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Abstract
In recent years, transcriptomics has emerged as a key focus in neuroscience research, as transcriptome 
modifications play a significant role in influencing various biological processes. N6-methyladenosine (m6A) 
represents a dynamic and reversible form of mRNA modification prevalent in eukaryotes. This modification is 
involved in virtually every critical stage of RNA metabolism, including mRNA stability, transcription, translation, 
splicing, nuclear export, and decay, thereby playing a pivotal role in normal brain development. Accumulating 
evidence suggests that m6A modification plays a substantial role in various neurodegenerative diseases, such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease 
(HD), while abnormal m6A modification can lead to neurodevelopmental disorders. This review summarizes the 
relationship between m6A modification and various neurodegenerative diseases and elucidates its potential 
pathogenic mechanisms at the molecular level.
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INTRODUCTION
Chemical modifications in RNA are considered important mechanisms for regulating gene expression and 
protein translation. RNA methylation modifications include N6 methyladenosine (m6A), 
N1 methyladenosine (m1A), N6, 2-O-dimethyladenosine (m6Am), 5-methylcytosine (m5C), 
5-hydroxymethylcytosine (5hmC), and 7-methylguanine (m7G), among which m6A is the most common 
and abundant eukaryotic methylation modification type in RNA[1-3].

M6A methylation modification is a reversible process that involves the participation of methyltransferases 
(Writers), demethylases (Erasers), and methylated reading proteins (Readers)[4]. Methyltransferases, which 
include METTL3, METTL14, WTAP, and KIAA1429, catalyze the addition of a methyl group to the sixth 
nitrogen of adenosine during the methylation process[5]. Demethylases, such as FTO and ALKBH5, can 
remove this methylation[6]. At the same time, methylated RNA base sites require specific enzymes for 
recognition, known as methylated reading proteins (Readers). These include YTH domain proteins (e.g., 
YTHDF1/2/3 and YTHDC1/2), nuclear heterogeneous ribonucleoprotein (hnRNP), and IGF2BP7[7] 
[Figure 1].

Neurodegenerative disorders, encompassing Alzheimer’s disease (AD), Parkinson’s disease (PD), 
amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Huntington’s disease (HD), 
represent a spectrum of neurological conditions characterized by the relentless degeneration of neurons 
within the central nervous system (CNS) or the peripheral nervous system (PNS)[8,9]. Recent studies have 
illuminated a pivotal role for m6A RNA methylation modification in the intricate tapestry of brain 
development. Notably, m6A-associated proteins exhibit ubiquitous expression and profound enrichment 
within neuronal tissue, intricately modulating fundamental processes such as memory formation and 
consolidation, adult neurogenesis, axonal regeneration, and cerebellar maturation[10].

Indeed, the exploration of m6A RNA modification stands as a forefront and highly sought-after research 
avenue within the vast landscape of life sciences. While the spotlight has predominantly shone on its 
implications in cancer research, encompassing diverse malignancies like hematological tumors, uterine 
cancer, and breast cancer[11-13], a notable research void persists in the realm of neurodegenerative diseases. 
This gap underscores the urgency to delve deeper into the role of RNA methylation modification, 
particularly m6A, in these complex and devastating neurological conditions. In this context, we review the 
pivotal roles of m6A modification in select neurodegenerative disorders, aiming to stimulate research and 
enhance understanding of its intricate interplay with neurodegeneration.

AD
AD is a neurodegenerative disorder associated with advancing age, representing the most prevalent 
underlying cause of dementia[14]. In the United States, about 10% of people aged 65 and above suffer from 
AD. The ubiquitous neuropathological hallmarks of AD encompass synaptic and neuronal dysregulation, 
manifested by the presence of intracellular neurofibrillary tangles, coupled with elevated concentrations of 
neurotoxic amyloid proteins and the extracellular accumulation of neuropathic plaques[15,16]. Multiple 
studies have demonstrated that dysregulation of RNA methylation is associated with AD, and m6A is the 
predominant modification type found in eukaryotic RNA[17].

