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Abstract
The increasing size and complexity of modern systems presents engineers with the inevitable challenge of devel-
oping more efficient yet comprehensive computational tools that enable sound analyses and ensure stable system
operation. The previously introduced resilience framework for complex and sub-structured systems provides a solid
foundation for comprehensive stakeholder decision-making, taking into account limited resources. In their work, a
survival function approach based on the concept of survival signature models the reliability of system components
and subsystems. However, it is limited to a binary component and system state consideration. This limitation needs
to be overcome to ensure comprehensive resilience analyses of real world systems. An extension is needed that
guarantees both maintaining the existing advantages of the original resilience framework, yet enables continuous
performance consideration. This work introduces the continuous-state survival function and concept of the Diagonal
Approximated Signature (DAS) as a corresponding surrogate model. The proposed concept is based on combina-
torial decomposition adapted from the concept of survival signature. This allows for the advantageous property of
separating topological and probabilistic information. Potentially high-dimensional coherent structure functions are
the foundation. A stochastic process models the time-dependent degradation of the continuous-state components.
The proposed approach enables direct computation of the continuous-state survival function by means of an explicit
formula and a stored DAS, avoiding costly online Monte Carlos Simulation (MCS) and overcoming the limitation of a
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binary component and system state consideration during resilience optimization for sub-structured systems. A proof
of concept is provided for multi-dimensional systems and an arbitrary infrastructure system.

Keywords: Surrogate modeling, continuous-state system, survival function, coherent structure function, resilience
optimization, system reliability, monte carlo simulation

INTRODUCTION
Engineering systems, such as infrastructure networks and complex machines, are ubiquitous worldwide and
form the backbone of modern societies. As societies grow, these systems become increasingly sophisticated
in size and complexity. Evidently, the stable operation of such systems is crucial for the economy and an
undisturbed and safe everyday life of civilians. This challenge is exacerbated by exposure to an increasingly
inhospitable, changing and uncertain environment. It is evident that it is exceedingly difficult if not impossible
to identify and prevent all potential adverse impacts. The focus in design andmaintenance of complex systems
has to be extended from a pure failure prevention and failure persistence strategy to the capabilities of adap-
tation and recovery. The concept of resilience meets exactly these needs both from a technical and economic
point of view and ensures steady functioning [1–3]. Consequently, there is an increasing need for sophisticated
and efficient computational tools that adapt this perspective in order to exploit the potential emerging benefits
in engineering practice.

A fundamental precondition for the assessment of resilience of complex systems is an appropriate quantita-
tive resilience metric. In [4–6], the authors present a broad review of current resilience metrics. In [7], Linkov
and Trump provided a critical analysis of resilience definitions and metrics found in literature, their practi-
cal application and specifically compare them to the concept of the traditional notion of risk. Hosseini et al.
presented in [5] a categorization scheme for resilience quantification approaches. Among these, performance-
based resiliencemetrics are the most common and are based on comparing the performance of a system before
and after an adverse event. Theoretically, such an adverse event could correspond to rare shock events on a
large time scale or persistent degrading effects on an infinitesimally small time scale. Further subcategories
distinguish between time in-/dependence and characterization as deterministic or probabilistic. As motivated
in [5] and [8], it is assumed that a performance-based and time-dependent metric is capable of considering the
following system states before and after a disruptive event:

• The initial state that remains unchangeduntil the occurrence of an effectively disruptive event, characterized
by system reliability, that is interpreted as the ability of the system to sustain typical performance prior to a
disruptive event [5,9].

• The disrupted state, determined by the system robustness, i.e., the ability of the system to mitigate an ef-
fectively disruptive event and its counterpart, vulnerability, represented by a potential loss of performance
after the occurrence of a disruptive event [10,11].

• The recoverability of the system characterizes the duration of the degraded state and the recovery to a new
stable state [8,10].

Figure 1 illustrates these system states and their transitions simplified for a single effectively disruptive event
and its potentially infinitesimal small period. Note that the terminologies concerning the governing properties,
phases and states presented here, although in their physical interpretation perceived alike or at least similarly,
are discussed in literature partly controversially. Thus, for example, what is described here, and, e.g., in [11],
as system robustness is referred to as resistance of a system, as in [12]. In fact, the boundaries between the
interpretations of reliability and robustness are fluid when extending the conventional perspective as shall be
seen in the further course of this work. For the developments subsequently proposed, it is critical to define
a concise interpretation of reliability from a probabilistic perspective. In accordance with [13], let reliability
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Figure 1. The concept of resilience - three essential phases, adapted from [8].

refer to the probability of a system or some entity under consideration to uninterruptedly perform a certain
specified function during a stated interval of a life variable, e.g., time, within a certain specified environment.

In the field of engineering, resilience as a concept has consistently gained popularity in recent years [4,14]. There
are numerous ways to improve the resilience of systems. However, there are limits to available resources,
and resilience cannot be increased indefinitely. Therefore, it is important not only to be able to differentiate
and balance between different resilience-enhancing measures, but also to take into account their monetary
aspects [15,16]. In [17], Salomon et al. present a method for determining the most cost-efficient allocation of
resilience-enhancing investments. Further, current research related to resilience focuses on improved met-
rics for quantifying resilience, such as those proposed in [18], and overarching frameworks for stakeholder
decision-making, such as for transportation networks in the presence of seismic hazards [19]. Other recent
studies have examined the complexity of real-world infrastructure systems, the consequences of failures, re-
covery sequences, and various externalities. For instance, in [20], the authors demonstrated the tremendous
complexity of modern critical infrastructures and their multifactorial nature as cyber-human-physical sys-
tems, and explored appropriate modeling and resilience analysis techniques. Moreover, the studies [21] and [22]

address the implications for decision-making considering stakeholder priorities and enhancement or recovery
strategies. Climate change challenges have been explored in the context of resilience, e.g., in [23]. A compre-
hensive literature review of resilience assessment frameworks balancing both resources and performance can
be found in [24].

Salomon et al. recently introduced in [25] an efficient resilience framework for large, complex and sub-structured
systems, providing a solid foundation for comprehensive stakeholder decision-making, taking into account
limited resources. In their work, a survival function approach based on the concept of survival signature, first
introduced in [26], models the reliability of system components and subsystems of investigated systems. This
reliability approach separates information on the topological (sub)system reliability and the component failure
time behavior. Thereby, the survival signature captures the topological information in an efficient manner [27]

and thus, can be seen as a type of surrogate modeling technique. This allows for significantly reduced compu-
tational effort when it comes to repeated model evaluations, as the demanding evaluation of the topological
system model is circumvented [28]. This is all the more relevant the larger and more complex the system under
consideration is. The repeated model evaluations are of crucial importance when the parameters examined
during the resilience optimization affect the probability structure of the system components. This results in a
high number of changes in the probability structure during the resilience analysis, which can be ideally covered
by the separation property of the survival signature with minimal computational effort.

A major restriction of the survival signature in its original form is the limitation to a binary component and
system state consideration. Consequently, the resilience framework for complex and sub-structured systems
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in [25] is subject to the same constraints during resilience optimization. However, for a comprehensive re-
silience analysis of real world systems, a continuous component and system performance state consideration
is an indispensable prerequisite. Therefore, an extension is needed that guarantees both the already existing
advantages of the resilience framework in [25] based on the original form of the survival signature, yet enables
continuous performance consideration.

The most widespread reliability assessment methods follow a binary-state consideration, i.e., reducing the
consideration of system performance to the set of the two states of either perfect functioning or complete
failure, compare [29]. Jain et al. states that the “Majority of the existing models have computed system reliability
at a holistic level but fail to consider the interactions at component and sub-system levels [...].” In [30], Yang &
Xue highlight the importance of a continuous-state consideration in reliability analysis. It is evident that the
consideration of continuous component and (sub)system states is equally important for resilience analysis and
thus indispensable for realistic resilience optimization. In the last years several researchers proposed various
concepts that bring the survival signature to a multi-state consideration, e.g., see [31–34], which can be seen as
a first step in development, towards continuous consideration and potential implementation into proposed
resilience framework for sub-structured complex systems [25].

In the current work, theoretical fundamentals are first summarized. Then the concept of the DAS is intro-
duced as a new surrogate modeling approach, based on the concept of survival signature and potentially
high-dimensional coherent structure functions describing the relationship between degrading components
and corresponding continuous-state system performance. The proposed approach enables direct computa-
tion of continuous-state survival function by means of an explicit formula and a stored DAS, thus avoiding a
costly online MCS and overcoming the limitation of a binary component and system state consideration. A
proof of concept is provided for multi-dimensional systems consisting of min- and max-operators, where ex-
act results are obtained. Further, the applicability of the concept is investigated for an arbitrary infrastructure
system. Finally, a conclusions and outlook are presented.

THEORETICAL FUNDAMENTALS
Structure function
According to [35], the performance of a system depends only on its components, i.e., their states, and their
interactions. Then, a vector 𝒙(𝑡) can be seen as the component state vector of the system assigning a state to
each component. 𝒙(𝑡) should dependent on the environmental conditions. As a result, the systemperformance
can be described as a function of the component state vector. Suppose that a component state is modeled via
probability distributions in dependence on component properties, environmental effects, and time. Then, the
system performance function solely describes the system structure, corresponding to the arrangement of the
components and their interactions. Such a system performance model can be considered as the well-known
system structure function. In the current work, the structure function is assumed to be time-independent.

