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Abstract
The research motivation of multi-objective bilevel optimization mainly stems from the need to solve practical prob-
lems and improve decision-making efficiency. On the one hand, bilevel optimization helps to solve the complexity
and uncertainty in real life, thereby improving decision-making efficiency and robustness. On the other hand, by
promoting the development and application of AI technology, bilevel optimization also provides support for sustain-
able development. Although the application of bilevel optimization has proven to be beneficial in addressing various
real-life problems. However, recent studies indicate that achieving both high speed and high-quality optimization
through existing algorithms remains challenging. This difficulty arises due to the NP-hard nature of the bilevel opti-
mization problem. The nested structure method, commonly used to tackle this problem, involves each upper level
solution independently performing the lower level optimization task. This approach significantly increases the num-
ber of evaluations for the lower level. To address this issue, our proposed method leverages the similarity in lower
level optimization to group upper level solutions, enabling co-evolution of lower level solutions within the same group.
Consequently, this approach substantially reduces the number of evaluations required for lower level solutions. Ad-
ditionally, our method pairs parents and offspring, the optimized lower level solutions of the parents are utilized to
optimize the lower level solutions of the offspring. This approach accelerates the optimization process for the lower
level. To validate the effectiveness of our algorithm, we have applied it to a suite of test problems, demonstrating
satisfactory performance.
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1. INTRODUCTION
Today’s society faces twomajor challenges: sustainable development and optimal use of resources. Green com-
puting aims to reduce the environmental impact of computers and information technology, including reducing
energy consumption and reducing e-waste. Bilevel multi-objective optimisation is an optimisation framework
that considers multiple objective functions at the same time to find a good balance. By incorporating green
computing principles, such as minimizing energy consumption and reducing environmental impact, as addi-
tional objectives or constraints within the optimization framework, we can effectively prioritize sustainability
alongside other performance metrics. The bilevel optimization problem (BLOP) is a nested structural prob-
lem, where a lower level optimization problem is embedded within the upper level optimization problem [1].
Bilevel optimization has its roots in game theory [2]. It has gained increased attention due to its potential us-
age in various fields, such as economic management, resource allocation, energy sustainability, transportation
planning, machine learning and medical engineering [3–9]. In some cases, both the upper level and lower level
optimization problems may contain multiple conflicting objective functions, leading to multi-objective bilevel
optimization problems (MBOPs). Without loss of generality, a MBOP can be expressed as follows:

min
x𝑢,x𝑙

f 𝑢 = { 𝑓 𝑢1 (x𝑢,x𝑙), . . . , 𝑓 𝑢𝑛𝑢 (x𝑢,x𝑙)},

s.t. 𝑔𝑢𝑗 (x𝑢,x𝑙) ≤ 0, 𝑗 = 1, . . . , 𝑝𝑢,

x𝑙 ∈ arg min
x𝑙

f 𝑙 = { 𝑓 𝑙1 (x𝑢,x𝑙), . . . , 𝑓 𝑙
𝑛𝑙
(x𝑢,x𝑙)},

s.t. 𝑔𝑙𝑗 (x𝑢,x𝑙) ≤ 0, 𝑗 = 1, . . . , 𝑝𝑙 ,

(1)

where f 𝑢 and f 𝑙 are the upper level and lower level objective functions, respectively; x𝑢 and x𝑙 refer to the
upper level and lower level solutions, respectively; 𝑛𝑢 and 𝑛𝑙 indicate the number of upper level and lower level
objective functions, respectively; 𝑔𝑢𝑗

(x𝑢,x𝑙
)
and 𝑔𝑙𝑗

(x𝑢,x𝑙
)
are the 𝑗 th upper level and lower level constraints,

respectively; and 𝑝𝑢 and 𝑝𝑙 denote the number of upper level and lower level constraints, respectively. If and
only if the upper level constraints are satisfied andx𝑙 is a Pareto-optimal solution to the lower level optimization
problem with regard to the given x𝑢 , then a solution x = (x𝑢,x𝑙) is a feasible solution of a BMOP. The
goal of solving a BMOP is to find a set of widely distributed feasible solutions with respect to the upper level
optimization problem. Due to the nested structure, traditional optimization methods usually have difficulty
solving MBOPs effectively. Evolutionary algorithms (EAs) have been used to solve MBOPs [10,11] because they
do not depend on the mathematical characteristics of MBOPs. The existing EAs for solving MBOPs can be
classified into three types: single-level reduction methods [12–17], surrogate-model-based methods [6,18,19], and
nested-based methods [10,20–22].

