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Abstract
Cholangiocarcinoma (CCA), an aggressive tumor originating from both intra- and extra-hepatic biliary cells, 
represents an unmet need in liver oncology, as treatment remains largely unsatisfactory. A typical feature of CCA is 
the presence of a complex tumor microenvironment (TME) composed of neoplastic cells, a rich inflammatory 
infiltrate, and cancer-associated fibroblasts and desmoplastic matrix that makes it extremely chemoresistant to 
traditional chemotherapeutic drugs. In this review, we describe the cell populations within the TME, in particular 
those involved in the innate and adaptive immune response and how they interact with tumor cells and with matrix 
proteins. The TME is crucial for CCA to mount an immune escape response and is the battlefield where molecularly 
targeted therapies and immune therapy, particularly in combination, may actually prove their therapeutic value.
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INTRODUCTION
Cholangiocarcinoma (CCA) is a highly malignant cancer that can develop from different segments of the 
biliary tree. The anatomical classification does not include gallbladder and ampullary cancers and 
distinguishes among intrahepatic (iCCA) that develops inside the liver up to the secondary bile ducts 
(< 10%), perilar (pCCA, also called Klastin’s tumor) that grows between the secondary biliary branches and 
the insertion of the cystic duct into the common bile duct (45%), and distal (dCCA) (45%) that is confined 
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to the area between the origin of the cystic duct and the ampulla of Vater[1,2]. Despite recent progresses, the 
prognosis of CCAs has not substantially improved and five-year survival remains very low (5%-20%) with 
high post-surgical recurrence rates[3].

CCA incidence shows a strong geographical variation, ranging from 0.4:100,000 inhabitants in Canada to 
85:100,000 in the northeast of Thailand[3]. Furthermore, in the United States, distinct ethnic groups show 
different incidences with higher rates among Asians and Hispanics (2.8:100,000 and 3.3:100,000, 
respectively) and lower ones in Caucasians and African Americans (1.4:100,000 and 1.7:100,000)[4]. The 
most significant known risk factor for the development of CCA in East Asia is parasitic infestations of 
Opisthorchis viverrini or Clonorchis sinensis. After their encystation in the biliary network, these parasites 
cause chronic irritation, leading to neoplasm development[5]. In Western countries, the most prominent risk 
factor for CCA development is the primary sclerosing cholangitis (PSC) with an odds ratio (OR) of 164 (CI: 
73.3-369, P < 0.001)[6]. PSC is an inflammatory disease affecting both the intra- and extra-hepatic biliary 
tract, causing inflammation of the biliary epithelium, periductal fibrosis, and biliary stenosis[5]. Other 
additional risk factors, particularly for iCCA, are HBV- and HCV-related cirrhosis, choledochal cysts, 
cholelithiasis, type 2 diabetes mellitus, obesity, non-alcoholic fatty liver disease, smoking, and 
hypertension[7,8]. It is worth noting that all these conditions are associated with liver inflammation.

Genetically, CCA is a heterogeneous tumor. CCAs originating from large ducts show a high mutation 
frequency of oncogenes and of tumor suppressor genes, such as Kirsten rat sarcoma virus (15%-30%) and 
tumor protein P53 (TP53) (10%-40%) They may also harbor mutations of BRAF, BRCA1 associated protein 
1 (BAP1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), guanine 
nucleotide binding protein GNAS, AT-rich interaction domain 1A (ARID1A), SMAD family member 4 
(SMAD4), phosphatase and tensin homolog (PTEN), mouse double minute 2 homolog (MDM2), epidermal 
growth factor receptor (EGFR), and Erb-B2 receptor tyrosine kinase 2 (ERBB2), among others. 
Microsatellite instability is another prognostically and therapeutically relevant marker for CCA, as it has 
been shown that tumors with deficiency of mismatch DNA repair mechanisms (e.g., those associated with 
liver fluke infestation) are significantly more sensitive to immune checkpoint blockade[9]. In contrast, small 
duct type CCA exhibits a mass-forming growth pattern and exhibits isocitrate dehydrogenase 1/2 mutations 
(10%-30%) and fibroblast growth factor receptor 2 (FGFR2) fusions (10%-25%), among others[10,11].

