEHI-9625 is a novel small molecule 
inducing BAK-mediated apoptosis in mice but is completely inactive against human BAK[87,88]. We found 
that ironomycin sequestered iron into lysosomes and subsequently reduced mitochondrial iron load, 
promoting  the recruitment and non-canonical activation of BAX/BAK in AML in vitro and in vivo models. 
Crispr Cas9 screens uncovered the key metabolic and mitochondrial factors regulating this modality of non-
canonical RCD[53].

Agents targeting extrinsic pathway
TRAIL Agonism

Agonists of the TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4/5) have been tested in 
AML, but response rates are low[13]. Novel antibodies against TRAILR1 and TRAILR2 have shown 
promising preclinical data along with synergy with VEN and are currently tested in phase 1 [Table 2][89]. 
Eftozanermin alfa (ABBV-621), a second-generation TRAIL receptor agonist binding to the death-inducing 
DR4 and DR5 receptors, is currently being tested in solid tumors and hematological malignancies 
[Table 2][90,91].

FLIP inhibition

FLIP (Fas-associated death domain (FADD)-like IL-1β-converting enzyme-inhibitory protein) is a 
multifunctional protein that plays a role in regulating the death-inducing signaling complex (DISC) and 
caspase 8 activation. CDK9 inhibitors and bromodomain inhibitors such as JQ1 have been shown to 
effectively decrease FLIP expression, leading to enhanced sensitivity to TRAIL-induced cell death in 
cancer[92]. Second-generation FLIP inhibitors have shown preclinical activity in multiple cancer cell lines 
including AML, and have a high potential for synergy with other apoptosis-targeting agents [Table 2][93,94].

XIAP inhibition

IAPs act as antiapoptotic proteins by inhibiting caspases and are promising therapeutic targets in AML. 
Inhibition of XIAP has been shown to sensitize AML cells to chemotherapy or BCL2 inhibitors[95,96]. 
Inhibition of XIAP by antisense strategies or peptides that bind and inhibit the BIR3 domain of XIAP has 
been tested in phase 1 studies[97-99] but failed in phase 2[100]. The SMAC/DIABLO mimetics (SM) birinapant is 
one of the most clinically advanced SM and is currently being tested in clinical trials for the treatment of 
certain solid and hematological cancers[101]. Birinapant showed limited efficacy as a single agent[102]. In a 
phase 2 randomized, double-blind study, birinapant plus AZA was not superior to AZA alone in advanced 
myelodysplastic syndromes (MDS) or chronic myelomonocytic leukemias[103]. The drug is also being tested 
in combination with chemotherapeutic agents and immune checkpoint inhibitors. Preclinical data also 
indicate that combination of Birinapant plus the multidrug resistance receptor 1 (MDR1) may circumvent 
birinapant resistance in AML[104]. ASTX660/Tolinapant is a dual antagonist of XIAP and cIAP is currently 
under investigation in phase 1/2 studies in solid tumors and in combination with hypomethylating agents in 
AML[105,106]. LCL161, an oral SMAC mimetic, has been tested in patients with myelofibrosis and showed a 
30% objective response rate in a recently published phase 2 trial [Table 2][107].
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Necroptosis inducers
SMAC mimetics combined with caspase 8 inhibition have been shown to trigger necroptosis in AML 
preclinical models[108-110]. RIPK1 inhibition enhanced the therapeutic efficacy of the HDAC inhibitor 
chidamide in FLT3-ITD positive AML, both in vitro and in vivo[111,112] and increased the efficacy of 
differentiating agents[113]. Other SMAC mimetics in combination with cytarabine or HMA also showed 
interesting preclinical results[114]. Therapeutic opportunities for cancer cell death induction through 
endogenous retroelements (EREs) reactivation have been recently described[115]. EREs are transcriptionally 
silent within mammalian genomes due to epigenetic mechanisms. Anticancer therapies targeting the 
epigenetic machinery reinduces ERE expression, inducing antiviral responses associated with consistent 
increased phosphorylation of RIPK1/3 and MLKL kinases associated with features of necroptosis in treated 
tumor cells [Table 2][116].