The single-level reduction approach converts a MBOP into a single-level optimization problem and then ap-
plies EAs to solve it. For instance, Li et al. used adaptive weighting sum scalarization and Karush-Kuhn-Tucker
(KKT) conditions to transform a BMOP to a multi-objective optimization problem (MOP) [12]. Then they pro-
posed an effective smoothing technique to cope with complementarity constraints. Li et al. [14] improved the
algorithm presented in [12]. They first used the KKT condition to transform a BMOP into a MOP involving
complementarity constraints and then proposed a decomposition-based constrained multi-objective differen-
tial EA. Jia et al. converted aMBOP into aMOP based on the primal and dual theory and used multi-objective
metaheuristics and constraint processing techniques for optimization [13]. The method of converting a BMOP
into a single-level optimization problem is very mature in the field of bilevel optimization, but these methods
usually require strict mathematical assumptions, and these assumptions are usually difficult to satisfy in the
real world.
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The nested method solves the MBOP directly by performing the lower level optimization independently for
each upper level solution. For example, Deb et al. used elite nondominated ranking GA or NSGA-II for
both upper and lower level optimization [10]. This algorithm was subsequently upgraded by Sinha et al. [22].
Their improved version evaluates the upper level only once, which significantly reduces the number of eval-
uations of the algorithm. Second, it also allows the file members to participate in crossover, which improves
the performance of the algorithm. Deb et al. proposed a hybrid EA combined with a local search strategy
for optimization [23]. Cai et al. proposed a divide-and-conquer strategy, in which all variables (both upper
and lower levels) are divided into multiple mutually exclusive groups and optimized separately [20]. Although
these methods are successful, due to the structural characteristics of bilevel optimization, they cannot afford
the large number of evaluations required to be consumed by the lower level evaluation when the number of
upper level solutions is large. In order to solve the more complex MBOP, many new algorithms are produced,
and a genetic algorithm is adopted at both levels. For example, both the upper and lower levels use Particle
swarm optimization, and both upper and lower levels use differential evolution (DE).

The surrogate-model-based methods use a surrogate model to approximate the constraints and objective func-
tion at the lower level, with the aim of reducing the number of lower level fitness evaluations (FEs). For
example, Sinha et al. proposed an approximation-set-mapping approach which used quadratic functions to
address the lower level optimization problem [18]. Sinha et al. modeled the lower level decision variables using
a value function named m-BLEAQ; they used a quadratic function to estimate unknown lower level decision
variables [19]. It is essential to note that the accuracy of the surrogate model has a significant impact on the
performance of final solutions.

In the real world, we are often faced with a complex set of problems, which often require multiple goals to be
considered at the same time, and each goal may have a mutually constrained relationship. In order to solve this
kind of problem, the bilevel optimization algorithm provides an effective solution. The bilevel optimization
algorithm decomposes the problem into two levels, the upper optimization part is responsible for generating
a set of feasible solutions, and the lower optimization part further finds the lower optimal solutions that meets
the constraints according to this set of feasible solutions. This strategy of decomposing the problem enables
the bilevel optimization algorithm to comprehensively consider multiple aspects of the problem, so as to ob-
tain more comprehensive and high-quality solutions. Most of the current MBLOPs are from the perspective
of game theory, using the concept of objective function values and Pareto optimality. In contrast, Gu et al. are
the first to study the convergence characteristics of MBLOPs problems from the perspective of traditional op-
timization, and consider a minimum and maximum robust version of the multi-objective problem, weighing
the optimality of different objectives, and ensuring that each objective obtains a single optimal solution, rather
than generating multiple Pareto optimal solutions [24]. Recently, Wang et al. designed a lower level environ-
ment selection strategy and an upper level solution regeneration strategy to improve the search efficiency of
the algorithm [25]. Inspired by the biological classification of species, Mejía-de-Dios et al. proposed a novel
evolutionary framework based on the concept of family [26]. They adopt the concept of science in biology to
promote the diversity of solutions.

However, the implementation and application of the bilevel optimization algorithm still face many challenges.
First, the complexity of bilevel optimization problems tends to be high, making the solution process very
difficult. Secondly, the existing bilevel optimization algorithms are often difficult to balance the relationship
between solution speed and solution quality. In order to solve these problems, we need to research and develop
new bilevel optimization algorithms to improve the speed and quality of solutions.

In bilevel optimization, the lower level optimization tasks are usually relatively similar for multiple close upper
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level solutions. Inspired by this, based on the above observations, we design a new algorithm called CCBMO
which utilizes match and cluster. To our knowledge, this is the first time that bilevel optimization has been
performed using the similarity of parent and child lower level optimization tasks. The main contributions of
this article are summarized as follows:

1. Initially, in the upper level decision space, we match a parent to each offspring based on the Euclidean
distance. This makes it easier to select a partial solution from the parent’s lower solution as the initial
solution when performing a lower optimization for a child, greatly reducing the number of lower level
optimizations required.