REACTIVE TUMOR STROMA
Similar to other cancers, such as pancreatic or breast adenocarcinoma, CCA is characterized by an intense 
desmoplastic reaction [tumor reactive stroma (TRS)] supported by a rich cellular microenvironment and by 
modifications of the matrix composition. This tumor microenvironment (TME)[2] has a structural 
component, the extracellular matrix (ECM), and a cellular component with a plethora of infiltrating cells. 
The matrix of the TME is significantly different from the normal one, in both quantity and quality. The TRS 
within the tumor is in fact continuously modified by the interaction between neoplastic and infiltrating 
cells. The cellular component of TME is variably composed of neoplastic epithelial cells, endothelial cells of 
the blood and lymphatic vessels, cancer-associated fibroblasts (CAFs), and cells of the innate [tumor-
associated macrophages (TAM), tumor-associated neutrophils (TAN), dendritic cells (DC), natural killer 
(NK), and myeloid-derived suppressor cells (MDSC)] and adaptive immunity [tumor-infiltrating 
lymphocytes (TIL)][12,13] [Figure 1]. The structural component provides a dense and rigid scaffolding, which 
confers the characteristic desmoplasia to the tumor. This is composed of numerous and specific 
extracellular matrix proteins (see below). It is believed that the stroma does not have a simple passive 
function, but it actively participates in the intense communication between cells in the microenvironment 
and supports these interactions [Figure 2] and could be the target of therapeutic interventions [Table 1][2].
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Table 1. Clinical trials targeting ligands and receptors shred by different cell type of the TME

Ligands/receptors Drugs Clinical trial

Lenvatinib NCT03895970 
NCT04211168 
NCT04550624

TT-00420 
Pazopanib 
Bevacizumab

NCT04742959 
NCT01855724 
NCT00350753 
NCT00426829 
NCT00356889 
NCT01007552 
NCT00410956 
NCT04164069

Apatinib NCT03251443 
NCT04454905

VEGFRs, PDGFRs, c-MET

Tivozanib NCT04645160 
NCT05000294

Pemigatinib NCT02924376 
NCT03656536

Erdafitinib 
E7090 
Futibatinib 
BGJ398

NCT02699606 
NCT04238715 
NCT02052778 
NCT03773302 
NCT02150967

FGFRs

RLY-4008 
Derazantinib 
INCB062079

NCT04526106 
NCT01752920 
NCT03144661

A166 
Varlitinib 
Regorafenib 
KSP/QRH dimer 
Erlotinib

NCT03602079 
NCT02609958 
NCT02053376 
NCT04304781 
NCT00955149

EGFR

Panitumumab NCT00397384 
NCT00033462 
NCT01320254

TGFβ M7824 NCT04708067 
NCT03833661 
NCT04066491

CSF1 SNDX-6352 NCT04301778

VEGFR: Vascular endothelial growth factor receptor; PDGFR: platelet-derived growth factor receptor; FGFR: fibroblast growth factor receptor; 
EGFR: epidermal growth factor receptor; TGFβ: Transforming growth factor β; CSF1: colony stimulating factor 1.

Matrix
The matrix in the normal liver is usually limited to the portal space and the space of Disse. The persistence 
of a chronic inflammatory stimulus induces a process of pathologic repair that, losing the fine regulation 
and self-limitation, leads to scarring. During the process of cholangiocarcinogenesis, there is also an 
aberrant deposition of both structural and non-structural ECM components, which creates a thick and stiff 
layer of ECM proteins around the neoplastic bile ducts. Aberrant deposition of ECM components is 
considered a pathological hallmark of cholangiocarcinomas, and it is believed to be responsible for the 
pronounced aggressiveness of CCA and its low response to current therapies[14,15]. CCA cells secrete a wide 
range of proteolytic enzymes, such as metalloproteinase (MMP)-2 and -9, that dismantle the laminin-rich 
basal membrane, allowing the tumoral cells to invade the peritumoral matrix reaching lymphatic and blood 
vessels and thus to dive into the blood and lymphatic stream and disseminate to distant metastatic loci. This 
mechanism is further facilitated by the interaction of CCA cells with other cell types that that are recruited 
into the TME and primed to express a prosecretory phenotype able to further modify the surrounding 
ECM[16,17]. In CCA, there is indeed an abnormal deposition of several matricellular proteins, including 
periostin (POSTN), tenascin C (TnC), and osteopontin (OPN). These proteins are associated with an 
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Figure 1. Tumor microenvironment. (A) Intrahepatic cholangiocarcinoma (hematoxylin and eosin stain, magnification 200×): black 
arrow, cancer-associated fibroblasts; green arrow, neutrophils; red arrow, tumor-infiltrating lymphocytes; long black arrow, microvessel. 
(B) Cancer-associated fibroblasts in the desmoplastic stroma are immunoreactive for α-smooth muscle actin, a biomarker of 
myofibroblast differentiation (immunohistochemistry, 200×). (C) Microvessels are highlighted by CD34 immunostain. (D) Tumor-
infiltrating CD4 positive lymphocytes are highlighted by CD4 immunostain. (E) Tumor-infiltrating CD8 positive lymphocytes are 
highlighted by CD8 immunostain. (F) Tumor-associated neutrophils are highlighted by myeloperoxidase immunostain. (B-F) Brown 
stain indicates positive (mmunohistochemistry, magnification 200×).