APP/PS1 and 5XFAD mice have been widely used in the study of the pathogenesis and therapeutic 
effectiveness of AD[18]. Quantitative analysis of RNA m6A methylation levels in APP/PS1 transgenic mice of 
AD showed an increase in m6A methylation levels in the cortex and hippocampus. Meanwhile, in the APP 
mouse model, the expression of m6A methyltransferase METTL3 increased while the expression of m6A 
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Figure 1. Three kinds of enzymes involved in m6A methylation modification. m6A: N6-methyladenosine.

demethylase FTO decreased[19]. However, in the 6-month-aged 5XFAD mouse model, an increase in FTO 
expression and a decrease in METTL3 levels were observed through RNA sequencing and proteomic 
analysis, which is consistent with a reduction in m6A modification levels in these mice[20]. Interestingly, in 
human AD samples, METTL3 is downregulated in the soluble fraction of the hippocampus but upregulated 
in the insoluble fraction, mirroring the accumulation of insoluble Tau observed in AD patients[21,22].

AD patients have a significant amount of β-amyloid protein, known as Aβ, in their brains. This protein can 
lead to the formation of senile plaques and the apoptosis of nerve cells, which are the hallmarks of AD[23]. 
Recent investigations have uncovered that a scarcity of methyltransferase such as METTL3 in macrophages 
derived from monocytes can enhance cognitive performance in amyloid-beta-induced AD mouse models. 
Specifically, the absence of METTL3 triggers the downregulation of α-Tubulin Acetyltransferase 1 (ATAT1), 
resulting in decreased levels of α-tubulin acetylation. As a consequence, this promotes the migration of 
monocyte-derived macrophages and facilitates the clearance of Amyloid-beta (Aβ), ultimately mitigating the 
symptoms of AD[24].

Tau protein hyperphosphorylation is one of the most important causes of AD, which can lead to 
neurofibrillary tangles, neuronal death, and functional impairment[25]. In a fruit fly model, it was found that 
the absence of m6A can enhance the toxicity of Tau in the fruit fly AD model, while the absence of 
METTL3, METTL14, and YTHDF can result in profound motor impairments in fruit flies[26]. Lysine-specific 
demethylase 1A (KDM1A) plays a protective role in the hippocampus and cortex of mice, preventing 
neurodegeneration and cognitive decline. However, in its absence, neurodegeneration and cognitive 
impairment are observed[27]. Recent research indicates that KDM1A promotes the expression of METTL3 
through the upregulation of the m6A-dependent pathway. This, in turn, enhances the autophagic clearance 
of phosphorylated Tau (p-Tau), offering protection against neurodegenerative lesions in AD[28].

Synaptic degeneration arises during the initial phases of AD and is intimately linked to the decline in 
cognitive abilities[29]. In the AD mouse model with m6A methyltransferase METTL3 knockdown, m6A 
modification was reduced in hippocampal neurons, resulting in notable memory impairments in mice, 
accompanied by widespread synaptic loss and neuronal cell death, as well as oxidative stress and abnormal 
cell cycle events[21]. Circular RNA (circRNA) is abundant in neural tissue, and its abnormal expression 
precedes AD symptoms, which is strongly associated with the severity of clinical dementia[30,31]. CircRIMS2, 
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mediated by METTL3-dependent m6A modification, exhibited marked upregulation in 4-month-old 
APP/PS1 mice. Elevated expression of circRIMS2 led to deficits in synaptic function and memory capacity 
in 4-month-old C57BL/6 mice, while silencing circRIMS2 significantly rescued synaptic dysfunction in AD 
mice[32].

The modification of m6A demonstrates temporal and spatial differences during neural development and 
aging processes. Specifically, in the brains of mice with AD, m6A functions in a distinct spatial and 
temporal pattern[33]. The m6A level is highest in the brains of 2-week-aged and 52-week-aged (elderly) mice, 
while the lowest level is detected in the brains of 4-week-aged and 6-week-aged (adolescent) mice[26]. 
Investigations have demonstrated that m6A assumes a pivotal function in modulating neuronal maturation 
and exerts a more profound influence during both the initial and terminal phases of development[33].