2. Then, the k-means is used to cluster the upper level offspring into 𝑁𝑢/2 groups. When solutions in the
same group are being optimized at the next level, we use co-evolution.

3. Following this, environment selection is performed based on upper level objective values, and selected
upper level solutions are chosen for iteration.

The remainder of this paper is structured as follows: Section II presents the proposed bilevel optimization
algorithm. Section III provides a comprehensive experimental study, analysing and discussing the results.
Finally, Section IV summarizes the findings and the potential for further research.

2. THE PROPOSED ALGORITHM
2.1. General framework of proposed algorithm
The framework of the CCBMO algorithm is established by algorithm 1 . Initially, a set of 𝑁𝑢 upper level solu-
tions X𝑢 =

{
x𝑢

1 ,x𝑢
2 , ...,x𝑢

𝑁𝑢

}
is randomly generated. Subsequently, the lower level optimization is conducted

for x𝑢
𝑖 individually via algorithm 2. The obtained lower level solutions and their corresponding upper level

solutions are stored in L𝑝 (line 2). The solutions in L𝑝 are then ranked based on the upper level objective
values and the degree of constraint violation, with the nondominated solutions being stored in X𝑜 (line 3).

During the main loop, we execute the DE on X𝑢 , with the resulting offspring stored in X𝑢𝑜 =
{
x𝑢𝑜

1 , ...,x𝑢𝑜
𝑁𝑢

}
(line 5). For each solution in X𝑢 , the closest solution to x𝑢𝑜

𝑖 is denoted as x𝑢𝑚
𝑖 (lines 6-8). Next, we explain

the several types of matches that can occur as a result. As shown in Figure 1 , in the first case, x𝑢𝑜
1 is matched

with its closest parent upper level solution, x𝑢
1 ; therefore, x𝑢𝑚

1 = x𝑢
1 . In the second case, x𝑢𝑜

2 and x𝑢𝑜
5 are both

matched with x𝑢
2 , as they are the closest to it; therefore, x𝑢𝑚

2 = x𝑢
2 and x𝑢𝑚

5 = x𝑢
2 ; in the third case, no offspring

are closest to the solutions of x𝑢
6 and x𝑢

7 .

Then X𝑢𝑜 is clustered into 𝑁𝑢/2 groups using the k-means, denoted as G1, . . . ,G𝑁𝑢/2 (line 9). K-means is a
clustering method based on Euclidean distance, which aims to minimize the sum of the distances of N objects
from the nearest center point, and to divide these objects into K groups according to the size of the K value,
and to consider the individuals in the same group to be similar. The index of each solution in 𝑖th group in
X𝑢𝑜 is stored in G𝑖 . Following the execution of the k-means clustering, the solutions belonging to the same
cluster exhibit proximity, suggesting similarities among the corresponding tasks of lower level optimization.
Therefore, the lower level optimization is performed simultaneously on the solutions belonging to the same
group based on algorithm 2. After that, the optimized lower level solutions and their corresponding upper level
solutions are subsequently stored in L𝑠 (lines 11-14). The parents in L𝑝 and offspring in L𝑠 are combined,
denoted as L. Then, 𝑁𝑢 distinct upper level solutions are chosen to replace the original solutions in X𝑢 , based
on the nondominated sorting and crowding distance obtained from the upper level environmental selection.
The selected upper level solutions and their corresponding lower level solutions are stored in L𝑝 . Finally, the
nondominated solutions in L are selected and merged into X𝑜 to update it.

In order to select the better solution for each iteration, the selection operator of NSGA-II is applied to L to
obtain X𝑢 , and X𝑢 is used to store 𝑁𝑢 distinct upper level solutions. This selection is based on the upper level
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Algorithm 1: Proposed algorithm

1 X𝑢 =
{
x𝑢

1 ,x𝑢
2 , ...,x𝑢

𝑁𝑢

}
← Generate 𝑁𝑢 upper level solutions randomly;

2 L𝑝 ← Perform lower level optimization for each solution in X𝑢 , and obtain the lower level solutions
respectively;

3 X𝑜 ← Select nondominated solutions from L𝑝 ;
4 while Not Termination do
5 X𝑢𝑜 =

{
x𝑢𝑜

1 , ...,x𝑢𝑜
𝑁𝑢

}
← Perform differential evolution on the solutions in X𝑢 ;

6 for 𝑖 = 1 : 𝑁𝑢 do
7 x𝑢𝑚

𝑖 ← Find a solution in X𝑢 that is the closest to x𝑢𝑜
𝑖 ;

8 end
9

[
G1,G2, ...,G𝑁𝑢/2

]
← Cluster the solutions in X𝑢𝑜 into 𝑁𝑢/2 groups utilizing K-means;