increase in tumor size and lymphatic metastasis and reduced overall survival[3,12]. These non-structural ECM 
proteins have an important role during embryonic development but in adult life are only expressed during 
tissue remodeling and wound repair[18-20]. POSTN can act as both a promoter and a suppressor of cancer cell 
invasiveness, interacting with other ECM proteins, such as collagen types I and V, fibronectin, TnC, and 
heparin, and contribute to the activation of pathways of tissue remodeling, fibrogenesis, cell motility, 
angiogenesis, tumor invasiveness, and metastasis. POSTN and TnC cooperate to promote metastasis 
through the activation of the Wnt and Notch signaling. POSTN is also capable of recruiting TAM, making 
this matrix protein a potential curative target for drug development[21]. TnC binds many ECM proteins, 
including fibronectin, POSTN, collagen, fibrillin-2, and proteoglycans, probably playing a structural role 
and defining the stiffness of the microenvironment. In iCCA, TnC is selectively expressed by the tumor 
invasion front, and its expression correlates with adverse outcomes[22]. OPN is a glycosylated 
phosphoprotein produced by many cell types that is normally involved in bone remodeling, immune-
regulation, inflammation, and vascularization. The role of OPN in CCA has been covered recently[23,24]. OPN 
is in fact an important regulator of the repair response based on the progenitor liver cells that produce it 
and with an autocrine loop stimulates their proliferation and migration, which eventually leads to the 
ductular reaction. It also regulates the interaction between these cells and stromal cells; for example, 
through the mediation with transforming growth factor (TGF) β, it allows the activation of the fibroblasts 
that produce the other proteins, as well as the migration of macrophages[23,24]. For further information on the 
tumor matrix, see the work of Fabris et al.[25].

Cancer-associated fibroblasts
CAFs, the most represented cell type in the TME, are cells of mesenchymal origin that lay embedded into 
the tumoral ECM and have a prominent role in the production of ECM components and the degradation of 
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Figure 2. The complex interactions among the cell types composing TRS in CCA. In cholangiocarcinoma, neoplastic cells (CCA) are at 
the center of a complex interplay with a number of cell types that infiltrate the tumor microenvironment (TME) and a strongly modified 
extracellular matrix (ECM). Inflammatory cells and cancer-associated fibroblasts (CAFs), residing in close vicinity to CCA, can 
influence each other through the secretion of soluble mediators. CCA cells are able to recruit CAFs by secreting platelet-derived growth 
factor (PDGF)-D, transforming growth factor (TGF) β, and fibroblast growth factor (FGF); natural killer (NK) cells via the C-X-C motif 
ligand (CXCL) 9 - C-X-C motif chemokine receptor (CXCR) 3 axis; and cancer-associated macrophages (TAMs) through IL-6, IL-13, IL-
34, TGFβ, and osteoactivin. In turn, these cells exert a trophic effect on neoplastic cells by secretion of soluble mediators. CAFs are also 
actively involved in the recruitment of lymphatic vessels and in the modifications of the ECM by secreting metalloproteinases (MMPs)-
1, -2, -3, and -9, collagens, and other structural proteins such as osteopontin (OPN), tenascin C (TnC), and periostin (POSTN). The TME 
is also the site of an intense modulation of the innate and adaptive immune responses. Immune cells recruited into the tumor reactive 
stroma (TRS) influence each other in a difficult balance between immune surveillance and immune tolerance. Dendritic cells (DCs) 
stimulate the activation of tumor-infiltrating lymphocytes (TILs), while tumor-associated macrophages (TAMs) actively recruit tumor-
associated neutrophils (TANs). Conversely, myeloid-derived suppressor cells (MDSC) inhibit the activity of immune cells, such as TILs, 
TANs, and NKs. The ability of each cancer to respond to immune therapy depends on the balance between these factors and the 
adaptation of the TME. Association of different targets (immune checkpoints and/or signaling targets) may be a pathway to 
therapeutic success.