In essence, investigations utilizing AD mouse models reveal intricate dynamics in m6A methyltransferases 
and demethylases, intimately linked to disease progression. Specifically, METTL3 depletion in macrophages 
bolsters Aβ clearance, whereas its aberrant regulation in neurons disrupts synaptic function and memory. 
Notably, Tau hyperphosphorylation, a process modulated by m6A-associated pathways, contributes 
significantly to AD pathogenesis. Moreover, circRNA dysregulation, a consequence of METTL3-mediated 
m6A modifications, precedes AD symptoms and adversely affects synaptic function. The m6A modification 
displays distinct temporal and spatial patterns during neural development and aging, underscoring its 
pivotal role in orchestrating neuronal maturation and AD progression.

PD
PD stands as one of the most prevalent age-related neurodegenerative disorders, primarily targeting 
dopaminergic neurons[34]. The pathological hallmarks of this disease include neural inclusion bodies in the 
form of Lewis bodies and Lewy neurites, as well as cell loss in the substantia nigra and other brain 
regions[35,36]. Recent research endeavors have unveiled a compelling association between multiple m6A-
methylated proteins and PD, hinting at a potential role of m6A regulatory factors in the intricate 
pathogenesis of this disorder[37].

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to construct PD animal models. 
This neurotoxin exerts its neurotoxicity by causing a series of injuries, ultimately leading to damage to 
dopaminergic neurons in the substantia nigra compacta and striatum[38]. In the PD mouse model 
constructed by MPTP, the m6A modification level decreased and the demethylase FTO significantly 
increased in the tissues of PD mice. Furthermore, the striatal expression of m6A methyltransferases, 
METTL3 and RBM15, decreased in PD mice, whereas the expression of the m6A demethylase ALKBH5 
increased in the substantia nigra. In parallel, compared to control group mice, the expression level of 
methylated reading proteins YTHDF1 was downregulated in MPTP-treated mice[39]. Prior research 
underscores the pivotal role of YTHDF1 in the CNS, as it has been implicated in inducing axonal 
regeneration and regulating axonal guidance[40,41]. These findings suggest that disruptions in m6A 
modification pathways may contribute to the pathological processes underlying PD.

Alpha-synuclein (α-Syn), a highly representative biomarker of PD, has been instrumental in the diagnosis of 
this condition[42]. The abnormal accumulation of α-Syn plays a pivotal role in the onset and progression of 
PD, impacting various pathological processes including mitochondrial dysfunction, oxidative stress, 
neuroinflammation, and autophagy[43]. Analysis shows that METTL14 is associated with plasma α-Syn, 
which is closely related to the severity of PD disease. Further investigation suggests that METTL14 interacts 
with the m6A motif within the coding sequence (CDS) region of α-Syn, thereby modulating the m6A 
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modification of α-Syn mRNA through an m6A-YTHDF2-dependent mechanism[44]. Notably, in peripheral 
blood mononuclear cells of PD patients, the levels of both m6A and its methyltransferase METTL14 are 
significantly reduced. This reduction leads to impaired m6A modification of α-Syn mRNA, ultimately 
contributing to the abnormal accumulation of α-Syn and exacerbating PD pathology[45,46].

Glutaredoxin (GLRX), a small protein featuring a single active site cysteine pair, is paramount in sustaining 
the intracellular reducing environment and safeguarding cells against oxidative stress. Moreover, it plays a 
pivotal role in the pathogenesis of numerous neurodegenerative disorders, including PD[47]. Specifically, 
GLRX1 is instrumental in modulating the apoptotic signals in dopaminergic neurons, and its absence 
exacerbates the demise of these cells in PD patients[48]. NRF1, a vital transcriptional regulatory factor, 
governs the expression of proteasome genes in neurons. Notably, its expression levels are diminished in PD 
rat models[49]. It has been reported that NRF1 can alleviate motor impairment and dopamine neuronal 
deterioration, triggered by MPTP in PD mice, by elevating the transcription level of METTL3 and 
enhancing the m6A modification process of GLRX mRNA[50].