10 L𝑠 = ∅ ;
11 for 𝑖 = 1 : 𝑁𝑢/2 do
12 L𝑠

1, ...,L
𝑠
|G𝑖 | ← Perform lower level optimization for solutions in the G𝑖 group;

13 L𝑠 ← L𝑠 ∪ L𝑠
1, ...,L

𝑠
|G𝑖 | ;

14 end
15 L = L𝑝 ∪ L𝑠;
16 X𝑢 ← Choose 𝑁𝑢 distinct upper level solutions from L based on the results of upper level

environment selection;
17 L𝑝 =

{
L𝑝

1 ,L
𝑝
2 , ...,L

𝑝
𝑁𝑢

}
← Store the upper level solutions and their corresponding lower level

solutions in X𝑢 ;
18 X𝑜 ← Select the nondominated solutions from L and merge them with X𝑜 ;
19 end

objective values and the upper level constraint violation. To be specific, the solutions in X𝑢 are initially divided
into different nondominated sets using the constrained-domination principle. According to this principle, if
we have two solutions, x1 and x2, x1 is considered better than x2 if any of the following conditions are met:

1. 𝑐𝑣 (x1) = 0 and 𝑐𝑣 (x2) = 0, and x1 Pareto dominates x2;
2. 𝑐𝑣 (x1) = 0 and 𝑐𝑣 (x2) > 0;
3. 𝑐𝑣 (x1) > 0 and 𝑐𝑣 (x2) > 0, and 𝑐𝑣 (x1) < 𝑐𝑣 (x2).

Then, the best half of the upper level solutions are added to X𝑢 .

2.2. Lower level optimization
Algorithm 2 provides the process of lower level optimization. First, an empty set S is created (line 1). Then we
use 𝑘 to denote the index of the 𝑗 th element in G𝑖 . Since we match a solution x𝑢𝑚

𝑖 for each x𝑢𝑜
𝑖 (lines 6-8 of

algorithm 1), we can find x𝑢𝑚
𝑘 corresponding to x𝑢𝑜

𝑘 . Then we store the lower level solution corresponding to
x𝑢𝑚
𝑘 into 𝑆. As shown in Figure 2, the x𝑢𝑜

1 , ...,x𝑢𝑜
8 were divided into four groups using the k-means algorithm.

For example,x𝑢𝑜
1 is in a separate group. Based on Figure 1,x𝑢𝑜

1 ismatchedwithx𝑢
1 , and the lower level solutions

whose upper level solution is x𝑢
1 are stored in 𝑆. x𝑢𝑜

2 and x𝑢𝑜
3 belong to the same group, but they are matched

with solutions x𝑢
2 and x𝑢

3 , respectively. Therefore, the lower level solutions whose upper level solutions are x𝑢
2

and x𝑢
3 are placed in 𝑆.

After removing the repeat values in 𝑆, min {𝑁𝑙/2, |𝑆 |} solutions are randomly selected from 𝑆 and stored inX𝑙
1.

Additionally, 𝑁𝑙 −min {𝑁𝑙/2, |𝑆 |} lower level solutions are randomly generated and stored inX𝑙
2. Then,X𝑙

1 and
X𝑙

2 are combined to generate X𝑙 (lines 7-10 of algorithm 2). During the main loop of algorithm 2, we execute
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Figure 1. We provide an example of a block plot for matching and clustering in Figure 1A and B. (A) Clustering of X𝑢𝑜 via kmeans; (B) match
the solutions in X𝑢 with each solution in X𝑢𝑜 based on the Euclidean distance.

the differential evolution onX𝑙 , with the resulting offspring stored inX𝑙𝑜 (line 12). We mergeX𝑙 andX𝑙𝑜 , and
store the combined set in C. For solutions inG𝑖 , we choose 𝑁𝑙 optimal lower level solutions from C considering
the environmental selection of the upper level, and then store them inA1, ...,A |G𝑖 | . Eventually, the lower level
solutions merge, replacing the originalX𝑙 (lines 12-18). Uponmeeting the termination conditions of the lower
level optimization, we storeA1, ...,A |G𝑖 | and their corresponding upper level solutions in L𝑠

1, ...,L
𝑠
|G𝑖 | .

Algorithm 2: Lower level optimization
Input: G𝑖 , L𝑝 , X𝑢𝑜 ;
Output: L𝑠

1, ...,L
𝑠
|G𝑖 | ;

1 S = ∅;
2 for 𝑗 = 1 : |G𝑖 | do
3 𝑘 ←The index of the 𝑗 th element in G𝑖 ;
4 S 𝑗 ← Find the lower level solutions from L𝑝 corresponding to the solution whose upper level

solution is x𝑢𝑚
𝑘 ; // x𝑢𝑚

𝑘 ∈ X
𝑢𝑜 ;

5 S ← S ∪ S 𝑗 ;
6 end
7 S ← Remove repeat lower level solutions from S;
8 X𝑙

1 ← Select min {𝑁𝑙/2, |𝑆 |} solutions from S;
9 X𝑙

2 ← Generate 𝑁𝑙 −min {𝑁𝑙/2, |𝑆 |} lower level solutions randomly;
10 X𝑙 ← X𝑙

1 ∪ X
𝑙
2.