the native ECM[12,26]. CAFs are constitutively activated fibroblasts and express α-smooth muscle actin (α-
SMA), cluster of differentiation (CD) 10, and S100 calcium binding protein A4 (S100A4). The origin of 
these cells is debated, as it has been proposed that CAFs may derive from resident portal fibroblasts, from 
hepatic stellate, from bone marrow-derived mesenchymal cells, and/or epithelial/tumor cells, via EMT[15] 
and are recruited around neoplastic biliary epithelia by the secretion of platelet derived growth factor 
(PDGF)-D[27,28]. Independently from the histogenesis, CAFs actively influence tumor progression thanks to a 
complex cross talk with the other components of the TME[29]. Once recruited, CAFs can stimulate tumor 
growth by secreting factors such as hepatocyte growth factor, TGFβ, PDGF-B, heparin-binding epidermal 
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growth factor, and stromal cell-derived factor (SDF)-1[12,30,31]. Notably, SDF-1 is only weakly expressed by 
fibroblasts in the peritumoral area, but it is highly expressed and secreted by CAFs. Strong evidence for a 
role of CAFs in promoting CCA aggressiveness was demonstrated in a study in which a syngeneic rat model 
of CCA was treated with navitoclax (a small BH3-mimetic compound) to induce selective CAF depletion, 
thus suppressing tumor growth and improving host survival[26]. The relationship between CAF and other 
components of the TME, such as inflammatory cells and vessels, is very complex, and it is mediated by a 
series of growth factors [vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)], 
TGFβ, cytokines, and chemokines [monocyte chemoattractant protein (MCP-1) and C-X-C motif ligand 
(CXCL) 12 and 14] and MMPs that promote tumor growth and spread, modifying the matrix, attracting the 
precursors of vascular and lymphatic vascular cells, and favoring an immunosuppressive 
microenvironment[15].

Endothelial cells
An important but still little studied element in the TME of CCA is its lymphatic vascular bed. Lymphatic 
metastatic spread occurs early during the course of CCA progression and often precludes curative surgical 
approaches. Notably, lymphatic endothelial cells are more represented in the TRS than blood endothelial 
cells and are localized in close proximity to CAFs[15]. Their involvement in the progression and metastatic 
spread of CCA seems to be due to the ability of both neoplastic and stromal cells to secrete 
lymphangiogenic growth factors (including VEGF-C, VEGF-D, and angiopoietins)[32,33]. Lymphatic vessels 
have large fenestrations that make them more permeable to the passage of immune cells and they secrete 
many chemokines [e.g., C-C motif ligand (CCL) 21] that promote the intravasation of macrophages and 
other inflammatory cells[32,34]. It has been shown that increased lymphatic density is associated with a worse 
prognosis and reduced disease-free and overall survival[35,36].

Innate immune cells
Tumor-associated macrophages
Two macrophage populations coexist in the TME of CCA: the liver resident macrophages (or Kupffer cells), 
and TAMs. On the contrary to the non-tumoral tissue, populated more by the M1 (or classically activated) 
subtype, which exert proinflammatory effects and defend the organism from invasion of pathogens, TAMs 
are mostly of the M2 (or alternatively activated) type and derive from circulating CD14+CD16+ monocytes 
that are usually involved in tissue repair and remodeling, angiogenesis, and matrix deposition[37]. TAMs play 
an active role in suppressing T cell activation and proliferation, in the promotion of angiogenesis, in the 
induction of tissue remodeling, and in stimulating apoptosis of M1 macrophages, which, however, contrast 
the neoplastic cells[38,39]. Whereas CAFs are spread over the entire tumor mass, TAMs are mainly located at 
the tumor invasive front, putatively recruited by neoplastic cells. CCA cells in fact secrete interleukins (IL) -
6, -13, and -34, TGFβ, and osteoactivin, all molecules able to recruit monocytes and stimulate their M2 
transdifferentiation[40,41]. Conversely, CAFs support TAM recruitment to the tumoral microenvironment by 
secreting CCL2 and colony stimulating factor 1 (CSF1)[42]. Many other secreted chemotactic mediators such 
as the cytokines IL-1β, IL-4, IL-10, and IL-16, CCL3, CCL4, and CXCL12 play a supportive role[16,43].