Binary-state structure function
The structure function of a system is a fundamental concept to represent system topology in reliability analysis.
For a binary-state system the structure function can be defined as follows. Let a system consist of 𝑛 compo-
nents of the same type. Further, let 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 be the corresponding state vector of the 𝑛
components, where 𝑥𝑖 = 1 indicates a working state of the 𝑖-th component and 𝑥𝑖 = 0 indicates a nonwork-
ing state. Then, the structure function 𝜙 is a function of the state vector defining the operating status of the
considered system:

𝜙 := 𝜙(𝒙) : {0, 1}𝑛 → {0, 1}, (1)

as proposed, e.g., in [26] Accordingly, 𝜙(𝒙) = 1 denotes a working system and 𝜙(𝒙) = 0 specifies a nonworking
system relative to the state vector 𝒙.
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Let a system consist of components of different types, i.e., 𝐾 ≥ 2. Then, the number of system components is
denoted by 𝑛 =

∑𝐾
𝑘=1 𝑛𝑘 , where 𝑛𝑘 is the number of components of type 𝑘 ∈ {1, 2, . . . , 𝐾}. Accordingly, the

state vector for each type is specified by 𝒙𝑘 =
(
𝑥𝑘,1, 𝑥𝑘,2, . . . , 𝑥𝑘,𝑛𝑘

)
.

Multi-state structure function
Analogously, the structure function can be defined for a discrete multi-state consideration. Then, the system
and component states degrade from a perfect state over a set of intermediate states to the state of complete
failure:

𝜙 := 𝜙(𝒙) : {0, . . . , 𝑀}𝑛 → {0, . . . , 𝑀}, (2)

compare [36].

Continuous-state structure function
When following a continuous multi-state consideration, the set of possible system and component states are all
elements of the interval between 0 and 1. Such a consideration relates to the performance function well-known
in structural reliability when normalized for minimum and maximum parameter values, e.g., as proposed
in [37]:

𝜙 := 𝜙(𝒙) : [0, 1]𝑛 → [0, 1] . (3)

Coherent system
A special case of the general system is the class of coherent systems. Note that binary-state, discrete multi-state,
as well as continuous multi-state structure functions can be coherent. In accordance with Hudson &Kapur [38],
this class can be defined as follows. A (discrete or continuous multi-state) system is defined to be coherent if
the three subsequent conditions are fulfilled:

• 𝜙(𝒙) is surjective. Consequently, for each system state 𝑚 there exists at least one state vector 𝒙 for which
𝜙(𝒙) = 𝑚.

• 𝜙(𝒙) ≤ 𝜙(𝒚) if 𝒙 ≤ 𝒚, i.e., 𝜙 is monotone and non-decreasing.
• The set𝐶 of all components contains no inessential components, i.e., each component influences the system
performance at some point.

Concept of binary-state survival signature
Theconcept of the survival signature is a promising approach for amore efficient evaluation of system reliability,
especially when it comes to repeated model evaluations. Introduced in [26], this concept enables to compute
the survival function of a system. The approach attracted increasing attention over the last decade due to its
advantageous features compared to traditional methods [27]. One of its benefits is the efficiency in repeated
model evaluations due to a separation of the probability structure of system components and the topological
system reliability. In addition, the survival signature significantly condenses information on the topological
reliability for systems with multiple component types. Components are of the same type if their failure times
are independent and identically distributed (𝑖𝑖𝑑) or exchangeable. This distinction is important whenmodeling
dependent component failure times [39]. Formore information on claimed exchangeability in practice, see [28,39].
In the following the derivation of the concept of survival signature is shown for a binary-state system with a
single component type and multiple component types, respectively, based on Coolen et al. [26]. More detailed
information about further applications and the derivation of the concept can be found in [26,39,40].

Consider a coherent system with a given structure function. Given a binary-state vector specifying the state of
𝑛 components in total, there are

(𝑛
𝑙

)
state vectors 𝒙 with exactly 𝑙 components with 𝑥𝑖 = 1, i.e.,

∑𝑛
𝑖=1 𝑥𝑖 = 𝑙. Let

the set of these state vectors refer to as 𝑆𝑙 . Assume that the failure times of the components specifying 𝒙 over

http://dx.doi.org/10.20517/dpr.2023.03


Page 6 of 33 Winnewisser et al. Dis Prev Res 2023;2:4 I http://dx.doi.org/10.20517/dpr.2023.03

time are 𝑖𝑖𝑑. Consequently, all possible state vectors are equally likely to occur and, hence, it can be stated that

Φ(𝑙) =
(
𝑛

𝑙

)−1 ∑
𝒙∈𝑆𝑙

𝜙(𝒙), (4)

where 𝜙(𝒙) is the binary-state structure function. Then, Φ(𝑙) denotes the probability that a system is working
given that exactly 𝑙 of its components working for 𝑙 = 1, . . . , 𝑛. Note that the survival signature depends only on
the topological reliability of the system, independent of the time-dependent failure behavior of its components,
hereafter referred to as the probability structure of the system. It holds that Φ(0) = 0 and Φ(𝑛) = 1 due to the
coherent system property. The expression given in Equation (4) closely relates to the signature, introduced by
Samaniego in [41].

The probability structure of system components specifies the probability that a certain number of components
of type 𝑘 are working at time 𝑡. Let 𝐶𝑡 ∈ {0, 1, . . . , 𝑛} be the number of components functioning at time
𝑡 > 0. Further, the probability distribution of the component failure time is described by the cumulative
density function (CDF) 𝐹 (𝑡). Therefore, the probability structure for 𝑙 ∈ {0, 1, . . . , 𝑛} is given as

𝑃 (𝐶𝑡 = 𝑙) =
(
𝑛

𝑙

)
[𝐹 (𝑡)]𝑛−𝑙 [1 − 𝐹 (𝑡)] 𝑙 . (5)

The topological reliability described by Eqn. (4) and the probability structure characterizing the component
failure times can be brought together to obtain the survival function as

𝑅(𝑡) = 𝑃
(
𝑇 𝑓 > 𝑡

)
=

𝑛∑
𝑙=0

Φ(𝑙)𝑃 (𝐶𝑡 = 𝑙) , (6)

where𝑇 𝑓 denotes the random system failure time. Clearly, the two terms on the right-hand side of the equation
have different roles: The term Φ(𝑙) represents the topological reliability and is determined by the structure
function of the system, defining how the system functionality depends on the function of its components.
The other term 𝑃 (𝐶𝑡 = 𝑙) describes component failure behavior and is referred to as the probability structure
of the system. Consequently, the concept of survival signature separates the time-independent topological
reliability and the time-dependent probability structure. Thus, the survival signature computed once in a
pre-processing step can be reused for further evaluations of the survival function. The survival signature
can be stored in a matrix, summarizing the topological reliability. The utilization of this matrix circumvents
the repeated evaluation of the typically computationally expensive structure function. Note that precisely
these properties give the concept of survival signature an advantage over conventional methods when system
simulations must be performed repeatedly [27].

The survival function 𝑅(𝑡) is a well-known concept in reliability engineering that is also referred to as reliabil-
ity function [42,43]. It is typically interpreted as the mathematical formalization of the definition of reliability
provided in section ”INTRODUCTION” and quantifies the system failure time to be greater or equal to 𝑡. It
relates to the CDF 𝐹 (𝑡) as 𝑅(𝑡) = 1 − 𝐹 (𝑡).

It is also possible to define the concept of survival signature for 𝐾 ≥ 2, with 𝐾 being the number of component
types. In this case, the survival signature summarizes the probability that a system is working as a function
depending on the number of working components 𝑙𝑘 for each type 𝑘 = 1, . . . , 𝐾 , see [26] for more details.

Concept of continuous-state survival signature
The original concept of survival signature achieves considerable efficiency advantages when computing sys-
tem reliability but is limited to a binary-state consideration. However, a multi-state or even continuous-state
consideration might be beneficial for the assessment of most real-world systems in terms of safety and cost
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efficiency. In the last years several researchers proposed various concepts that bring the survival signature to
a multi-state consideration, see [31,33,34].

In [32], Liu et al. introduced an approach for the concept of survival signature in the context of continuous-state
systems, for which the component functionality is characterized by a stress-strength relation. The strength of
the components are assumed to be 𝑖𝑖𝑑, while the strength 𝑋 and the stress 𝑌 acting on the components are
statistically independent. The state of a component is defined via a kernel function 𝐾 : R+ → 𝑆 through the
relation 𝜂 = 𝐾 (𝑍) with the random variable 𝑍 = 𝑋/𝑌 . Thereby, 𝑆 ∈ {0, 1, 2, . . . , 𝑀} and 𝑆 ∈ [0, 1], respec-
tively, depending on a discrete or continuous multi-state consideration. The researchers provided formulas
to compute the survival signature for discrete multi-state systems similar to [31] in a combinatorial manner
but directly based on the number of path sets. Analogously, the survival signature for continuous multi-state
systems is given as

𝜌𝑛𝑠 (𝑛) = 𝑃 (𝜀 ≥ 𝑠 | 𝑁 (𝑠, 𝑛) = 𝑛𝑠)

= 𝛿𝑛𝑠 (𝑛)/
(
𝑛

𝑛𝑠

) (7)

with

𝑁 (𝑠, 𝑛) =
𝑛∑
𝑖=1

𝐼 (𝜂 ≥ 𝑠) (8)

that is the number of components in state 𝑠 of in total 𝑛 components and 𝛿𝑛𝑠 (𝑛) being the number of path sets
for which exactly 𝑛𝑠 components are in state 𝑠 or above. The time-independent probability that the system is
at least in state 𝑠 or above can then be given as

𝑅(𝑠) =
𝑛∑
𝑙𝑠=0

𝜌𝑙𝑠 (𝑛)
(
𝑛

𝑙𝑠

)
𝑃 (𝑁 (𝑠, 𝑛) = 𝑛𝑠) , (9)

where 𝑙𝑠 is the number of components functioning in state 𝑠. Again, the left term represents the inherently
time-independent topological reliability, while the right term refers to the probability structure that is time-
independent in this case due to specific the stress-strength relation of components established in [32].