In general, PD is a neurodegenerative condition primarily impacting dopaminergic neurons, marked by the 
presence of Lewis bodies and cell loss, and has recently been implicated in the context of m6A-methylated 
proteins. MPTP-induced models of PD exhibit perturbations in m6A modifications and alterations in the 
expression of associated enzymes, consequentially impacting dopaminergic neurons. α-Syn, an important 
biomarker for PD, undergoes abnormal accumulation and interacts with METTL14, modulating its m6A 
modification status, which is notably diminished in PD patients. GLRX plays a pivotal role in maintaining 
neuronal health, and NRF1, by regulating METTL3, fortifies the m6A modification of GLRX mRNA, 
thereby safeguarding neurons. This intricate interplay of m6A modifications underscores the complexity of 
PD pathogenesis.

ALS/FTD
ALS is a neurodegenerative disease that progresses rapidly and has a high mortality rate[51]. FTD belongs to 
the second largest family of hereditary cognitive impairment, mainly affecting personality, social behavior, 
and language function[52]. Up to 50% of ALS patients may experience varying degrees of cognitive 
impairment, with some developing into FTD, and patients with advanced FTD may also exhibit clinical 
manifestations of ALS. Moreover, ALS and FTD can occur simultaneously in the same family or even in the 
same patient[53]. TDP-43 positive aggregates were found in neurons of the vast majority of ALS and FTD 
patients, and the same FUS positive aggregates were also observed in neurons of ALS patients with FUS 
mutations and some FTD patients[54,55]. In recent years, it has been discovered that mutations in certain 
genes can lead to the phenotype of both ALS and FTD, and can even manifest as both ALS and FTD 
phenotypes simultaneously[56]. Therefore, the overlap in clinical manifestations, pathology, and genetics 
closely links ALS and FTD, two seemingly dissimilar diseases.

A hexanucleotide repeat expansion (HRE) of a GGGGCC repeat within the first intron of C9orf72 
(GGGGCC) is the most prevalent genetic factor of ALS and FTD[57,58]. Based on post-mortem tissue study in 
patients with C9orf72-ALS/FTD, a conspicuous reduction in the expression levels of methyltransferases 
METTL3 and METTL14 was discerned, accompanied by a marked downregulation of m6A levels. This 
finding is in harmony with the observed downregulation of m6A methylation in spinal cord neurons 
(iPSNs) derived from induced pluripotent stem cells (iPSCs) sourced from ALS/FTD patients[54,59]. 
Intriguingly, in iPSNs differentiated from iPSCs, the strategic modulation of either methyltransferase or 
demethylase aimed at reinstating the m6A level exhibits the potential to mitigate the disease-related 
phenotypes associated with ALS/FTD[59].
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The nuclear clearance and cytoplasmic localization errors of TDP-43 are pathological markers of ALS, FTD, 
and related neurodegenerative diseases, collectively referred to as TDP-43 proteinopathy[60,61]. This 
mislocalization of TDP-43 from the nucleus to the cytoplasm, along with its clearance from the nucleus, is 
intimately correlated with RNA splicing errors, translational impairments, and widespread RNA instability 
in ALS[62]. Furthermore, studies have shown that the upregulation of mRNA expression levels encoding 
ribosomal proteins and oxidative phosphorylase is associated with TDP-43 deposition in neurons lacking 
the RNA methyltransferase METTL14[63]. Intriguingly, research has uncovered that not only do most 
TDP-43 substrates bear m6A modifications, but also YTHDF2 exacerbates TDP-43-related toxicity in both 
rodent and human neuronal models[64].