TAMs can act as a trophic cell population for neoplastic cells by secreting IL6, tumor necrosis factor (TNF) 
α, TGFβ, and VEGF and activating cyclooxygenase-2 and WNT/β-catenin signaling[44-47]. TAM-secreted 
VEGF can also stimulate neoangiogenesis, thus contributing to CCA metastasis[48]. Moreover, TAMs are the 
main source of metalloproteases, in particular MMP-9, which, by degrading the matrix, favors metastasis[39]. 
Finally, TAMs can attract immunosuppressive cells, such as TANs and MDSCs, through the secretion of 
different soluble mediators (IL-4, IL-8, IL-10, CCL2, CCL17, and CCL22) to generate an 
immunosuppressive environment that favors the malignant behavior of CCA[49].
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Neutral killer cells
NK cells are a subpopulation of CD3-CD56+ lymphatic cells characterized by their ability to kill tumor- or 
virus-infected cells. Although NK cells are also known for their activity in recognizing and killing cancer 
cells, few studies have been performed in CCA. NKs can carry out their cytotoxicity through two pathways, 
one antigen-nonspecific, exploiting the release of enzymes such as perforin, proteases, and granzymes, and a 
direct one, through the activation of the Fas cell surface death receptor ligand (FasL)/TNF-related 
apoptosis-inducing ligand signal pathway[50]. The responsiveness of NK cells to the Fas/FasL pathway also 
has a drawback; in fact, a recent study demonstrated that, in vitro, iCCA cells express high levels of Fas and 
FasL, which induce apoptosis of NK cells, as an immune escape mechanism[51]. Conversely, the 
overexpression in CCA tumor cells of CXCL9, a ligand of C-X-C motif chemokine receptor (CXCR) 3, 
induces the recruitment of NK cells[52] that infiltrate the tumor and positively correlated with postoperative 
overall survival in a cohort of 70 patients[53]. Similarly, using a xenograft model in which iCCA-derived 
HuCCT-1 cells were xenotransplanted into non-immunocompetent NCr athymic nude mice, infusion of 
NK cells (SMT01) induced significant inhibition of tumor growth[54]. Furthermore, in vitro treatment of 
HuCCT-1 and NK co-cultures with cetuximab, an EGFR inhibitor, demonstrated a significant increase in 
NK cytolytic activity against tumor cells[55]. These data suggest a potential use of NK in the treatment of 
CCA. NK cells are characterized by the expression of natural killer group 2 member D (NKG2D) receptor, a 
receptor whose polymorphisms are linked to the susceptibility to cancer development[56]. A study on 82 
patients with eCCA who underwent surgical resection showed that overexpression of the NKG2D receptor 
on NK cells and its ligands in the cancer cells correlated with a better patient prognosis[57].

Tumor-associated neutrophils
Despite their importance in the immune response[58], there are very few studies on the involvement of 
neutrophils in the pathogenesis of CCA. Similar to TAMs, TANs are divided into two subcategories, N1, 
which is endowed with antitumor function, and N2, which has protumoral activity[59]. Circulating 
neutrophils are recruited to the tumor site by cells of the TME, such as CAFs [that secrete granulocyte-
macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), VEGF, 
and IL-1β], TAMs (IL-6 and IL-8), T lymphocytes (CXCL1, CXCL2, interferon γ, and TNFα)[60]. The 
neoplastic cells themselves secrete CXCL5, which induces neutrophils recruitment by activating the 
phosphatidylinositol 3-kinases/Akt and ERK1/2 pathways[61]. Once they reach the tumor site, TANs secrete 
a vast set of factors potentially involved in the biology of CCA, as mentioned above (such as MMP-8, MMP-
9, CXCL1, CXCL2, CXCL6, CXCL8, CCL7, and VEGF)[16,58]. It has been shown that, in both iCCA and 
eCCA, the accumulation of TANs leads to a worse overall and disease-free survival of tumoral patients[62-64]. 
Unfortunately, only a few studies have evaluated the impact of TANs on CCA and they are mostly 
observational.

Dendritic cells
DCs are antigen-presenting cells and are usually found in small numbers in healthy tissues. It should be 
noted that the TME often has fewer DCs than the surrounding healthy tissue[41]. Similar to TANs, the 
studies regarding DCs in CCA are also rather sporadic. From a topographical point of view, mature DCs 
tend to accumulate on the tumor invasion front, while immature DCs are found in the tumor bulk[65]. A 
more recent study also demonstrated in a cohort of 350 patients with iCCAs that accumulation of DCs in 
the peritumoral tissue, but not in the CCA, is associated with a worse outcome[66]. A strong interaction 
between DCs and T cells has also been demonstrated; in fact, the inhibition of IL-10 and TGFβ receptors 
and the overexpression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A) on 
DCs stimulates the antitumor activity of T cells against CCA[67,68]. Finally, a recent work with four different 
mouse models of iCCA showed that anti-CD40/PD-1 treatments, accompanied by gemcitabine/cisplatin, is 
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able to activate the DC compartment and decrease tumor burden, an effect dramatically reduced by DC 
depletion[69].

Myeloid-derived suppressor cells
A family of immune cells only recently studied in CCA is that of the MDSCs[70]. MDSCs are a large group of 
myeloid-derived cells whose number expands in diseases such as cancer or chronic inflammation and can 
exert an immunosuppressive effect[70,71]. MDSCs inhibit the action of cytotoxic T cells and NK cells by 
producing indoleamine 2,3-dioxygenase, reactive oxygen species (ROS), inducible nitric oxide synthase, 
prostaglandin E2, arginase, and immunomodulatory cytokines such as IL-10 and TGFβ[70]. A study 
performed on a very small cohort of 17 patients with CCA showed an increase in circulating MDSCs 
compared to controls[72], an observation confirmed in a more recent study[73]. Zhang et al.[74], using an 
Mdr2-/- mouse in which iCCA was induced by hydrodynamic tail injection of plasmids known to favor its 
development (NICD + AKT and YAP + AKT), showed that accumulation of MDSCs favored tumor 
progression. Notably, gut sterilization was able to reduce MDSC recruitment. This observation 
demonstrates that hepatic recruitment of MDSCs can be modulated by the gut microbiota. Furthermore, 
using a different mouse model of iCCA [LSL-KrasG12D; Trp53Flox/Flox; Alb-Cre (KPPC) mouse], it was shown 
that neoplastic cells can recruit MDSCs via GM-CSF and that administering a blocking monoclonal 
antibody halts the recruitment of myeloid cells and decreases the growth and spread of the tumor[73]. In 
addition, the use of antibodies targeting a specific ApoE MDSC subset, coupled with TAM depletion, can 
increase the antitumoral effect of immune checkpoint blockade monotherapy[75].