11 while Not termination do
12 X𝑙𝑜 ← Perform differential evolution on the solutions in X𝑙 ;
13 C ← X𝑙 ∪ X𝑙𝑜 ;
14 for 𝑗 = 1 : |G𝑖 | do
15 A 𝑗 ← Perform environmental selection for C;
16 end
17 X𝑙 ← A1 ∪ A2 ∪ ...A |G𝑖 | ;
18 end
19 L𝑠

1, ...,L
𝑠
|G𝑖 | ← StoreA1, ...,A |G𝑖 | and their upper level solutions;
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2.3. Termination criterion
Termination conditions for both upper and lower layers are based on their hypervolume (HV). The rate of
convergence of HV for both the upper and lower levels is called the H-metric and is calculated as follows:

where 𝐻𝑉max and 𝐻𝑉min denote the maximum and minimum values of the hypervolume in the output so-
lutions, respectively, and ′𝑢′, ′𝑙′ are used to distinguish the upper and lower levels respectively. We use the
maximum objective value of the nondominated solution as the reference point to calculate the HV.

𝐻𝑢 =
𝐻𝑉max

𝑢 − 𝐻𝑉min
𝑢

𝐻𝑉max
𝑢 + 𝐻𝑉min

𝑢

, 𝐻𝑙 =
𝐻𝑉max

𝑙 − 𝐻𝑉min
𝑙

𝐻𝑉max
𝑙 + 𝐻𝑉min

𝑙

(2)

When the number of iterations exceeds 𝜎, and 𝐻 < 𝜀, the algorithm terminates. We set the termination
conditions as 𝜀𝑙 = 0.001; 𝜀𝑢 = 0.001; 𝜎𝑙 = 10, and 𝜎𝑢 = 40 dollars. In addition, for upper level optimization, if
𝜎𝑢 exceeds 40 and there are six consecutive generations where 𝐻𝑢 remains constant, the algorithm terminates.
Since we optimize the lower level solutions simultaneously for multiple upper level solutions, for all lower
level optimization processes, if 𝜎𝑙 exceeds 10 and there are five consecutive generations where the value of 𝐻𝑙

remains unchanged, the lower level optimization terminates.

3. EXPERIMENTAL STUDIES
In this section, the experimental study for investigating the performance of the proposed algorithm is pre-
sented. First, we introduce the test problems and parameter settings. Then we briefly describe the comparison
algorithm. Afterward, we introduce the performance metrics used to evaluate the algorithm’s performance.
Finally, we give the experimental results and analyze the results.

3.1.Test problems
Two benchmark test sets, TP and DS [23], were selected for the experimental studies. In the TP test suite, we
chose two test problems, TP1 and TP2, and the DS test suite includes five test problems (denoted as DS1-DS5).

The detailed settings for the TP test set and DS test set are provided in Table 1. 𝐷𝑢 and 𝐷 𝑙 represent the
dimensions of the upper and lower level decision variables, respectively. The dimensionality of both upper
and lower level decision variables is K = 5 for DS1–DS3. For DS4-DS5, the dimensionality of the upper level
decision variables is K = 1, and lower level decision variables is K + L = 10. The other parameters of the
comparison algorithms remain the same as in their original papers.

3.2.Compared algorithms and parameter settings
In order to evaluate the performance of the algorithms, two algorithmswere chosen for comparison: BLMOCC [20],
MOBEA-DPL [27].

(1) BLMOCC: it is an algorithm that uses a knowledge-based variable decomposition strategy to solve aMBOP.
The knowledge-based variable decomposition strategy is used throughout the optimization process, and the
variables are divided into three groups according to the correlation between the variables in the two levels.
Different optimization methods are used independently for different groups.