Human alphaherpesvirus 1 (HSV-1) commonly establishes a latent infection within the trigeminal nerve, 
which can persist lifelong and has garnered attention as a potential contributor to the development of ALS 
and FTD[65]. Recent research has illuminated the mechanisms underlying HSV-1’s interaction with cellular 
RNA methylation pathways. Specifically, during the early stages of infection, HSV-1 enhances the 
expression of m6A methyltransferases, such as METTL3 and METTL14, as well as m6A reader proteins, 
including YTHDF1, YTHDF2, and YTHDF3. Subsequently, HSV-1 inhibits the expression of m6A 
demethylases like FTO and ALKBH5, thereby promoting viral replication by modulating the RNA 
methylation landscape[66].

The formation of inclusion bodies composed of dipeptide repeat proteins (DPRs), particularly the positively 
charged and arginine-rich DPR protein poly(GR), is recognized as a pathological hallmark of ALS and 
FTD[67]. Poly(GR) exhibits considerable toxicity in clinical models of ALS/FTD, manifesting through 
nucleolar damage, inhibition of protein synthesis, disruption of ribosomal RNA processing and biogenesis, 
interactions with RNA-binding proteins, and alterations in the liquid-liquid phase separation of 
membraneless organelles[68]. Remarkably, studies have demonstrated that mRNA modified with m6A 
modification and the m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in the 
brains of ALS/FTD mouse models and FTD patients but also contribute to the formation of these 
inclusions. By incorporating RNA into the inclusions, m6A modifications and YTHDF proteins may 
interrupt essential interactions between poly(GR) and proteins like G3BP1 or YTHDF1, ultimately 
enhancing poly(GR) aggregation[69].

Translocated in liposarcoma/fused in sarcoma (TLS/FUS) is a nuclear RNA/DNA binding protein that, 
when mutated, can lead to the development of ALS of the spinal cord. Mutations in the C-terminal nuclear 
localization signal (NLS) of TLS/FUS have been specifically linked to the onset and severity of ALS 
symptoms[70,71]. These mutations disrupt the proper localization of TLS/FUS within the cell, causing it to 
accumulate in the cytoplasm, where it forms cytotoxic aggregates through a process known as liquid-liquid 
phase separation (LLPS)[72,73]. Notably, TLS/FUS has a preference for binding to mRNA fragments that are 
modified with m6A modification. However, mutations in the NLS of TLS/FUS can reduce its specificity for 
binding to these modified RNA fragments. Furthermore, the interplay between TLS/FUS and m6A-
modified mRNA segments has been demonstrated to hinder the assembly of cytotoxic agglomerates via 
LLPS, while the dispersion of these modified RNA fragments throughout cytoplasmic TLS/FUS foci 
conspicuously augments cellular viability[74]. This observation implies that this specific interaction may serve 
as a safeguard against the onset and progression of ALS, underscoring its protective function in the context 
of this neurodegenerative disorder.

ALS and FTD exhibit significant clinical, pathological, and genetic intersections, with TDP-43 
mislocalization and alterations in m6A RNA methylation standing as pivotal factors in their pathogenesis. 
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Mutations in the C9orf72 gene, resulting in the formation of HREs, contribute to the development of both 
ALS and FTD, impacting methyltransferases METTL3/14 and modulating m6A levels. Additionally, HSV-1 
infection dynamically modulates m6A pathways, enhancing viral replication strategies. In the context of 
ALS and FTD, DPR proteins such as poly(GR) form characteristic inclusions that co-localize with m6A-
modified RNA and YTHDF proteins, underscoring their involvement in disease mechanisms. Meanwhile, 
mutations in TLS/FUS genes, prevalent in ALS, disrupt proper nuclear localization, leading to the formation 
of cytotoxic aggregates. Intriguingly, these mutations’ interaction with m6A-modified RNA appears to 
hinder aggregate formation, suggesting a potential protective mechanism against disease progression.