Adaptive immunity
TILs are T cells that accumulate within the tumor stroma and counteract tumor development in an antigen-
specific manner. The TIL population is composed by different cell types and includes CD4+ T cells (T helper 
or Th lymphocytes), CD4+CD25+ regulatory T cells (Tregs), CD8+ T cells (cytotoxic T lymphocytes), and 
CD20+ B lymphocytes. In general, in biliary tract tumors, the cells that mount the adaptive response tend to 
decrease during the process that goes from dysplasia to frank tumor and are also more numerous in eCCA 
than in iCCA[76]. The different components of TILs accumulate in specific areas of the tumor. While CD20+ 
B cells are present throughout the tumor, CD4+ cells accumulate in the peritumor area and CD8+ T cells on 
the tumor front[62,76,77]. Several studies showed that an enrichment in CD4+, CD8+, and CD20+ cells correlates 
with a better overall survival and lower recurrence rates in patients with both iCCA and eCCA[63,76,78-81].

The adaptive immune response is also finely tuned by a set of stimulatory or inhibitory molecules expressed 
on the membrane of T cells called immune checkpoints that mostly function to avoid autoimmune 
reactions against self-cells. The downside of this mechanism is that it can be used by cancer cells to avoid 
being recognized by immune surveillance, a mechanism known as immune escape[13,82]. The main 
stimulatory molecules belonging to immune checkpoints include CD27, CD28, CD40, CD137, CD278, 
OX40, and glucocorticoid-induced TNF receptor, while among the inhibitory ones the best known and 
studied are cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1) and its ligand PD-L1, 
lymphocyte activation gene-3, T-cell immunoglobulin, and mucin protein-3[83]. Pharmacological blockage of 
inhibitory checkpoint molecules is currently exploited for the development of anti-tumor drugs, and there 
are several anti PD-1, PD-L1, and CTLA-4 molecules approved for use or currently in clinical trials for the 
treatment of several solid cancers, including CCA[84-88]. Data regarding the predictive value of PD-1 and PD-
L1 expression on patient outcome are discordant and conflicting. One recent meta-analysis of 11 studies 
with more than 1000 patients showed that the expression of PD-L1 by tumor cells does not correlate with a 
worse overall survival of the patients even after stratifying by type of CCA[89], but another meta-analysis 
provided opposite results[90]. As for PD-1, recent work has shown that, in iCCA, the increase in CD68+ 
macrophages and CD8+ T lymphocytes expressing PD-1 correlates with a worse postoperative survival[91]. 
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Furthermore, in eCCA, high PD-1 expression appears to correlate with increased lymphatic metastases and 
lower patient survival[92]. Only one study evaluated the role of CTLA-4 expression as a prognostic indicator 
in CCA, demonstrating that, in eCCA, a high CTLA-4 H-score predicts better overall and disease-free 
survival[93].

Immunosuppressive tumor microenvironment
It is becoming clear that TME can generate an immunosuppressive environment and confer to the tumor 
cell a survival advantage by inducing tumor immune evasion. This is likely one of the main mechanisms 
responsible for the still disappointing results of immunotherapy in CCA[3,12]. For example, secretion of CCL2 
by cells populating the TME, such as CAFs and tumor cells, leads to the enrichment of Tregs and of 
MDSCs. MDSCs in turn secrete ROS and other immunomodulatory compounds able to repress the activity 
of cytotoxic T cells (in particular CD8+ T cells) and NK cells. CAFs within the TRS of CCA secrete CXCL12, 
which may prevent migration of T cells[94].