(2) MOBEA-DPL: it is an algorithm developed on the framework of the nested bilevel multi-objective opti-
mization algorithm. It uses a dual-population optimization strategy to improve the solution of the lower level
optimization problem. The first group is used to store nondominated solutions in the lower level, and the
second group is used to store upper level solutions that are not dominated by solutions in the first group. Ad-
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Table 1. Settings of the test problems

Test problem 𝑵𝒖 𝑵 𝒍 K L

TP1 20 20

TP2 20 20

DS1 20 20 5 5

DS2 20 20 5 5

DS3 20 20 5 5

DS4 5 40 1 9

DS5 5 40 1 9

Table 2. Performance comparison between BLMOCC, MOBEA-DPL and CCBMO regarding the average values of FEs on TP and DS

Problem
𝑵𝒖 + 𝑵𝒍

BLMOCC MOBEA-DPL CCBMO

𝑭𝑬𝒖 𝑭𝑬𝒍 𝑭𝑬𝒍 + 𝑭𝑬𝒍 𝑭𝑬𝒖 𝑭𝑬𝒍 𝑭𝑬𝒍 + 𝑭𝑬𝒍 𝑭𝑬𝒖 𝑭𝑬𝒍 𝑭𝑬𝒍 + 𝑭𝑬𝒍

TP1 20 + 20 2,536 320,281 322,818 53,499 768,080 821,580 40,615 250,271 290,885
TP2 20 + 20 38,736 1,128,305 1,167,041 53,499 768,080 821,580 36,907 230,748 267,654

DS1 (5 + 5) 20 + 20 30,553 561,769 592,322 50,913 634,383 685,295 36,763 278,767 315,530
DS2 (5 + 5) 20 + 20 36,466 650,363 686,829 55,212 297,359 352,571 66,986 291,608 358,594
DS3 (5 + 5) 20 + 20 4,121 657,513 661,633 65,183 1,243,679 1,308,862 33,257 298,037 331,293
DS4 (1 + 9) 5 + 40 19,492 490,870 510,362 460,000 2,070,000 2,530,000 23,391 99,774 123,165
DS5 (1 + 9) 5 + 40 14,339 362,115 376,454 352,000 1,590,000 1,942,000 56,271 99,959 156,230

FEs: Fitness evaluations.

ditionally, to increase the effectiveness of the search, the offspring of the upper level solutions are selected from
the neighborhood of the best solutions in the existing solutions.

3.3.Performance metrics
We limit the maximum FEs of the upper and lower levels to facilitate comparing the number of true evalua-
tions of different algorithms. The maximum number of evaluations for the upper and lower levels is 50,000
and 1,000,000, respectively. 𝐹𝐸𝑢 and 𝐹𝐸 𝑙 represent the number of evaluations in the upper and lower levels,
respectively. In addition, we compare the sum of the actual number of evaluations in the upper and lower
levels (i.e., 𝐹𝐸𝑢 + 𝐹𝐸 𝑙).

Without loss of generality, we consider using the inverted generational distance (IGD) [28] and hypervolume
(HV) [29] to measure the performance of the algorithms. Both metrics can measure the diversity and conver-
gence of the obtained solutions. A smaller IGD value means better algorithm performance, while the opposite
is true for HV values, where a larger HV value means better algorithm performance.

3.4.Comparison between CCBMO and other algorithms on each index
In this case, we measure whether the algorithm can converge well with a small number of FEs. We recorded
the average of FEs (including the upper level, lower level, and the sum of both levels), the IGD, and HV for all
test problems. Specifically, each algorithm ran independently 21 times.

From Table 2, it can be seen that CCBMO has better results than BLMOCC and MOBEA-DPL in terms of
lower level average FEs on TP1-TP2, DS1, and DS3-DS5, while slightly worse than BLMOCC in terms of
upper level average FEs. This is because in lower level optimization, we introduce the idea of co-optimization,
which optimizes similar lower level optimization problems at the same time, thus greatly reducing the number
of optimizations and evaluations at the lower level level. However, as shown in Figure 3, due to the obvious
advantage of CCBMO in the average FEs of the lower level, the sum of the average FEs of the upper and
lower levels shows the best results, except that MOBEA-DPL outperformed CCBMO and BLMOCC on DS2.
Obviously, this is all due to the improvement of the lower level optimization strategy.
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Figure 2. Comparison of the average FEs statistical results of the three algorithms on TP1-TP2 and DS1-DS5. FEs: Fitness evaluations.

Figure 3. Comparison of the statistical results of the average IGD values of the three algorithms on TP1-TP2 and DS1-DS5. IGD: Inverted
generational distance

Figure 4. Comparison of the statistical results of the average HV value of the three algorithms on TP1-TP2 and DS1-DS5. HV: Hypervolume.
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Table 3. Performance comparison between BLMOCC, MOBEA-DPL and CCBMO regarding the IGD values on TP1-TP2 and DS1-DS5

Problem 𝑵𝒖 + 𝑵𝒍 BLMOCC MOBEA-DPL CCBMO

TP1 20 + 20 0.1426 0.0126 0.0128
TP2 20+20 0.0310 0.0235 0.0178

DS1 (5 + 5) 20 + 20 14.4842 0.1123 1.0858
DS2 (5 + 5) 20 + 20 25.5732 4.3112 0.1854
DS3 (5 + 5) 20 + 20 3.9562 0.2058 1.9772
DS4 (1 + 9) 5 + 40 0.0768 0.1680 0.0607
DS5 (1 + 9) 5 + 40 0.3582 0.1820 0.0326

IGD: Inverted generational distance.