Despite an extension to discrete and continuous multi-state consideration, the authors limited their consider-
ations in [32] to a time-independent reliability analyses. Thereby, 𝑅(𝑠) quantifies the probability that the entity
under consideration performs in state 𝑠, compare 𝑅(𝑡) that measures the probability of the system failure time
is greater or equal to time 𝑡. In addition, a stress-strength relation characterizing probabilistic properties of
components must be established as prerequisite in order to determine the component probability structure
𝑃 (𝑁 (𝑠, 𝑛) = 𝑛𝑠).

PROPOSED METHODOLOGY
In this section, the continuous-state survival function is defined. In contrast to the previously outlined ap-
proaches that are either probability measures of state 𝑠 or time 𝑡, this notion depends on both 𝑠 and 𝑡 simul-
taneously. For comparison with the subsequently presented methodology, a true solution estimate based on
MCS is proposed in order to evaluate the continuous-state survival function. Eventually, the DAS is introduced
as surrogate model to compute the continuous-state survival function efficiently.

Continuous-state survival function
In this work, the probability 𝑃(𝑢𝑠 ≥ 𝑠 |𝑡) that the state of some entity under consideration 𝑢𝑠 is greater or equal
to 𝑠 at given time 𝑡 is referred to as the continuous-state survival function of this entity and is denoted by

𝑅(𝑠, 𝑡) = 𝑃(𝑈𝑠 ≥ 𝑠 |𝑡). (10)

http://dx.doi.org/10.20517/dpr.2023.03
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Figure 2. Examples for 𝜕Ω𝑠 and Ω𝑠 shown in a contour plot of an exemplary 2𝐷-system with the structure function 𝜙 (𝒙) evaluated for an
arbitrary state 𝑠.

Thereby, the continuous-state survival function constitutes a time-dependent probability measure that char-
acterizes the distribution of performance states of the considered entity over time. From another perspective,
the continuous-state survival function can be interpreted as

𝑅(𝑠, 𝑡) = 𝑃(𝑈𝑡 ≥ 𝑡 |𝑠), (11)

where𝑈𝑡 is the random variable characterizing the time to failure of the condition that the state of the entity is
greater than 𝑠. Despite this perspective does not find application in this work, the consideration is decisive for
the terminology. In fact, the original and well-known survival function can be extended to this notion when
conditioning the considered lifetime to a state 𝑠 in the interval [0, 1] instead of a binary condition of operating
or not operating.

In the context of systems that consist of components facing disruptive events, the entity under consideration
may correspond to either a system or one of its components. Thereby, 𝑅(𝑠, 𝑡) can be established in several
ways. The first attempt to quantify 𝑅(𝑠, 𝑡) could be a fully empirical approach, measuring the frequency of the
system or component state 𝑢𝑠. Given the typically limited number of samples, engineers in most cases face the
challenge of modeling a stochastic process based on limited data or expert knowledge and to utilize it as basis
for sampling performances as an alternative. Besides that, the continuous-state survival function can be evalu-
ated based on a given structure function 𝜙(𝒙), as presented in section ”THEORETICAL FUNDAMENTALS”,
that represents system topology, i.e., component interaction, and a given probability structure describing the
degrading component performance over time. The latter approach involving 𝜙(𝒙) will be focal point for all
subsequent developments.

Consider a system with a coherent and time-invariant structure function 𝜙(𝒙). Then 𝑢𝑠 = 𝜙(𝒙) and the
corresponding continuous-state survival function can be given by 𝑅(𝑠, 𝑡) = 𝑃(𝜙(𝒙) ≥ 𝑠 |𝑡). Figure 2 shows
the contour line of an exemplary 2𝐷 system for a given state 𝑠. Thereby, 𝜕Ω𝑠 := {𝒙 | 𝜙(𝒙) = 𝑠} represents
this contour line as the set of state vectors that meet exactly the system performance 𝜙(𝒙) = 𝑠 with 𝒙 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑥𝑖 ∈ [0, 1]. Ω𝑠 := {𝒙 | 𝜙(𝒙) ≥ 𝑠} corresponds to the set of state vectors that fulfill the
criteria 𝜙(𝒙) ≥ 𝑠. Given 𝜙(𝒙), an exact solution for 𝑅(𝑠, 𝑡) can be obtained by evaluating the integral of the
time-dependent probability density at the state vectors belonging to Ω𝑠. Denote the underlying probability
distribution as 𝑓𝑥𝑖 (𝑥𝑖 | 𝑡) – potentially time-dependent – describing the state 𝑥𝑖 of component 𝑖. Further, let
Ω = [0, 1]𝑛 be the set of all possible component states and assume the component states to be independently
distributed. Then, the true solution of the continuous-state survival function is given as the integral over
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Ω𝑠 ⊆ Ω:

𝑅(𝑠, 𝑡) =
∫
Ω𝑠

𝑓𝒙 (𝒙 | 𝑡)𝑑𝒙

=
∫
Ω
𝐼 (𝜙(𝒙) ≥ 𝑠) 𝑓 (𝒙 | 𝑡)𝑑𝒙,

(12)

where 𝑓𝒙 (𝒙 | 𝑡) =
∩𝑛
𝑖=1 𝑓𝑥𝑖 (𝑥𝑖 | 𝑡) is the conditional joint probability density characterizing the probability of

the component state vector 𝒙. Further, 𝐼 (·) ∈ {0, 1} denotes the indicator function.

In fact, the identification of 𝜕Ω𝑠 := {𝒙 | 𝜙(𝒙) = 𝑠}, that corresponds to the well-known limit state function,
in order to quantify the probability mass assigned to the elements in Ω𝑠 is a challenging task, particularly for
nonlinear functions. MCS is applied to obtain an estimate of the true solution, since there is no closed form
available to solve this general and possibly multi-dimensional problem. It holds true that

𝑅(𝑠, 𝑡) =
∫
Ω
𝐼 (𝜙(𝒙) ≥ 𝑠) 𝑓𝒙 (𝒙 | 𝑡)𝑑𝒙

=
1

𝑁𝑀𝐶𝑆

𝑁𝑀𝐶𝑆∑
𝑗=1

𝐼 (𝜙(𝒙 𝑗 ) ≥ 𝑠 | 𝑡),
(13)

where 𝑁𝑀𝐶𝑆 is the number of component state samples 𝒙 𝑗 ∈ Ω ∼ 𝑓𝒙 (𝒙 | 𝑡) used for MCS, when 𝑁𝑀𝐶𝑆 →∞.

Surrogate model: the concept of diagonal approximated signature
The concept of the DAS is introduced as a surrogate modeling approach that enables the computation of the
true continuous-state survival function or at least an approximation of it depending on the characteristics of
𝜙(𝒙). Similarly to the concepts of binary- and discrete/continuous multi-state survival signatures, the concept
of the DAS is based on a decomposition of working components, compare 𝑙 that is the number of components
working, as in Equation (6), and 𝑙𝑠 that is the number of components functioning in state 𝑠, as in Equation (9),
respectively. This leads to a separation property of these concepts that enables to store information on the
system topology, i.e., the functional interaction of components, and retrieve it in repeated model evaluations
more efficiently than compared to the evaluation via the original structure function.

Fundamental statement
With regard to the current developments, several categorizations for three properties of a coherent system
structure function are introduced. As first property, the diagonal state sign can be defined: A coherent structure
function is referred to as diagonally state positive if it holds that 𝜙(𝑥𝑠) > 𝑠 ∀𝑠 ∈ [0, 1] with 𝑥𝑠 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
and 𝑥𝑖 = 𝑠 where 𝑛 is the number of system components. Analogously, the terms diagonally state neutral and
diagonally state negative correspond to the conditions 𝜙(𝑥𝑠) = 𝑠 and 𝜙(𝑥𝑠) < 𝑠, respectively. Secondly, note
that a structure function is called diagonally state invariant in particular if it is diagonally state neutral. In
contrast, the property of the diagonal state variance can also be assigned as diagonally state variant if the
structure function is partly diagonally state positive, neutral and negative. The third property can be assigned
as diagonally state extreme if it holds that 𝜙(𝑥𝑠) ≥ 𝑠 ∀𝑠 ∈ [0, 1] with 𝑥𝑠 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑥𝑖 ∈ {0, 𝑠}. This
condition would imply that the structure function is also diagonally state constant, i.e., 𝜙(𝑥𝑠) ≥ 𝑠 ∀𝑠 ∈ [0, 1]
with 𝑥𝑠 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑥𝑖 ∈ [0, 𝑠]. Let these specifications relate to the diagonal state order. As an
example, both of these properties can be specified as diagonally state neutral and diagonally state extreme
for structure functions that are solely composed by min- or max-operators, i.e., compositions of 𝜙𝑒 (𝒙) =
min(𝑥 𝑓 , 𝑥𝑔) ∈ [0, 1] and 𝜙ℎ (𝒙) = max(𝑥 𝑗 , 𝑥𝑘 ) ∈ [0, 1] with 𝑥 𝑓 , 𝑥𝑔, 𝑥 𝑗 , 𝑥𝑘 ∈ [0, 1]. In addition to such systems,
Liu et al. also investigated 𝑘 − 𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 − 𝑜𝑢𝑡 − 𝑜 𝑓 − 𝑛 − 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 which are diagonally state neutral and
diagonally state extreme, compare [32]. The min- and max-operators can be interpreted as analogy of series
and parallel operators known from the binary-state consideration, as stated in [30]. The binary operators often
appear in reliability block diagrams.