The effects of Tregs and their contribution to the pathogenesis of CCA, as well as their relevance as a 
prognostic index of CCA, are still debated. Data from two cohorts of patient with eCCA indicate the 
presence of Tregs as an indicator of poor outcome[63], while other papers identify their over-representation 
as a positive prognostic factor[76]. From a biological point of view, Tregs secrete immunosuppressive 
mediators, such as IL10 and TGFβ, and further depress the antitumoral activity of CD8 T and NK cells[95,96]. 
A subset of Tregs, forkhead box P3 (FoxP3)+CD25+, bind IL-2, reducing the IL-2-mediated activation of the 
immune milieu[95]. The accumulation of FoxP3-positive Tregs is a distinctive trait of CCAs, showing worst 
outcome and greater tendency to lymphocyte metastasis[63,66]. Moreover, the accumulation of FoxP3+ Tregs is 
accompanied by an increase in expression of CTLA-4, also an indicator of poor outcome[97].

IMMUNOTHERAPEUTIC STRATEGIES TO TREAT CCA
To date, only pembrolizumab (an anti-PD-1 monoclonal antibody) is an approved treatment in CCA. 
Several other drugs and methods that exploit an immunotherapeutic approach are under evaluation. These 
studies are summarized in Table 2.

Immune checkpoint inhibitors
Although the theoretical premises for the use of immune checkpoint inhibitors for the treatment of CCA 
are solid, the expectations were not fulfilled. The first clinical trials gave encouraging results, especially in 
patients with microsatellite instability due to mismatch repair deficiency. In these patients, the use of 
pembrolizumab, a humanized anti-PD-1 antibody (NCT01876511), gave a good response, with one patient 
in remission and three with stable disease[98]. Moreover, the analysis of five single-arm open-label clinical 
trials (KEYNOTE-012, -016, -028, -158, and -164) demonstrated an overall response rate (ORR) of 78%. 
However, these results were not confirmed in a larger study on 104 patients, KEYNOTE-158 
(NCT02628067), in which the ORR was 5.8%. A clinical trial using nivolumab, an anti-PD-1 antibody 
(NCT02829918), failed to show favorable results[99]. CTLA-4 inhibitors are little studied in CCA and mostly 
in combined treatments in the hope to increase their efficacy. Some clinical trials have studied the 
combination of treatment with nivolumab and ipilimumab, an anti-CTLA-4 antibody (NCT02834013 and 
NCT02923934), in advanced solid tumors. Treatment of 39 patients showed an ORR of 23% and a disease 
control rate (DCR) of 44%, but with an overall survival (OS) of only 5.7 months[100]. The use of anti-CTLA-4 
antibodies with anti-PD-1L antibodies is currently being evaluated in a phase II clinical trial 
(NCT04634058) whose results are not yet available. Pembrolizumab was also used in combination with 
levatinib, a tyrosine kinase inhibitor active on VEGFR1, VEGFR2, and VEGFR3, giving an ORR of 25% and 
a DCR of 78%[101]. Currently, a clinical trial for advanced CCA is in the recruitment phase (NCT04550624). 
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Table 2. Clinical trials involving use of immune checkpoint inhibitors

Clinical trial Phase Drugs Target Status Results

NCT01876511 2 Pembrolizumab PD-1 Completed 1 patient in remission, 3 patients stable

NCT02628067 2 Pembrolizumab PD-1 Recruiting ORR: 5.8%

NCT02829918 2 Nivolumab PD-1 Active, not recruiting Failed

NCT02834013 2 Nivolumab 
Ipilimumab

PD-1 
CTLA-4

Recruiting ORR: 18% 
PFS: 2 months 
OS: 12 months

NCT02923934 2 Nivolumab 
Ipilimumab

PD-1 
CTLA-4

Active, not recruiting ORR: 23% 
OS: 5.7 months

NCT04634058 2 anti-CTLA-4 abs 
anti-PD-1L abs

CTLA-4 
PD-1L

Not yet recruiting No data available

NCT04550624 2 Pembrolizumab 
Lenvatinib Mesylate

PD-1 
VEGFR1/2/3

Recruiting ORR: 25% 
DCR: 78%

NCT04550624 2 Pembrolizumab 
Lenvatinib Mesylate

PD-1 
VEGFR1/2/3

Recruiting No data available

NCT02443324 1a/1b Pembrolizumab 
Ramucirumab

PD-1 
VEGFR2

Active, not recruiting ORR: 4% 
Disease stabilization: 35%

NCT01853618 1/2 Tremelimumab 
TACE

CTLA-4 Completed Partial response: 13% 
Disease stabilization: 31%

NCT01869166 1/2 CART-EGFR EGFR Unknown Partial response: 29% 
Disease stabilization: 57%

NCT01935843 1/2 CART-HER-2 HER-2 Unknown Partial response: 1 patients 
Disease stabilization: 5 patients

ORR: Overall response rate; PFS: progression-free survival; OS: overall survival; DCR: disease control rate.