HD
HD is an autosomal dominant neurodegenerative disease, primarily due to a genetic alteration in the HTT 
gene situated on chromosome 4, leading to the production of a mutated Huntington protein[75,76]. HD 
patients typically develop symptoms between the ages of 30 and 40, mainly characterized by involuntary 
dance-like movements, cognitive impairment, and mental abnormalities. The course of the disease ranges 
from 10 to 20 years, ultimately leading to the patient’s death[77]. So far, there is no specific drug that can 
prevent the pathological process of HD, mainly due to the unclear pathological mechanism of the 
disease[78,79].

Hdh knockout mice are one of the commonly used animal models for studying HD, and HdhQ111 
knockout mice are a group of them with 111 HD polyglutamine fragment residues[80]. High methylation of 
m6A in synapse-related genes was observed in the hippocampal transcriptome of Hdh+/Q111 mice. Research 
has uncovered that m6A modification in the hippocampus of individuals with HD is abnormally regulated 
in a manner that is influenced by experiences. This aberrant regulation results in the demethylation of 
crucial synaptic tissue components, potentially underpinning the cognitive impairments observed in HD[81]. 
Consistent with these data, knockdown of m6A demethylase FTO in HD mice can improve spatial and 
recognition memory[82].

In the realm of amplifying CAG repeats, alongside the production of the full-length (FL) HTT mRNA 
isoform, two smaller transcripts arise due to incomplete splicing. These transcripts, designated HTT1a, 
encompass exon 1 and intron 1 sequences in their 5’ region, a phenomenon attributed to abnormal 
polyadenylation at an intrinsic polyA site within intron 1[83,84]. Notably, HTT1a encodes not only the well-
known highly pathogenic HTT exon 1 protein, which is prone to aggregation, but also contributes to the 
formation of mRNA nuclear clusters that exhibit resilience against HTT antisense oligonucleotides (ASOs) 
therapy[85,86]. It is imperative to mention that pharmacological interventions aimed at inhibiting the m6A 
methyltransferase METTL3 or specifically demethylating HTT intron 1 have been found to significantly 
reduce the transcription level of HTT1a in HD cells[85]. This suggests that m6A methylation within intron 1 
may be influenced by CAG amplification and plays a pivotal role in the production of aberrantly spliced 
HTT1a transcripts[87].

The pathological hallmark of TDP-43 mislocalization from the nucleus to the cytoplasm has emerged as a 
consistent feature in patients and mouse models of ALS, FTD, and HD[88,89]. Intriguingly, recent 
advancements in research have illuminated that TDP-43 deficiency can instigate somatic trinucleotide 
repeat expansion, exacerbating the neuropathological manifestations observed in HD. Specifically, targeted 
knockdown of endogenous TDP-43 in the striatum of HD knock-in mice has been shown to accelerate the 
expansion of CAG repeats[90,91]. Furthermore, recent investigations have highlighted TDP-43 dysfunction 
and aberrant m6A modification as potential contributors to incorrect splicing in HD, thereby modulating 
the expression of striatal genes associated with HD[88]. Notably, the reduced binding of TDP-43 is evident 
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within genes that define the unique characteristics of striatal HD. Analogously, the m6A deposition levels 
within these same striatal genes are also diminished under HD conditions[92]. In the context of HD, the 
heightened expression of TDP-43 implicates a reliance on m6A modification for TDP-43 binding. The 
observed decline in m6A deposition within abnormal HD-associated genes results in a consequential 
reduction in TDP-43 binding and stability, revealing a novel mechanistic interplay between TDP-43 binding 
sites and m6A deposition sites[93]. This finding underscores a novel mechanistic correlation between TDP-43 
binding sites and m6A deposition sites within the context of HD, suggesting that m6A methylation may 
serve as a crucial determinant for TDP-43’s binding capacity.

In essence, the relationship between HD and m6A methylation is multifaceted and plays a pivotal role in the 
pathogenesis of HD. Notably, animal models, particularly those with HdhQ111 gene knockouts, exhibit 
abnormal m6A methylation patterns in synaptic genes, which subsequently affect cognitive functioning. 
The generation of HTT1a transcripts, intimately linked to the pathogenesis of HD, is governed by m6A 
methylation occurring specifically within intron 1. Furthermore, the mislocalization of TDP-43 and its 
intricate interaction with m6A modifications significantly influence striatal gene expression in HD, 
uncovering a novel and potentially crucial interplay between TDP-43 binding and m6A deposition that may 
underlie the fundamental mechanisms of HD pathology.