http://dx.doi.org/10.20517/dpr.2023.03


Page 10 of 33 Winnewisser et al. Dis Prev Res 2023;2:4 I http://dx.doi.org/10.20517/dpr.2023.03

Assume a coherent structure function to be diagonally state neutral or at least positive and at least diagonally
state constant. Then, the basic concept of the DAS can be stated as

𝑅(𝑠, 𝑡) =
∫
Ω𝑠

𝑓𝒙 (𝒙 | 𝑡) 𝑑𝒙

=
𝑛∑
𝑙𝑠=0

( 𝑛𝑙𝑠)∑
𝑝=1
[𝑅𝑥 (Φ(𝑙𝑠, 𝑝) | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠 ,

(14)

where Φ(𝑙𝑠, 𝑝) represents the DAS and 𝑅𝑥 (𝑠 | 𝑡) = 𝑅𝑥𝑖 (𝑠 | 𝑡) = 𝑃{𝑥𝑖 | 𝑥𝑖 ≥ 𝑠, 𝑡} corresponds to the probability
that a component is in state 𝑠 or above at time 𝑡 given that all component states are 𝑖𝑖𝑑 or exchangeable. Thereby,
Φ(𝑙𝑠, 𝑝) stores values representing an approximation of the limit state function, i.e., 𝜕Ω𝑠 that is the set of
component state vectors fulfilling the condition 𝜙(𝒙) = 𝑠. For a given state 𝑠, the 𝑝-th permutation of the
overall

( 𝑛
𝑙𝑠

)
permutations defines a subspace Ω𝑠,𝑙𝑠 ,𝑝 ⊆ Ω𝑠,𝑙𝑠 ⊆ Ω𝑠 ⊆ Ω determined by 𝑙𝑠 that is the number of

components working in state 𝑠. All state vectors in the set ofΩ𝑠,𝑙𝑠 ,𝑝 fulfill the condition 𝜙(𝒙) ≥ 𝑠. Let the value
ofΦ(𝑙𝑠, 𝑝) for subspaceΩ𝑠,𝑙𝑠 ,𝑝 be the minimum value of 𝑛− 𝑙𝑠 components of the state vector 𝒙 in the interval
[0, 𝑠)𝑛−𝑙𝑠 for which the condition 𝜙(𝒙) ≥ 𝑠 is met, while 𝑙𝑠 components are fixed in state 𝑠. The developed
algorithm for computing the values Φ(𝑙𝑠, 𝑝) ensures that the continuous-state survival function 𝑅(𝑠, 𝑡) can
only be underestimated in the worst case.

Derivation of the fundamental statement
Thederivation of Equation (14) can be given as follows. Let 𝐼 = {1, 2, . . . , 𝑛}, where 𝑛 = |𝐼 |, and (𝑘1, 𝑘2, . . . , 𝑘𝑛) ∈
𝐾𝑝 B

( 𝐼
𝑙𝑠

)
. Then, 𝐾𝑝 is the index set of all possible permutations of the state vector for a given number of com-

ponents functioning in state 𝑠 with in total
( 𝑛
𝑙𝑠

)
elements, and the index 𝑝 ∈ {1, 2, . . . ,

( 𝑛
𝑙𝑠

)
} corresponds to the

𝑝-th permutation. At first, consider the decomposition of Ω𝑠, the set of state vectors for which the condition
𝜙(𝒙) ≥ 𝑠 is fulfilled, into its subspaces when given 𝑙𝑠 components functioning in state 𝑠. The decomposition
is formulated as

Ω𝑠 = {𝒙 | 𝜙(𝒙) ≥ 𝑠} =
𝑛∪
𝑙𝑠=0

Ω𝑠,𝑙𝑠 = Ω𝑠,0 ∪
𝑛−1∪
𝑙𝑠=1

Ω𝑠,𝑙𝑠 ∪Ω𝑠,𝑛

=

(𝑛0)∪
𝑝=1

{
𝑥𝑘1 , . . . , 𝑥𝑘𝑛 < 𝑠 ∧ 𝜙(𝒙) ≥ 𝑠

}
∪
𝑛−1∪
𝑙𝑠=1

( 𝑛𝑙𝑠)∪
𝑝=1

{
𝑥𝑘1,...,𝑥𝑘𝑖 ≥ 𝑠 ∧ 𝑥𝑘𝑖+1 , . . . , 𝑥𝑘𝑛 < 𝑠 ∧ 𝜙(𝒙) ≥ 𝑠

}
∪

(𝑛𝑛)∪
𝑝=1

{
𝑥𝑘1 , . . . , 𝑥𝑘𝑛 ≥ 𝑠 ∧ 𝜙(𝒙) ≥ 𝑠

}
=

𝑛∪
𝑙𝑠=0

( 𝑛𝑙𝑠)∪
𝑝=1

Ω𝑠,𝑙𝑠 ,𝑝 ,

(15)

where {𝑘𝑖+1, . . . , 𝑘𝑛} =
(
𝐼/𝐾𝑝

)
. Note that the subspace Ω𝑠,𝑙𝑠 is also decomposed into the subspaces Ω𝑠,𝑙𝑠 ,𝑝

defined via all possible permutations 𝑝 of the state vector for 𝑙𝑠 given components functioning in state 𝑠 or
above and the corresponding 𝑛 − 𝑙𝑠 components functioning in state < 𝑠.

Secondly, the set-theoretical decomposition
∪𝑛
𝑙𝑠=0

∪( 𝑛𝑙𝑠)
𝑝=1 Ω𝑠,𝑙𝑠 ,𝑝 proposed in Equation (15) is utilized to decom-

pose the time-dependent state probability and to separate the probability structure and the information on the
limit state function. This spatial decomposition depending on a given state 𝑠 and time 𝑡 is now utilized to form
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sums of mutually exclusive event sets as:

𝑅(𝑠, 𝑡) =
∫
Ω𝑠

𝑓 (𝒙 | 𝑡) 𝑑𝒙

= 𝑃(Ω𝑠 |𝑡) = 𝑃(
𝑛∪
𝑙𝑠=0

( 𝑛𝑙𝑠)∪
𝐾𝑝=( 𝐼𝑙𝑠)

Ω𝑠,𝑙𝑠 ,𝑝 |𝑡)

=
𝑛∑
𝑙𝑠=0

( 𝑛𝑙𝑠)∑
𝑝=1

∫
Ω𝑠,𝑙𝑠 , 𝑝

𝑓 (𝒙 | 𝑡) 𝑑𝒙.

(16)

The claim that the coherent structure function is diagonally state neutral or positive and at least diagonally state
constant implies that Ω𝑠,𝑙𝑠 ,𝑝 = [𝑎𝑖 (𝑙𝑠, 𝑝), 𝑏𝑖 (𝑙𝑠, 𝑝)]𝑛. The boundary points 𝑎𝑖 (𝑙𝑠, 𝑝) and 𝑏𝑖 (𝑙𝑠, 𝑝) characterize
the subspace Ω𝑠,𝑙𝑠 ,𝑝 and depend on 𝑙𝑠 the number of components functioning in state 𝑠 and the permutation
𝑝. Further, assume that the components are independent and identically distributed, i.e., 𝑥1, 𝑥2, . . . , 𝑥𝑛 = 𝑥 ∼
𝑓𝑥 (𝑥𝑖 | 𝑡). Consequently, it can be stated that∫

Ω𝑠,𝑙𝑠 , 𝑝

𝑓 (𝒙 | 𝑡) 𝑑𝒙 =
∫
Ω𝑠 ,𝑙𝑠 ,𝑝

𝑓1(𝑥1 | 𝑡) 𝑓2(𝑥2 | 𝑡) · · · 𝑓𝑛 (𝑥𝑛 | 𝑡) 𝑑𝑥1𝑑𝑥2 . . . 𝑑𝑥𝑛

=
𝑛∏
𝑖=1

∫ 𝑏𝑖 (𝑙𝑠 ,𝑝)

𝑎𝑖 (𝑙𝑠 ,𝑝
𝑓𝑖 (𝑥𝑖 | 𝑡)𝑑𝑥𝑖 =

𝑛∏
𝑖=1

∫ 𝑏𝑖 (𝑙𝑠 ,𝑝)

𝑎𝑖 (𝑙𝑠 ,𝑝
𝑓𝑥 (𝑥𝑖 | 𝑡)𝑑𝑥𝑖

=
𝑛∏
𝑖=1

𝐹𝑥 (𝑏𝑖 (𝑙𝑠, 𝑝) | 𝑡) − 𝐹𝑥 (𝑎𝑖 (𝑙𝑠, 𝑝) | 𝑡)

=
𝑛∏
𝑖=1

1 − 𝑅𝑥 (𝑏𝑖 (𝑙𝑠, 𝑝) | 𝑡) − (1 − 𝑅𝑥 (𝑎𝑖 (𝑙𝑠, 𝑝)) | 𝑡)

=
𝑛∏
𝑖=1

𝑅𝑥 (𝑎𝑖 (𝑙𝑠, 𝑝) | 𝑡) − 𝑅𝑥 (𝑏𝑖 (𝑙𝑠, 𝑝) | 𝑡).