Another phase I study, KEYNOTE-098 (NCT02443324), used pembrolizumab in combination with 
ramucirumab, a monoclonal antibody against VEGFR2, but the response rate was 4% with disease 
stabilization in 35% of cases[102]. Tremelinumab, an anti CTLA-4 inhibitor, is being evaluated in a phase I 
clinical trial in combination with radiofrequency ablation (NCT01853618). Among 20 patients, 13% showed 
a partial response and 31% a stabilization of the disease. A recent study divided iCCA into four subtypes 
based on the differences of cell components of the TME (immune desert, immunogenic, myeloid, and 
mesenchymal). This stratification was proposed to better allocate patients to a more correct therapeutic 
intervention. In particular, the authors suggested treating with immune checkpoints inhibitor only the 
patients belonging to the immunogenic subtype, to maximize the potential anti-tumorigenic effects of the 
compounds[103].

Other immune strategies
These are mostly in the experimental or preclinical stage. The rationale behind the study of cancer vaccines 
is to identify proteins specifically expressed by cancer cells that could be recognized and destroyed by the 
immune cells. Few studies, usually composed of small cohorts, have been conducted in CCA. Identifying 
tumor-related proteins that can be specifically targeted by the vaccine is a daunting task. Studies conducted 
using Wilms’ tumor 1 (WT1) and Mucin-1 (MUC-1), proteins expressed by 70%-80% of iCCAs, as targets 
gave unsatisfactory results[104,105]. Similar disappointing results were obtained by co-treatment with 
gemcitabine and WT1 vaccine in four CCA patients[106].

Another strategy to manipulate the immune system and train it to search and destroy tumoral cells is the 
use of adoptive cell therapies (ACTs), such as the autologous infusion of TILs or engineered T cells 
expressing with chimeric antigen receptor (CAR) or T cell receptors. The use of these therapeutic 
approaches in CCA are limited to case reports or small clinical trials, however the preliminary results are 
promising[107-109]. More recently, small phase I clinical trials have used CART technology. In one study, 14 
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patients with CCA were treated with infusions of EGFR-targeting CART cells (NCT01869166)[110], while in a 
second clinical trial (NCT01935843) patients were infused with specific CARTs for human epidermal 
growth factor receptor 2[111]. Both trials resulted in an increase in disease-free survival with respect to 
patients treated with chemotherapy drug only. Several recent studies used new and improved (fourth-
generation) CARTs that target proteins highly expressed by CCA, such as CD133[112], MUC-1[113], and 
integrin αVβ6[114]; these have been shown to be extremely efficient both in the expansion of the CART 
population and in the lysis of different CCA cell lines, in vitro.

CONCLUSION
Despite the increased interest of the scientific community, treatment of cholangiocarcinomas remains an 
unmet need. Currently, a therapeutic option that has shown good efficacy is liver transplantation, which, 
only in very recent years, is being proposed for patients with iCCA and pCCA without distant metastases 
and with an early disease[115]. Aside from this option, there are no other truly effective treatment options. 
The genetic and phenotypic diversity that characterizes this family of rare cancers has negatively affected the 
progress in this field. An important strategy to overcome this impasse is to better understand the 
mechanisms that mediate the crosstalk between tumor cells, the variety of TME cells described above, and 
the components of the ECM. In recent years, several studies have aimed at classifying CCA on the basis of 
not only of their immunohistochemical and anatomopathological phenotype but also their genetics, signal 
pathways, and actionable targets. A seminal work by Sia et al.[116] classifies iCCAs into proliferation class and 
inflammation class, based on specific signaling pathways and mutations. Notably, proliferation class shows a 
worse outcome with respect to the inflammatory one. Using a similar approach, mixed hepatocellular CCA 
(HCC/CCA)[117] and eCCA[118] have also been subcategorized. Using a molecular approach, eCCAs were 
classified in metabolic, mesenchymal, proliferative, and immune classes, all characterized in terms of 
mutations and modulation of different actionable targets. Furthermore, the development of single-cell RNA 
sequencing now allows analysis of the discrete cell populations in the TRS, including CAFs[119] and immune 
response cells[120], and to study in more detail the crosstalk between these cell milieus[121]. Finally, a recent 
study used nano liquid chromatography coupled to matrix-assisted laser desorption/ionization-time of 
flight (MALDI-TOF/TOF) analysis to study the composition of the matrix (or matrisome) in CCA[122]. 
Using this approach, these authors demonstrated that the aberrant deposition of collagen type III alpha 1 
chain directly stimulates the migration of neoplastic cells[122]. Such studies will not only lead to a better 
understanding of the mechanisms of development and growth of the CCA but also open new avenues for a 
better allocation of patients to the most appropriate treatments. For example, when planning combination 
treatment with immune checkpoint inhibitors and other molecularly targeted drugs, a personalized 
approach based on genetic mutations and signaling pathways deregulated in specific CCA subclasses may 
confer a therapeutic advantage.
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