CONCLUSION
RNA m6A methylation is highly prevalent in the mammalian brain and constitutes a crucial surface 
transcriptome modification. m6A modulates the function of target genes by influencing mRNA translation, 
splicing, degradation, and nuclear export, thereby exerting a broad impact on various neurodegenerative 
diseases, such as AD, PD, ALS/FTD, and HD [Table 1]. Numerous studies have highlighted the pivotal role 
of m6A in regulating cerebral functions. The absence of m6A methyltransferases in Drosophila insects leads 
to severe mobility deficits, characterized by disorientation, sluggish walking pace, and decreased activity, all 
of which can be traced back to impaired neuronal function[94]. Similarly, mice with dysfunctional m6A 
pathways exhibit a multitude of cerebral abnormalities, ranging from reduced brain size and compromised 
spatial learning and memory abilities to defects in synaptic transmission, long-term potentiation, and axon 
regeneration[95]. This emphasizes the significance of the m6A-modulated epitranscriptome in neuronal 
functioning, yet research on its influence on human neurological or neurodegenerative disorders remains 
scarce.

In the context of AD, the multifaceted role of m6A modification emerges as a pivotal regulatory 
mechanism. It intricately modulates macrophage functionality, enhancing the clearance of Amyloid-beta 
(Aβ) deposits, while simultaneously influencing Tau protein phosphorylation dynamics. In PD, the role of 
m6A modification revolves around its influence on key molecular players, particularly α-Syn and GLRX. 
Moreover, in ALS and FTD cases caused by the repetitive expansion of C9orf72, m6A modification and its 
associated proteins play complex roles in modulating the pathogenesis of ALS/FTD through their 
interactions with TDP-43, DPRs like poly(GR), and TLS/FUS. Lastly, in HD, heightened m6A modification 
of synaptic-related genes modulates HTT gene expression and splicing, further influencing the cytoplasmic 
localization of TDP-43 protein [Figure 2]. By elucidating these intricate methylation patterns, we can delve 
deeper into the fundamental mechanisms underlying neurodegeneration, thereby potentially forging a path 
for the development of targeted therapeutic interventions. Furthermore, the pivotal proteins intricately 
involved in m6A modification are anticipated to emerge as promising molecular targets for the diagnosis, 
treatment, and drug discovery endeavors aimed at combating neurodegenerative diseases.
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Table 1. The molecular mechanism between m6A modification and neurodegenerative diseases

Diseases Pathological features Biomarker Related 
enzymes

m6A modification 
level Ref.

β-amyloid protein ATAT1 METTL3 Elevated methylation 
levels

[24]

Hyperphosphorylation of tau protein KDM1A METTL3 
METTL14 
YTHDF

Reduced methylation 
level

[28]

AD

Synaptic degeneration CircRIMS2 METTL3 Reduced methylation 
level

[32]

Dopaminergic neuron damage MPTP METTL3 
RBM15 
ALKBH5 
FTO

Reduced methylation 
level

[39]

The abnormal accumulation of α-Syn α-Syn METTL14 
YTHDF

Reduced methylation 
level

[44]

PD

Oxidative stress GLRX1 METTL3 Reduced methylation 
level

[48]

Deposition of TDP-43 in neurons TDP-43 METTL14 
YTHDF2

Reduced methylation 
level

[63]

Human alphaherpesvirus-1 infection HSV-1 METTL3 
METTL14 
FTO 
ALBKH5

Elevated methylation 
levels

[66]

Inclusion body composed of DPR proteins Poly(GR) G3BP1 
YTHDF1

Elevated methylation 
levels

[69]

ALS/FTD

Cytotoxic aggregates through LLPS TLS/FUS YTHDF2 Elevated methylation 
levels

[74]