(17)

The expression proposed in Equation (14) involving the time-dependent state probability distribution results
from Equation (17) when considering two reformulations: At first, note the simplification 𝑅𝑥 (𝑎 𝑗 (𝑙𝑠, 𝑝)) −
𝑅𝑥 (𝑏 𝑗 (𝑙𝑠, 𝑝)) = 𝑅𝑥 (𝑠) − 𝑅𝑥 (1) = 𝑅𝑥 (𝑠) for the 𝑗-th component of the overall 𝑙𝑠 ∈ {0, 1, . . . , 𝑛} components
functioning in state greater or equal to 𝑠. At second, it can be stated that the DAS Φ(𝑙𝑠, 𝑝) = 𝑎𝑘 (𝑙𝑠, 𝑝) as
𝑅𝑥 (𝑎𝑘 (𝑙𝑠, 𝑝)) − 𝑅𝑥 (𝑏𝑘 (𝑙𝑠, 𝑝)) = 𝑅𝑥 (Φ(𝑙𝑠, 𝑝)) − 𝑅𝑥 (𝑠) for the 𝑘-th component of the overall 𝑛− 𝑙𝑠 components
in state < 𝑠. Consequently,∫

Ω𝑠,𝑙𝑠 , 𝑝

𝑓 (𝒙 | 𝑡) 𝑑𝒙 =
𝑛∏
𝑖=1

𝑅𝑥 (𝑎𝑖 (𝑙𝑠, 𝑝) | 𝑡) − 𝑅𝑥 (𝑏𝑖 (𝑙𝑠, 𝑝) | 𝑡)

= [𝑅𝑥 (Φ(𝑙𝑠, 𝑝) | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠 .
(18)

Then, Equation (16) and Equation (18) are brought together to finally obtain the expression presented in Equa-
tion (14):

𝑅(𝑠, 𝑡) =
𝑛∑
𝑙𝑠=0

( 𝑛𝑙𝑠)∑
𝑝=1

∫
Ω𝑠,𝑙𝑠 , 𝑝

𝑓 (𝒙 | 𝑡) 𝑑𝒙

=
𝑛∑
𝑙𝑠=0

( 𝑛𝑙𝑠)∑
𝑝=1
[𝑅𝑥 (Φ(𝑙𝑠, 𝑝) | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠 .

(19)

Note that the topological information captured beforehand in Φ(𝑙𝑠, 𝑝) is then retrieved and inserted into the
probability structure in order to evaluate 𝑅(𝑠, 𝑡).
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Basic algorithm for evaluating the DAS
At a first attempt, the approximation of Φ(𝑙𝑠, 𝑝) can be achieved via the numerical scheme proposed in Al-
gorithm 1. The presented Algorithm 1 poses a basic optimization scheme for finding the values Φ(𝑙𝑠, 𝑝) for
given state 𝑠. The proposed algorithm yields an exact representation of the limit state function at state 𝑠 if
the coherent structure function is diagonally state extreme and an approximated representation for diagonally
state constant systems.

Algorithm 1 Evaluation of Φ(𝑙𝑠, 𝑝)
function evaluateDiagonalApproximatedSignature(𝜙(), 𝒙0, 𝑠, ℎ𝑚𝑎𝑥)

⊲ fixed point evaluation
if 𝑎𝑙𝑙 (𝒙0. == 𝑠) then

if 𝜙(𝒙0) ≥ 𝑠) then
return s

end if
end if

⊲ start iteration
𝑣, 𝑣1 ← 𝑠 ⊲ initialize auxiliary iteration variables
ℎ← 0 ⊲ initialize iteration counter
𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑒 ← 𝜙(DetermineStateVector(𝒙0, 𝑣1))
while ℎ ≤ ℎ𝑚𝑎𝑥 do

if 𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑒 < 𝑠 then
𝑣1 ← 𝑣 − 𝑠

2ℎ
else if 𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑒 ≥ 𝑠 then

𝑣 ← 𝑣1
𝑣1 ← 𝑣 − 𝑠

2ℎ
end if
𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑒 ← 𝜙(DetermineStateVector(𝒙0, 𝑣1))
ℎ← ℎ + 1

end while
return 𝑣1

end function
⊲ auxiliary function

function DetermineStateVector(𝒙0, 𝑣1)
return 𝑓 𝑖𝑙𝑙 (𝒙0 [𝒙0. == 𝑁𝑎𝑁], 𝑣1)

end function

ConsideringAlgorithm1, 𝜙(·) corresponds to the coherent structure function of the system and 𝒙0 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
with 𝑥𝑖 ∈ {𝑁𝑎𝑁, 𝑠}, where 𝒙0 contains 𝑙𝑠 times 𝑠 and 𝑛 − 𝑙𝑠 times 𝑁𝑎𝑁 . Further, 𝑠 indicates the state under
consideration. The tuple (𝑙𝑠, 𝑝) is characterized by the number of components in state 𝑠 and their arrangement
in the vector 𝒙0. If the vector 𝒙0 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) with 𝑥𝑖 = 𝑠 fulfills the condition 𝜙(𝒙0) ≥ 𝑠, the structure
function is at least diagonally state neutral for the given state 𝑠 and 𝑠 can be returned as value forΦ(𝑙𝑠, 1) with
𝑙𝑠 = 𝑛. For every other vector, the algorithm starts its search at 𝑠, next it checks the minimum value 0 and than
evaluates the interval in between until it stops. The algorithm stops when meeting the condition 𝜙(𝒙0) = 𝑠 or
after a specified number of iterations ℎ𝑚𝑎𝑥 . Thereby, the step size is reduced in each iteration by 1/2 and the
last value 𝑣 that met the requirement 𝜙(DetermineStateVector(𝒙0, 𝑣1)) ≥ 𝑠 is maintained and candidates are
rejected if 𝜙(DetermineStateVector(𝒙0, 𝑣1)) < 𝑠. The Algorithm 1 yields exact results if the system is diago-
nally state extreme, since both extreme cases, i.e., Φ(𝑙𝑠, 𝑝) = 𝑠 and Φ(𝑙𝑠, 𝑝) = 0, are evaluated. For diagonally
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state constant structure functions the iteration achieves an underestimating approximation with an accuracy
depending on ℎ. The algorithm can be further improved by including the stopping criteria for a sufficiently
small improvement between ℎ and ℎ + 1.

Extended statements
Equation (14) and Equation (19), respectively, as well as the Algorithm 1 form the basis for all further de-
velopments of the concept of DAS. However, the established expression still appears to be computationally
expensive, as the sum over all permutations becomes increasingly demanding for systems comprising a large
number of components. Therefore, a naive approach is introduced based on counting the occurrences of equal
values of Φ𝑐 (𝑙𝑠, 𝑝) in the subspace Ω𝑠,𝑙𝑠 to further reduce the computational effort: Let Ψ(𝑙𝑠, 𝑗) = (|𝐶 𝑗 |, 𝑣 𝑗 )
be the so-called condensed DAS that assigns a tuple for 𝑙𝑠 ∈ {0, 1, . . . , 𝑛} and 𝑗 ∈ {1, 2, . . . , 𝐽}, where 𝐽 is the
number of unique values 𝑣 𝑗 of Φ(𝑙𝑠, 𝑝) for a fixed 𝑙𝑠 and 𝑝 ∈ {1, 2, . . . ,

( 𝑛
𝑙𝑠

)
}. Thereby, 𝑣 𝑗 indicates the 𝑗-th

unique element in the set 𝐶 𝑗 that is formally defined as 𝐶 𝑗 B {(𝑙𝑠, 𝑝) : Φ(𝑙𝑠, 𝑝) = 𝑣 𝑗 }. Then,

𝑅(𝑠, 𝑡) =
𝑛∑
𝑙𝑠=0

( 𝑛𝑙𝑠)∑
𝑝=1
[𝑅𝑥 (Φ(𝑙𝑠, 𝑝) | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠

=
𝑛∑
𝑙𝑠=0

𝐽∑
𝑗=1

Ψ(𝑙𝑠, 𝑗) [1] [𝑅𝑥 (Ψ(𝑙𝑠, 𝑗) [2] | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠

=
𝑛∑
𝑙𝑠=0

𝐽∑
𝑗=1
|𝐶 𝑗 | [𝑅𝑥 (𝑣 𝑗 | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠 .

(20)

For most systems, the application of Equation (20) will lead to a tremendous reduction of computational cost
since typically 𝐽 << |{(𝑙𝑠, 𝑝)}| for a fixed 𝑙𝑠 and 𝑝 ∈ {1, 2, . . . ,

( 𝑛
𝑙𝑠

)
}.