Table 4. Performance comparison between BLMOCC, MOBEA-DPL and CCBMO regarding the HV values on TP1-TP2 and DS1-DS5

Problem 𝑵𝒖 + 𝑵𝒍 BLMOCC MOBEA-DPL CCBMO

TP1 20 + 20 0.7723 0.7026 0.6856
TP2 20 + 20 0.4029 0.4074 0.4277

DS1 (5 + 5) 20 + 20 0.0000 0.3092 0.2813
DS2 (5 + 5) 20 + 20 0.0000 0.0028 0.2443
DS3 (5 + 5) 20 + 20 0.0000 0.2342 0.0000
DS4 (1 + 9) 5 + 40 2.3110 0.1680 2.3495
DS5 (1 + 9) 5 + 40 1.1756 0.1820 2.2105

HV: Hypervolume.

Tables 3 and 4 provide the comparative results of three algorithms on seven test problems in terms of IGD and
HV. Figures 3 and 4 clearly demonstrate that CCBMO outperformed both BLMOCC andMOBEA-DPL. Next
we analyze these experimental results in detail.

Both TP1 and TP2 are non-scalability problems. MOBEA-DPL outperformed other algorithms in terms of
IGD value for TP1 due to its lower level dual-population strategy, but it inevitably increased the lower level
FEs. CCBMO demonstrates a slightly inferior performance in terms of IGD value compared to MOBEA-DPL.
Among all the compared algorithms, BLMOCCobtained the bestHVvalue but theworst IGDvalue. Regarding
TP2, CCBMO achieved the most satisfactory IGD and HV, followed by MOBEA-DPL. BLMOCC performed
the worst.

DS1 is often used to evaluate algorithm performance and the ability of the algorithm to coordinate the process-
ing of upper level and lower level tasks. RegardingDS1,MOBEA-DPL achieved the best IGD andHV. CCBMO
performed slightly inferior to MOBEA-DPL in terms of IGD and HV values but significantly outperformed
BLMOCC.

DS2 is used to assess the algorithm’s capability to conduct extensive searches before converging on the fron-
tier. For DS2, CCBMO significantly outperformed the contrasting algorithms. Compared with BLMOCC
and MOBEA-DPL, CCBMO could reduce the IGD value by one to two orders of magnitude, respectively, and
increase the HV value by two orders of magnitude. BLMOCC and MOBEA-DPL had difficulty achieving
satisfactory results in the DS2 test problem.

DS3 involves discrete variables, and as the number of variables increases, the problem becomes increasingly
challenging, making it difficult for traditional algorithms to address. MOBEA-DPL achieved the best IGD and
HV on DS3. In contrast, CCBMO performed worse than MOBEA-DPL due to its utilization of a traditional
nesting method for addressing this problem. BLMOCC had the worst IGD and HV.

Both DS4 and DS5 evaluate the algorithm’s capability to search for the appropriate lower level frontier that
corresponds to the upper level frontier. Additionally, DS4 necessitates identifying a specific point in the lower
level solution that corresponds to the upper level solution. In the case of DS4, CCBMO achieved superior
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Table 5. FEs statistics of CCBMO and its variants on TP1-TP2 and DS1-DS5

Problem 𝑵𝒖 + 𝑵𝒍 CCBMO CCBMO-M CCBMO-C

TP1 20 + 20 290,885 292,893 334,300
TP2 20 + 20 267,654 290,721 358,603

DS1 (5 + 5) 20 + 20 315,530 312,516 363,501
DS2 (5 + 5) 20 + 20 358,594 367,339 379,283
DS3 (5 + 5) 20 + 20 331,293 319,998 406,935
DS4 (1 + 9) 5 + 40 123,165 126,272 147,857
DS5 (1 + 9) 5 + 40 156,230 161,888 119,948

FEs: Fitness evaluations.

Table 6. IGD statistics of CCBMO and its variants on TP1-TP2 and DS1-DS5

Problem 𝑵𝒖 + 𝑵𝒍 CCBMO CCBMO-M CCBMO-C

TP1 20 + 20 0.0128 0.0156 0.0192
TP2 20 + 20 0.0178 0.1199 0.6835

DS1 (5 + 5) 20 + 20 1.0858 1.0070 3.7125
DS2 (5 + 5) 20 + 20 0.1854 0.2088 0.3523
DS3 (5 + 5) 20 + 20 1.9772 2.1425 2.9403
DS4 (1 + 9) 5 + 40 0.0607 0.0684 0.0635
DS5 (1 + 9) 5 + 40 0.0326 0.0360 0.0571

IGD: Inverted generational distance.