Highly pathogenic HTT exon1 protein that is prone to 
aggregation

HTT1a METTL3 Elevated methylation 
levels

[87]HD

Accelerated expansion of CAG repeat caused by TDP-43 
deficiency

TDP-43 METTL3 Reduced methylation 
level

[90,93]

m6A: N6-methyladenosine; ATAT1: α-Tubulin acetyltransferase-1; AD: Alzheimer’s disease; KDM1A: Lysine-specific demethylase 1A; PD: 
Parkinson’s disease; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; α-Syn: alpha-synuclein; GLRX1: glutaredoxin1; ALS: amyotrophic lateral 
sclerosis; FTD: frontotemporal dementia; LLPS: liquid-liquid phase separation; TLS/FUS: translocated in liposarcoma/fused in sarcoma; HD: 
Huntington’s disease.

Figure 2. Dynamic changes of m6A modification in four neurodegenerative diseases and pathological features associated with this 
methylation. m6A: N6-methyladenosine.

The intricate interplay between “Writers”, “Erasers”, and “Readers” in the m6A methylation modification 
process further complicates its pathogenic mechanisms. For instance, METTL3 serves as a pivotal 
component of the m6A methyltransferase “Writers” complex, demonstrating robust methyltransferase 
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activity. However, there have also been reports suggesting that METTL3 functions as an m6A “reader” in 
certain contexts. Research indicates that METTL3 directly promotes the translation of several m6A-
modified mRNAs by interacting with the translation initiation machinery, independently of its downstream 
m6A “reader” activity[96]. Such findings underscore the need for a nuanced understanding of the dynamic 
interplay between these epigenetic regulators and their intricate contributions to neurodegenerative 
diseases.

Moreover, variations in experimental conditions and the utilization of diverse animal models contribute to 
discrepancies in research outcomes. A case in point is the study utilizing APP/PS1 mice as models, where 
contrasting results were obtained. Specifically, while an elevation of m6A methylation levels in the cortex 
and hippocampus was observed in 9-month-old APP/PS1 mice[19], a study involving 6-month-old APP/PS1 
mice reported a downregulation of METTL3 expression, an upregulation of FTO expression, and a 
consequential decrease in m6A methylation levels[26]. Indeed, the observed disparities in research outcomes 
likely stem from the intricate compensatory mechanisms that regulate m6A modification during 
neurodevelopment and aging. These processes, characterized by temporal and spatial differences, contribute 
to a dynamic landscape of epigenetic modifications. Therefore, a comprehensive experimental strategy that 
encompasses various developmental stages across a broad spectrum of neurodegenerative diseases is 
paramount. Such an approach will enable researchers to track the nuanced changes in RNA m6A 
methylation modification over time and across different disease models. By doing so, we can gain a deeper 
understanding of the role of m6A in neurodegeneration and how it is affected by disease progression.

Absolutely, the current focus on mouse models in research on m6A methylation modification and 
neurodegenerative diseases, while valuable, has its limitations. The pathological complexity and age-
dependence of neurodegenerative diseases mean that transgenic rodent models often fail to fully 
recapitulate the selective neurodegenerative changes observed in human brains. This underscores the 
importance of exploring larger animal models, such as monkeys and pigs, which exhibit greater structural 
and functional similarities to humans[97,98]. Large animal models offer unique advantages in studying 
neurodegenerative diseases, including more accurate representation of disease progression, pathology, and 
response to therapeutic interventions. As such, extending research on the role of m6A methylation 
modification in neurodegenerative diseases to large-scale animal models has the potential to provide deeper 
insights into the mechanisms underlying these disorders. With the continued development and maturation 
of large animal neurodegenerative disease models, we can anticipate a more comprehensive and nuanced 
understanding of the function of m6A methylation modification in these diseases. This, in turn, will pave 
the way for the development of more effective and targeted therapeutic strategies aimed at addressing the 
challenges posed by neurodegenerative disorders.
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