For systems with high |𝐶 𝑗 | per 𝑙𝑠 but many values of 𝑣 𝑗 ∈ [0, 1] in direct neighborhood to each other, 𝑣 𝑗
can be rounded up for 𝑟 digits. Formally, this is defined as 𝐶 𝑗 ,𝑟 B {(𝑙𝑠, 𝑝) : Φ(𝑙𝑠, 𝑝) = 𝑣 𝑗 ,𝑟 }, where 𝑣 𝑗 ,𝑟
is a rounded value of 𝑣 𝑗 up to 𝑟-th digit. Correspondingly, Ψ𝑟 (𝑙𝑠, 𝑗) = (|𝐶 𝑗 ,𝑟 |, 𝑣 𝑗 ,𝑟 ). Considering the Algo-
rithm 1, the corresponding values Φ(𝑙𝑠, 𝑝) were evaluated during the iteration and yield an approximation.
This introduces an approximation error and a trade-off between computational cost and accuracy has to be
made. The continuous-state survival function will be underestimated in the worst case, since 𝑣 𝑗 ,𝑟 > 𝑣 𝑗 ⇒
𝑅(𝑣 𝑗 ,𝑟 ) − 𝑅(𝑠) ≤ 𝑅(𝑣 𝑗 ) − 𝑅(𝑠). Consequently, the concept of DAS can be formulated as an inequality for at
least diagonally state neutral coherent structure functions that are not diagonally state constant. For such sys-
tems a subspace of Ω𝑠,𝑙𝑠 ,𝑝 might be neglected. The hypervolume that is neglected and consequently by which
the continuous-state survival function is underestimated depends on the shape and curvature of the corre-
sponding limit state function. This probably large-scale approximation error results from the facts that these
systems are no longer diagonally state constant and the DAS values are evaluated along the state diagonals of
the individual subspaces Ω𝑠,𝑙𝑠 ,𝑝 . Nevertheless, an underestimation of the continuous-state survival function is
provided in the worst case. This property is of crucial importance in engineering practice to prevent an uncon-
scious risk from being taken. Let the following inequality be referred to as the concept of the naive first-order
DAS. It holds true that

𝑅(𝑠, 𝑡) ≥
𝑛∑
𝑙𝑠=1

( 𝑛𝑙𝑠)∑
𝑝=1
[𝑅𝑥 (Φ(𝑙𝑠, 𝑝) | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠

≥
𝑛∑
𝑙𝑠=0

𝐽∑
𝑗=1

Ψ𝑟 (𝑙𝑠, 𝑗) [1] [𝑅𝑥 (Ψ𝑟 (𝑙𝑠, 𝑗) [2] | 𝑡) − 𝑅𝑥 (𝑠 | 𝑡)]𝑛−𝑙𝑠 [𝑅𝑥 (𝑠 | 𝑡)] 𝑙𝑠 ,

(21)

where 𝑅𝑥 (𝑠 | 𝑡) = 𝑅𝑥𝑖 (𝑠 | 𝑡) = 𝑃{𝑥𝑖 | 𝑥𝑖 ≥ 𝑠, 𝑡}, i.e., all component states are 𝑖𝑖𝑑. The statement above refers
to as first-order approach since higher-order approaches are plausible. One could consider convolutions of
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Component Type 1

Figure 3. System composed by a min-operator with two components.

subspaces via a recursive formula. LetΦ1(𝑙𝑠, 𝑝) denote the first-order DAS.Then, statements involving higher-
order DAS such as Φℎ (𝑙𝑠, 𝑝) would rely on the subordinate values Φℎ−1(𝑙𝑠, 𝑝). However, the development of
such higher-order schemes is beyond the scope of this paper.

CASE STUDIES
In this section, various system models are established that are designed for a proof of concept and a test of
applicability of the developed approaches. Subsequently, the numerical results are presented.

System structure functions
Here, the structure functions are presented that will be studied to achieve a proof of concept and test the
applicability of the approach. Note that the structure functions model the system topology, i.e., the functional
interaction of components with each other.

Proof of concept: Min- and Max-Systems
The min- and the max-operator are crucial in the context of continuous-state system reliability as these cor-
respond to the fundamental series- and parallel-operator well-known from the binary-state consideration of
system functionality. Typically, they appear in the context of reliability block diagrams. Several systems com-
posed by these operators are established in order to proof the fundamental methodologies proposed in section
”PROPOSED METHODOLOGY”. The following coherent structure functions composed by min- and max-
operators are considered:

• 2-Component-Min-System
The system is composed by two continuous-state components with 𝑥𝑖 ∈ [0, 1]. The components are linked
by amin-operator. Both components are considered to be of the same type. The 2-Component-Min-System
can be interpreted as the analog to a series-connection in the binary-state case. The structure function
𝜙(𝒙) ∈ [0, 1] can be defined in a functional form as

𝜙(𝒙) = 𝑚𝑖𝑛(𝑥1, 𝑥2). (22)

This structure function is diagonally state neutral, consequently, also diagonally state invariant, and diago-
nally state extreme. A graphical representation is given in Figure 3.

• 2-Component-Max-System
The system is composed by two continuous-state components with 𝑥𝑖 ∈ [0, 1]. The components are linked
by amax-operator. Both components are considered to be of the same type. The 2-Component-Max-System
can be interpreted as the analog to a parallel-connection in the binary-state case. The structure function
𝜙(𝒙) ∈ [0, 1] can be defined in a functional form as

𝜙(𝒙) = 𝑚𝑎𝑥(𝑥1, 𝑥2). (23)

This structure function is diagonally state neutral, consequently, also diagonally state invariant, and diago-
nally state extreme. A graphical representation is given in Figure 4.

• 8-Component-MinMax-System
The system is composed by eight continuous-state components with 𝑥𝑖 ∈ [0, 1]. The components are linked
by min-operators, as well as, max-operators. All components are considered to be of the same type. This
system can be interpreted as the analog to a reliability block diagram that is composed by eight components.
The structure function 𝜙(𝒙) ∈ [0, 1] can be defined in a functional form as

𝜙(𝒙) = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥1, 𝑥2, 𝑥3), 𝑥5, 𝑥8), 𝑚𝑖𝑛(𝑥4, 𝑚𝑎𝑥 (𝑥6, 𝑥7))). (24)
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Component Type 1

Figure 4. System composed by a max-operator with two components.

Component Type 1

Figure 5. System composed by min- and max-operators with eight components, adapted from [25].

Component Type 1

Figure 6. System composed by min- and max-operators with 21 components, adapted from [25].

This structure function is diagonally state neutral, consequently, also diagonally state invariant, and diago-
nally state extreme. A graphical representation is given in Figure 5.

• 21-Component-MinMax-System
The system is composed by 21 continuous-state components with 𝑥𝑖 ∈ [0, 1]. The components are linked
by min-operators, as well as, max-operators. All components are considered to be of the same type. This
system can be interpreted as the analog to a reliability block diagram that is composed by 21 components.
The structure function 𝜙(𝒙) ∈ [0, 1] can be defined in a functional form as

𝜙(𝒙) =𝑚𝑖𝑛(𝑚𝑎𝑥(𝑚𝑖𝑛(𝑥1, 𝑚𝑎𝑥(𝑥6, 𝑥7)), 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥2, 𝑥3), 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥4, 𝑥5),
𝑚𝑎𝑥(𝑥6, 𝑥7)), 𝑥8)), 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥9, 𝑥10), 𝑚𝑎𝑥(𝑥14, 𝑥15, 𝑥16)),
𝑚𝑎𝑥(𝑚𝑖𝑛(𝑚𝑎𝑥(𝑥11, 𝑥12), 𝑥17), 𝑚𝑖𝑛(𝑥13, 𝑚𝑎𝑥(𝑥18, 𝑥19)))), 𝑚𝑎𝑥(𝑥20, 𝑥21)).

(25)

This structure function is diagonally state neutral, consequently, also diagonally state invariant, and diago-
nally state extreme. A graphical representation is given in Figure 6.

Test of applicability: infrastructure system
In today’s highly developed world, complex systems such as infrastructure networks and industrial plants are
omnipresent and of vital importance to the functioning of modern societies. Consequently, the resilience of
these systems is of utmost importance as well. Therefore, in the following, an arbitrarily chosen infrastruc-
ture network, represented by a graph, is considered. Figure 7 illustrates the graph of this exemplary system.
Hereafter, This system is referred to as 18-Component-Infrastructure-System.
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Figure 7. Arbitrary infrastructure system.
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Figure 8. Relation of the edge degradation and travel time T for infrastructure graph systems.

The graph consists of 15 nodes (capital letters, e.g., 𝐴) and 18 weighted edges (links between, e.g., 𝐴 − 𝐵),
where the nodes may represent cities in the system and the edges may represent transit links, as an example.
The weights of the traffic routes can be interpreted as the travel time 𝑇 required to complete this route.