IGD and HV values, which are one and two orders of magnitude better than the corresponding IGD values of
MOBEA-DPL and BLMOCC, respectively, and one order of magnitude better than the HV value of MOBEA-
DPL. In the case of DS5, CCBMO had significant superiority over the comparison algorithms. In terms of
IGD value, CCBMO outperformed both comparison algorithms by two orders of magnitude. The HV value of
CCBMO is an order of magnitude better than that ofMOBEA-DPL.Therefore, these experiments demonstrate
the effectiveness of CCBMO in solving BMOPs.

3.5.Comparison of CCBMO with its variants
To illustrate the effectiveness of the mechanism in CCBMO, we compared two variants of CCBMO, CCBMO-
M and CCBMO-C, where CCBMO-M represents the variant that removes the k-means clustering in CCBMO,
andCCBMO-C represents the variant that removes thematching between the upper level offspring and parents
in CCBMO. Tables 5-7 present the results of CCBMO, CCBMO-M and CCBMO-C regarding the average
number of FEs, IGD and HV over 21 runs on TP1-TP2 and DS1-DS5, respectively.

Table 5 gives a comparison of CCBMO and its variants in terms of average FEs. CCBMO consumed the
least number of evaluations in solving TP1-TP2, DS2 and DS4. CCBMO-M performed slightly worse than
CCBMO, consuming the least number of evaluations on solving DS1 and DS3. CCBMO-C only consumed
the least number of evaluations when solving DS5.

Tables 6 and 7 compare the IGD and HV values of CCBMO and its variants (CCBMO-M and CCBMO-C),
respectively. In terms of TP1 and DS2-DS5, CCBMO outperformed CCBMO-M and CCBMO-C in both IGD
and HV values. For TP2, CCBMO obtained the best IGD value, but the HV value was slightly worse than
CCBMO-M. CCBMO-M had the best IGD and HV values when solving DS1. On the other hand, CCBMO-C
performed the worst, not obtaining the best IGD and HV values for any problem. Therefore, our experiments
demonstrate the effectiveness of matching and clustering incorporated in CCBMO.
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Table 7. HV statistics of CCBMO and its variants on TP1-TP2 and DS1-DS5.

Problem 𝑵𝒖 + 𝑵𝒍 CCBMO CCBMO-M CCBMO-C

TP1 20 + 20 0.6856 0.6298 0.6102
TP2 20 + 20 0.4277 0.4401 0.0239

DS1 (5 + 5) 20+20 0.2813 0.3559 0.0000
DS2 (5 + 5) 20+20 0.2443 0.1919 0.0759
DS3 (5 + 5) 20+20 0.0000 0.0000 0.0000
DS4 (1 + 9) 5+40 2.3495 2.2879 2.3383
DS5 (1 + 9) 5+40 2.2105 2.2082 2.1234

HV: Hypervolume.

4. CONCLUSION
Our work shows the existing bilevel multi-objective optimization algorithms ignore the similarity between
the lower level optimization tasks when solving the problem, and thus consume a large number of FEs when
performing the lower level optimization. Based on these findings, we have proposed a new optimization al-
gorithm framework (called CCBMO), which utilizes the similarity of the lower level optimization tasks of the
parents and offspring to accelerate the solution of the lower level optimization tasks of the offspring. CCBMO
mainly includes two stages: a matching stage and a clustering stage. In the matching stage, upper level solu-
tions of the parents and offspring are matched based on Euclidean distance. Each offspring selects the closest
parent and inherits its corresponding lower level solutions. The clustering stage subsequently decomposes the
offspring into 𝑁𝑢/2 groups using k-means. Co-evolution is then performed on the lower level solutions within
the same group. CCBMO was tested on seven problems by comparing it with two algorithms (i.e., BLMOCC
and MOBEA-DPL). The results demonstrate the effectiveness of CCBMO. At present, the research on bilevel
optimization is very limited, and more complex methods are usually used to solve the bilevel optimization
problem. In this paper, the traditional genetic algorithm is used to solve the upper level and lower level op-
timization problems respectively, and the correlation between the upper level and lower level optimization
problems is noted, so that the bilevel optimization problem can be solved by a traditional nested method. On
the theoretical side, we will continue to study the bilevel optimization problem that solves the NP hard by sim-
ple genetic algorithm framework. In addition to this, we will further explore the application of multi-objective
bilevel optimization in real life.

Although CCBMO performed well on most problems, we found that CCBMO did not converge well when
solving test problemswith a large number of decision variables. Therefore, further efforts are needed to develop
an efficient selection strategy to address larger-scale BMOPs.
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