Ferroptosis inducers
Ferroptosis inducers (FINs) belong to four classes[117]. Class I FINs include pharmacological agents that limit 
intracellular glutathione (GSH) through the inhibition of the system xc

- cystine/glutamate antiporter, as has 
been shown in non-leukemic models[28]. The main molecules of this class, which are active in AML models, 
are erastin and sulfasalazine[118,119]. Class II FINs directly inhibit the detoxifying enzyme GPX4. The lead 
compound in this class is RSL3 which covalently binds to GPX4. The antitumoral effect of GPX4 disruption 
has been shown in various models, including AML[120,121]. The FDA-approved alkylating agent altretamine 
has been shown to directly inhibit GPX4[122]. Class III FINs target GSH synthesis or cysteine synthetase such 
as buthionine sulfoximine (BSO), an irreversible inhibitor of rate-limiting enzyme in GSH synthesis, and 
also cisplatin[123]. Focusing on AML, APR-246, a drug known to restore the wild-type conformation of 
mutant TP53 protein, was shown to actually target GSH metabolism[124,125]. Class IV FINs disrupt the balance 
of iron metabolism and cellular reactive oxygen species (ROS). Dihydroartemisinin (DHA) belongs to this 
class[126-128], as well as drugs interfering with the antioxidant system CoQ10[37,38] or drugs modulating PUFA 
metabolism as they are highly sensitive to lipid oxidation [Table 2][129,130].

Iron chelation and overload play a crucial role in MDS and AML. Therapeutic interventions that modulate 
iron content and balance within blast cells are at least partially inducing ferroptosis[131]. Our group described 
in detail the mechanism of action of ironomycin that specifically sequesters ferrous iron into the lysosomes, 
and induces lipid peroxidation and cell death in several models of cancer stem cells as well as in AML 
through mitochondrial metabolism disruption[53,54,132].

Agent regulating autophagy
Autophagy deregulation in AML is well documented, but its impact on leukemogenesis remains 
unclear[133,134]. For example, in AML harboring an FLT3 internal tandem mutation (ITD), mTORC1 
activation downstream the RET receptor tyrosine kinase suppresses FLT3 protein autophagic 
degradation[135]. In contrast, blocking autophagy in FLT3-ITD AML can increase the survival of mice with 
FLT3-ITD-driven AML[136]. These ambiguous results indicate the complexity of therapeutic intervention 
based on autophagy in AML. Another layer of complexity lies in the fact that autophagy is a dynamic 
process. For instance, blocking autophagy cargo can be done at earlier phases (autophagosome biogenesis) 
or at the later steps (endosome-lysosome fusion).

Autophagy inhibitors
Autophagy inhibition can be achieved by blocking the LC3 interacting regions (LIR) that orchestrate diverse 
stages of autophagy. This strategy was shown to sensitize cytotoxicity to cytarabine[137]. Late-stage autophagy 
inhibitors hydroxychloroquine and/or bafilomycin A1 (BafA1) block lysosomal acidification and are active 
on leukemia blasts and also sensitize cells to chemotherapy[138]. A randomized phase 2 study was recently 
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published testing the addition of hydroxychloroquine to Imatinib in chronic myeloid leukemia and found 
no significant differences between the two arms[139]. SAR405, a highly potent small-molecule inhibitor of the 
phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3)/Vps34, induces a blockage at the late 
endosome-lysosome step autophagy flux and shows interesting preclinical efficacy in FLT3-ITD 
AML [Table 1][140,141].

Autophagy inducers
The mTORC1/S6K1 pathway is critical for the regulation of autophagy in AML initiation and progression, 
as reviewed by Ghosh & Kapur[142]. Therefore, the most studied drugs are the mTORC1 inhibitor sirolimus 
and everolimus. Despite promising data in preclinical models, clinical studies are ambiguous. Sirolimus 
combined with the chemotherapy regimen showed a high response rate in patients with baseline mTOR 
activation[143]. In a phase 1b study from the GOELAMS, everolimus plus chemotherapy improved the 
clinical outcomes of patients with AML[144]. But mTOR inhibition plus conventional chemotherapy did not 
show a clinical benefit in two other studies[145,146]. Therefore, mTOR inhibitors still need to be evaluated in 
AML, and several clinical trials are ongoing (NCT00819546, NCT02638428, NCT01869114).