As, e.g., in [44], [17] and [25], for the analysis of this infrastructure system it is assumed that it has a performance
function defined by the so-called network efficiency. According to Latora and Marchiori [45], the network
efficiency 𝐸 represents a qualitative indicator of the connectivity of a network and is defined as:

𝐸 (𝐺) = 1
𝑁 (𝑁 − 1)

∑
𝑖≠ 𝑗∈𝑉

1
𝑑𝑊𝑖 𝑗

, (26)

with 𝐺 denoting the considered graph, 𝑉 is the set of nodes, i.e., cities, 𝑁 = |𝑉 | the number of cities and 𝑑𝑊𝑖 𝑗
the weighted path length between city 𝑖 and city 𝑗 , that is, the path with shortest travel time between these
two cities. A detailed review of algorithms for efficiently determining the path length 𝑑𝑊𝑖 𝑗 , such as the Floyd,
Dijkstra, or Bellman-Ford algorithms, can be found, e.g., in [46] and [47]. Furthermore, the authors in [45] and [48]

proposed the utilization of a normalized network efficiency 𝐸glob:

𝐸glob(𝐺) =
𝐸 (𝐺)

𝐸
(
𝐺 ideal) . (27)

𝐸
(
𝐺 ideal

)
is here the network efficiency of the graph in ideal state, i.e., all edges and nodes are present and

fully operative. As a basis for calculating 𝑑𝑊𝑖 𝑗 with respect to degrading edges, assume a monotonic functional
relationship between the performance of the degrading edge and the travel time assigned to that edge. There-
fore, a transformation function that maps the component functionality 𝑓 ∈ [0, 1] to a component degradation
𝑑 ∈ [0, 1] via 𝑑 = 1 − 𝑓 is introduced. Further, the component degradation is mapped to the travel time 𝑇 via
an arbitrary function depicted in Figure 8 on the right. Note that the function has to ensure the requirement
that the system structure function is at least diagonally state neutral. This function has an exponential shape,
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For 𝑑 = 0, the travel time of the edge is equal to the standard travel time assigned as weight to the edge before-
hand. The travel time increases up to a value of standard travel time plus 800% of the standard travel time as
maximum.

Stochastic modeling of the component degradation process
As fundamental step for computing the continuous-state survival function via a structure function 𝜙(𝒙), the
probability structure characterizing the component state vector 𝒙 in a probabilistic manner over time has
to be established. In the case of the DAS, this corresponds to the continuous-state survival function, while
sampling duringMCS requires probability densities as fundamental form. As outlined in section ”PROPOSED
METHODOLOGY”, there exist a variety of approaches to generate the basic probability structure. In this work,
an arbitrary stochastic process is proposed for illustrative purposes.

The stochastic degradation of components is modeled by combining an inverse Gamma process and a Gamma
process. These types of processes are widely spread in stochastic degradation modeling [49–51]. Correspond-
ingly, let 𝑍 ∼ Gamma(𝛼, 1) and 𝑌 ∼ Gamma(𝛽, 1) be the random variables. Then, a random variable
characterizing component degradation following a Beta process results when sampled as

𝑋 =
𝑍

𝑍 + 𝑌 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽), (28)

see [52].

MCS is applied to obtain a true solution estimate. In this case, the 𝑖𝑖𝑑 component state vector 𝒙 = [0, 1]𝑛
is sampled with respect to Equation (28) for all obtained numerical results that are subsequently presented.
Consequently, the state of the 𝑖-th component is characterized as 𝑥𝑖 = 𝑋 . Thereby, 𝑁𝑀𝐶𝑆 state samples are
generated for each component in the online phase.

In the case of the DAS, a continuous-state survival function describes the probabilistic characteristics of a
component. Accordingly, the continuous-state survival function of a component can be established by solving
the integral

𝑅𝑥 (𝑠, 𝑡) = 𝑃(𝑋 ≥ 𝑠 | 𝑡) =
∫
𝑋
𝐼 (𝑋 ≥ 𝑠 | 𝑡) = 1

𝑁𝐷𝐴𝑆

𝑁∑
𝑗=1

𝐼 (𝑥 𝑗 ≥ 𝑠 | 𝑡), (29)

where 𝑋 denotes the random peformance variable characterizing the component state, 𝐼 corresponds to the
indicator function, 𝑠 is the considered state threshold, and 𝑡 corresponds to the currently considered time.
Further, 𝑁𝐷𝐴𝑆 refers to the number of MCS samples utilized to estimate the true solution of the continuous-
state survival function for components and 𝑥 𝑗 is the 𝑗-the state sample, compare Equation (13). It is possible
that 𝑁𝐷𝐴𝑆 ≠ 𝑁𝑀𝐶𝑆 .

As exemplary parameters, 𝛼 = 0.15 and 𝛼 = 0.6 were arbitrarily selected. Further, 𝑍 ∼ InverseGamma(𝛼, 1.5)
was assumed, skewing the Beta process. These parameters were applied for all presented case studies.

Numerical results
In this section all computed results are presented. Convergence studies for the number of samples as well
as studies concerning the computation time with respect to the number of samples and the number of states
were conducted. Further, contour plots of the continuous-state survival function approximated by the DAS
and contour plots depicting the corresponding error are provided. Note that the code utilized to compute the
following numerical results was not optimized in terms of computational efficiency for the DAS and included
print statements for computations based on MCS and DAS. Further, the code was not parallelized and vari-
ations in the capacity of working memory were unavoidable during the studies concerning convergence and
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(a) Continuous-state survival function by means
of DASC.
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(b) Error between MCS estimate and DASC ap-
proximation.

Figure 9. 2-Component-Min-System: DAS condensed approximation of continuous-state survival function and the corresponding error.

computation time. Besides the study of computation time in terms of the number of considered states, all plots
were generated with this number set to 101 states.

2-Component-Min-System
At first, consider the results computed for the continuous-state survival function of the 2-Component-Min-
System. In Figure 9, the approximation of the continuous-state survival function by means of the concept
of DAS is depicted. The contour plot shows 𝑅(𝑠, 𝑡) with a step size of 0.1. In this example, the sample size
𝑁 = 𝑁𝑀𝐶𝑆 = 𝑁𝐷𝐴𝑆 equals 51 000. No significant differences between the computation via MCS, DAS and
condensed DAS (indicated by DASC) could be observed during the study. Consequently, it is sufficient to
consider a single contour plot out of three. As it can be observed in the figure, slight variations occur along
the contour curves. Figure 9b shows the error between the true solution estimate obtained by means of MCS
and the approximation via the condensed DAS. In theory, the DAS should yield exact results when for the
underlying sampling process 𝑁𝐷𝐴𝑆 → ∞. This can be verified by the obtained results, as contour plot of
the error purely exhibits variations with a maximum magnitude of 0.012 due to the variance in sampling
process of the underlying component degradation. It can be presumed that the error vanishes completely for
𝑁𝑀𝐶𝑆 = 𝑁𝐷𝐴𝑆 →∞.

This becomes even more evident when considering Figure 10. The convergence study was conducted for sam-
ple sizes in the interval [1 000, 51 000] with a step size of 10 000. Three different error measures were taken
into account, namely, the Mean Absolute Error (MAE), the Mean Squared Error (MSE), and the Root Mean
Square Error (RMSE). Thereby, the errors between MCS true solution estimate and both the approximations
via DAS and via condensed DAS were considered. They represent the total error over the entire spatial and
temporal domain under consideration. The error norms are commonmeasures for evaluating the performance
of estimators such as the MCS. As expected, all indicators converge against zero for an increasing sample size.
The results emphasize that the developed approach neither suffers from significant outliers nor a bad approxi-
mation in average. Figure 11 shows studies concerning the computation time with respect to the number of
samples 𝑁 , see in Figure 11a, as well as to the number of considered states, see Figure 11b. The study with re-
spect to sample size were considered analogously to the convergence study with sample sizes 𝑁𝑀𝐶𝑆 and 𝑁𝐷𝐴𝑆
between 1 000 and 51 000 with a step size of 1 000. For the study of computation time in terms of the number
of considered states, the sample size 𝑁 was set to 11 000. It can be observed that the MCS exhibits a steep
linear relation between the total computation time in the online phase and the number of samples as well as
a similar factorized linear relation between the online computation time and the number of states. Both DAS
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Figure 10. 2-Component-Min-System: Convergence study of MCS true solution estimate vs. DAS approximation of the continuous-state
survival function with MAE, MSE and RMSE as error measures in terms of sample size 𝑁𝑀𝐶𝑆 , while 𝑁𝐷𝐴𝑆 = 100 000.
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Figure 11. 2-Component-Min-System: Study of computation time forMCS true solution estimate, DAS approximation, and DAS condensed
approximation of the continuous-state survival function...

and DASC are constant with respect to the sample size. A slight linear relation can be observed in the plot
considering the number of states. In both plots the DAS and DASC exhibit computation time in the same
magnitude around 0 that is lower than the one achieved by MCS already for 𝑁 = 1 000. This results from the
fact that the sums over 𝑛 = 2 and max(|

( 𝑛
𝑙𝑠

)
|) = 3 for the DAS as well as 𝑛 = 2 and 𝐽 = 2 for the DASC are

computationally not demanding compared to 1 000 evaluations of the structure function.

2-Component-Max-System
Secondly, consider the computed results for the continuous-state survival function of the 2-Component-Max-
System. Again, Figure 12 shows the approximation of the continuous-state survival function by means of the
DASC while Figure 12b depicts the corresponding error. Considering Figure 12a, the continuous-state sur-
vival function indicates higher reliability and robustness of the 2-Component-Max-System compared to the
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(a) Continuous-state survival function by means
of DASC.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

−0.012

−0.008

−0.004

0

0.004

0.008

e(R(s,t))

timeline t

st
at

es
 s

(b) Error between MCS estimate and DASC ap-
proximation.

Figure 12. 2-Component-Max-System: DAS condensed approximation of continuous-state survival function and the corresponding error.
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Figure 13. 2-Component-Max-System: Convergence study of MCS true solution estimate vs. DAS approximation of the continuous-state
survival function with MAE, MSE and RMSE as error measures in terms of sample size 𝑁𝑀𝐶𝑆 , while 𝑁𝐷𝐴𝑆 = 100 000.