Pharmacological induction of other cell death pathways
Small-molecule inhibitors of the serine dipeptidases DPP8 and DPP9 (DPP8/9) have been shown to induce 
pyroptosis in human myeloid cells, including cell lines, primary AML samples and mice models of human 
leukemia[147]. Constitutive innate immune activation is a pathogenetic driver of ineffective hematopoiesis 
and MDS, in particular through the NLRP3 inflammasome[148,149] Recent studies found that the 
inflammasome can be induced by gene mutations involving mRNA splicing by induction of cyclic GMP-
AMP synthase/stimulator of IFN genes (cGAS/STING)[150]. As a consequence, the use of immunotherapies 
targeting inflammatory responses is the subject of many preclinical and clinical studies[151]. Mitotic 
catastrophe is induced by pharmacological agents targeting the mitotic machinery. Cell cycle inhibitors are 
currently in development in various hematological diseases, including AML[152,153].

UPCOMING CHALLENGES FOR TARGETING RCD IN AML
The key objectives of translating preclinical results into the clinic are to identify drugs that will treat
resistant cells by inducing RCD, detect the population of patients who will respond to a given RCD and
design new RCD inducers with high efficacy and low toxicity.

Target resistances with RCD
Cells resistant to treatment, called “persister cancer cells”, are largely responsible for relapse[154]. These cells
develop antiapoptotic mechanisms as well as altered metabolism rendering them more susceptible to
alternative RCD, in particular autophagy or ferroptosis that are directly related to the metabolic state of the
cells[155,156]. For instance, preclinical data showed the xc

- inhibitory activity of salazopyrine and its efficacy
against primary AML samples in ex vivo cultures and in patient-derived AML models[118]. These preliminary
results led to the hypothesis that the drug could be repositioned in AML. A clinical trial testing the addition
of salazopyrine to ICT in older AML patients, named SALMA (EUDRACT no: 2022-001269-11), will be
enrolling soon. Another example is the resistance to VEN, which is mediated through various mechanisms,
including BCL2 family protein expression and occupation (MCL1 dependency), cellular differentiation state
(monocytic versus stem cell-like), cellular metabolic state or sensitivity to mitochondrial machinery
disruption[11]. One of the major limitations that emerged from both in vitro and clinical studies with the
BH3-mimetics is the low sensitivity of TP53 mutated blasts to this class[157-159]. Strategies of treatment that
overcome TP53-dependent apoptosis can be used, such as ironomycin that directly activates BAX/BAK in a
BCL2-family protein-independent manner[53]. Optimized clinical-grade derivatives of ironomycin with
better therapeutic windows are currently under development[160].
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Identify new biomarkers
The second challenge is to identify the population of patients who will benefit from RCD inducers. Recent
findings showed that ferroptosis-associated gene signatures can be assessed by transcriptomic methods such
as RNA sequencing. These signatures predict survival and could possibly guide therapeutics by selecting
patients who could be treated by the use of ferroptosis inducers[161-164]. Necroptosis transcriptomic signatures
have also been found in MDS, indicating that such predictors could identify patients who would benefit
from necroptosis inducers[165]. Functional assays such as BH3-profiling have been shown to be a highly
efficient companion test that can predict response to the BH3-mimetics inhibiting BCL2 family
proteins[20,166]. Our team published a translational proof-of-concept study in which relapsed or refractory
AML patients were selected according to molecular and ex vivo drug sensitivity profiles[167]. Future clinical
trials using companion tests based on molecular or functional approaches will confirm the feasibility and
efficacy of this strategy.

Discovery of new RCD inducers
The use of targeted therapies has transformed AML treatment. Small molecule inhibitors of genes that
underwent common somatic mutations, such as FLT3 or IDH inhibitors, have been approved recently for
AML relapsed or refractory patients[168]. However, most of the patients cannot benefit from targeted
therapies, because of a lack of targetable genetic alterations. On the contrary, BCL2 inhibition success story
is based on the AML blast dependency to apoptosis independently of AML targetable mutations. Recent
findings showed that AML cells are sensitive to ferroptosis induction, suggesting that efforts should be made
to develop new ferroptosis inducers[169]. A validated approach is to use an unbiased strategy by performing
high throughput screening of chemical libraries for their ability to induce ferroptosis (or other RCD) in
vitro and in vivo[122]. In parallel, a better understanding of the ferroptotic molecular pathways can be
obtained using CRISPR Cas-9 resistance screens of a given ferroptosis inducer that will identify crucial
genes involved in cell death. We recently used this strategy to uncover the molecular mechanism of
ironomycin[53]. This integrative strategy will help to design new tailored drugs and pave the way for future
clinical trials based on RCD.

CONCLUSION
Treatment of AML has remained unchanged for more than 40 years with a one-size-fits-all intensive 
chemotherapy approach for eligible patients. In 2017, the FDA approved the utilization of two targeted 
therapies for patients with a molecular alteration in FLT3 or IDH genes[168]. Another significant 
advancement was made in 2020 with the publication of the VIALE-A study reporting the efficacy of VEN 
for the treatment of AML patients who are not eligible for intensive treatment[10]. Despite higher response 
and survival rates than before, there is still improvement to be made in the management of AML patients. A 
better understanding of molecular RCD pathways in collaboration with integrative translational studies will 
allow the design of new drugs or the repositioning of older ones to overcome resistance in AML.

Intrinsic apoptosis is initiated by the formation of pores permeabilizing the outer membrane of 
mitochondria (MOMP) induced by the oligomerization of BAX recruited from the cytosol and BAK 
inserted at the mitochondrial membrane. BAX and BAK interact with a series of antiapoptotic inhibitors 
proteins (BCL2, BCLXL, MCL1) and proapoptotic activator proteins (BIM, PUMA, NOXA, BID). MOMP 
induces a release of cytochrome c that cleaves caspase 9 and subsequently activates the effector caspases 3 
and 7, leading to cell death. Extrinsic apoptosis is triggered by the ligation of cell death receptors (FAS, 
TRAIL and TNFR), which allow the assembly of the “death-inducing signaling complex” (DISC) and the 
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subsequent activation of caspase 8. Caspase 8 induces the cleavage of BID, leading to the activation of BAX 
and intrinsic apoptosis and the direct activation of caspases 3 and 7, finally leading to cell death. Inhibitors 
of apoptosis (IAP) family, including XIAP, cIAP1 and cIAP2, are inhibitors of caspase 9 and the death 
receptor TNFR, whereas FLIP is the inhibitor of caspase 8. SMAC/DIABLO is a major inhibitor of IAPs. 
Necroptosis is induced by the ligation of cell death receptors and the activation of the receptor-interacting 
protein RIPK1 and RIPK3 that interacts with protein complex mixed lineage kinase domain-like 
pseudokinase (MLKL). Phosphorylation of MLKL results in the formation of pores on the cell membrane, 
followed by cell death. IAPs and Caspase 8 inhibit RIPK1 activation and block necroptosis. Ferroptosis is 
the result of lipid peroxidation triggered by the direct inhibition of the antioxidant enzyme GPX4 or by the 
blockage of the xc

- cystine/glutamate antiporter (xCT-). Depletion of cysteine import and intracellular 
glutathione (GSH) increases lipid peroxides which is exacerbated by the Fenton reaction, where H2O2 and 
iron react to generate hydroxyl radicals. Autophagy is a process in which cytoplasmic components, 
including intracellular organelles, are degraded by the lysosomes. The first step of autophagy is the 
formation of phagophores, followed by the generation of double-membrane autophagosomes regulated by 
autophagy-regulated genes (ATG) and lysosomal fusion. Autophagy blockage or excess can induce cell 
death.
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