2-Component-Min-System as expected. Not only is the domain for which 𝑅(𝑠, 𝑡) = 1 larger but also the do-
main between the contour curves. In this example, the sample size 𝑁 = 𝑁𝑀𝐶𝑆 = 𝑁𝐷𝐴𝑆 equals 51 000. Similarly
to the previous case study, slight variations occur along the contour curves. The error exhibits variations only
due to the variance of the underlying sampling processes in the same magnitude of 0.012 as for the previous
example.

Considering Figure 13 it becomes evident that also for this case study 𝑒(𝑅(𝑠, 𝑡)) → 0 if 𝑁𝐷𝐴𝑆 → ∞. The
results, obtained for all error measures, are as expected and similar to the previous case study. With regard
to Figure 14, the sample sizes for both studies of computation time, compare Figure 14a and Figure 14b, are
the same as in the previous example. Besides larger variations due to the in time varying capacity of the local
working memory, the computation time required in the online phase are similar to the previous example. The

http://dx.doi.org/10.20517/dpr.2023.03


Winnewisser et al. Dis Prev Res 2023;2:4 I http://dx.doi.org/10.20517/dpr.2023.03 Page 21 of 33

0 10k 20k 30k 40k 50k

0

5

10

15

MCS
DAS
DASC

number of samples

to
ta

l c
om

pu
ta

tio
n 

tim
e 

in
 [s

]

(a) ...with respect to the number of samples 𝑁.
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(b) ...with respect to the number of considered
states.

Figure 14. 2-Component-Max-System: Study of computation time forMCS true solution estimate, DAS approximation, andDAS condensed
approximation of the continuous-state survival function...
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(a) Continuous-state survival function by means
of DASC.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

−0.012

−0.008

−0.004

0

0.004

0.008

e(R(s,t))

timeline t

st
at

es
 s

(b) Error between MCS estimate and DASC ap-
proximation.

Figure 15. 8-Component-MinMax-System: DAS condensed approximation of continuous-state survival function and the corresponding
error.

MCS exhibits a linear relation for both sample size and number of states. In contrast, the DAS and DASC
shows a constant relation, see Figure 14a. In terms of increasing states, a slight linear relation with significantly
lower computation times can be observed, as illustrated in Figure 14b.

8-Component-MinMax-System
Again, Figure 15 verifies the expected behavior of the DAS and the DASC. In this example, the sample size 𝑁 =
𝑁𝑀𝐶𝑆 = 𝑁𝐷𝐴𝑆 equals 51 000. The contour plot of the continuous-state survival function in Figure 15a appears
as amixture of an 8-Component-System solely composed bymin-operators asminimumand an 8-Component-
System solely composed by max-operators. The error in Figure 15a has the same maximum magnitude of
0.0012 as in the previous examples. The region with the largest errors lies between the contour curves with
𝑅(𝑠, 𝑡) < 1 and 𝑅(𝑠, 𝑡) > 0. Considering the previous contour plot of the error, this high magnitude region
shifts to the bottom left for a Min-System and to the upper right for a Max-System.
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Figure 16. 8-Component-MinMax-System: Convergence study of MCS true solution estimate vs. DAS approximation of the continuous-
state survival function with MAE, MSE and RMSE as error measures in terms of sample size 𝑁𝑀𝐶𝑆 , while 𝑁𝐷𝐴𝑆 = 100 000.
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(a) ...with respect to the number of samples 𝑁.
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(b) ...with respect to the number of considered
states.

Figure 17. 8-Component-MinMax-System: Study of computation time for MCS true solution estimate, DAS approximation, and DAS con-
densed approximation of the continuous-state survival function...

When considering Figure 16, the behavior of all three error measures appears similar to the previous exam-
ples. This is counterintuitive as one would expect an increasing error when sampling in higher dimensions,
compare [53]. But this seems not to hold true for diagonally state invariant structure functions. The ranges of
sample sizes for both studies of computation time shown in Figure 17 are the same as in the previous example.
Analogously to the previous examples, the computation times of the MCS are characterized by a similar linear
relation with respect to both sample size and number of considered states. In contrast, DAS and DASC are
constant in their relation with respect to the sample size. In terms of the number of considered state, both
DAS and DASC follow linear relations. It is noteworthy, that the factor of the linear relation of the DAS seems
significantly larger than before. Also in terms of the sample size the computational time during the online
phase significantly increased for the DAS. It can be observed that for 𝑁 = 1 000 the DAS is outperformed by
the MCS approach. This result is reasonable as the number of permutations tremendously increase for higher
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(a) Continuous-state survival function by means
of DASC.
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(b) Error between MCS estimate and DASC ap-
proximation.

Figure 18. 21-Component-MinMax-System: DAS condensed approximation of continuous-state survival function and the corresponding
error.

dimensions corresponding to the binomial coefficient
( 𝑛
𝑙𝑠

)
, besides the already increasingly demandaning sum

over 𝑛 leading to the slightly increased linear relation of the DASC. Nevertheless, the DASC still possesses a
low factor in its linear relation while maintaining exact results.

21-Component-MinMax-System
For this case study, the fundamental concept of DAS was omitted due to the combinatorial complexity of( 𝑛
𝑙𝑠

)
becoming computationally too demanding, resulting in unreasonable computational time. Consequently,

solely the condensed DAS is applied as surrogate modeling approach. Considering Figure 18a and comparing
it to the previous examples, the continuous-state survival function appears as a mixture of min- and max-
operators as expected. It is observable that the domain in between of the contour curves are smaller than in
the previous examples. In this example, the sample size 𝑁 = 𝑁𝑀𝐶𝑆 = 𝑁𝐷𝐴𝑆 equals 100 000. The sample size
was increased to maintain a similar magnitude of errors as can be observed in Figure 18b.

For the convergence study depicted in Figure 19, the number of samples was increased for the entire range.
The evaluated sample sizes lie in the interval [20 000, 200 000] with a corresponding step size of 20 000. The
DASC also converges to zero for this high-dimensional structure function that is diagonally state neutral and
diagonally state extreme as composed by min- and max-operators. This coincides with the theory established
in section ”PROPOSEDMETHODOLOGY”: The DAS and DASC yield the true solution of such systems or at
least an estimate only in dependence on the variance of the underlying estimator of the component probability
structure. For the study of computation time regarding the number of considered states, the sample size 𝑁
was set to 100 000. In terms of computation time, higher variance can be observed in Figure 20 then in the
previous examples. This relates to the variance in capacity of the deployed working memory. Again, a steep
linear relation can be observed for theMCS in terms of an increasing sample size. TheDASC exhibits a constant
relation for 𝑁𝐷𝐴𝑆 due to its independence. The expected linear relation of the DASC concerning the number of
considered states significantly increased compared to the previous examples. Despite the tremendous increase
of computational complexity, the DASC still outperforms the MCS globally. Only for smaller sample sizes
where larger error magnitudes can be observed the MCS shows slightly shorter computation times compared
to the constant.
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Figure 19. 21-Component-MinMax-System: Convergence study of MCS true solution estimate vs. DAS approximation of the continuous-
state survival function with MAE, MSE and RMSE as error measures in terms of sample size 𝑁𝑀𝐶𝑆 , while 𝑁𝐷𝐴𝑆 = 100 000.
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(a) ...with respect to the number of samples 𝑁.

20 40 60 80 100
0

1

2

3

4

MCS
DASC

number of states

to
ta

l c
om

pu
ta

tio
n 

tim
e 

in
 [s

]

(b) ...with respect to the number of considered
states.

Figure 20. 21-Component-MinMax-System: Study of computation time for MCS true solution estimate, DAS approximation, and DAS
condensed approximation of the continuous-state survival function...

18-Component-Infrastructure-System
For this example, solely the DASC and the rounded DASC (referred to as DASCR) were considered. To com-
pute the underlying DAS for this example the maximum number of iteration steps ℎ𝑚𝑎𝑥 was set to 100.

The continuous-state survival function obtained by means of the DASC is depicted in Figure 21a. The contour
plot appears reasonable. As expected, the DASC achieves an approximation that in the worst case underes-
timates the true solution but never overestimates it. The theoretical findings can be verified when consider-
ing Figure 21b. The contour plot of the error between the MCS true solution estimate and the approximation
is positive over the entire domain. Dark blue indicates an error magnitude of zero while dark purple represents
magnitudes in the scale of machine precision.
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(a) Continuous-state survival function by means
of DASC.
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(b) Error between MCS estimate and DASC ap-
proximation.

Figure 21. 18-Component-Infrastructure-System: Contiunous-state survival functions computed bymeans of DASC and the corresponding
error.
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Figure 22. 18-Component-Infrastructure-System: MCS true solution estimate.

The applied scheme already yields satisfying results taking into account that it is only a first-order scheme for
at least diagonally state neutral structure functions. However, a higher-order implementation could signifi-
cantly decrease the error in the remaining domain. In general, the proposed methodology is also applicable
to diagonally state negative structure functions when adjusting the corresponding formula. For this example,
it was ensured that the structure function is at least diagonally state neutral by accordingly specifying the ex-
ponential transformation function mapping component degradation to travel time. Figure 22 shows the true
solution estimate of the continuous-state survival function obtained by means of MCS. The region of signifi-
cant magnitudes of the error between the MCS and the DASC occurs as the underlying structure function is
no longer diagonally state constant. As the structure function is still at least diagonally state neutral this is the
only source for errors besides the natural variance of the stochastic degradation process.

The DASCR was applied to further increase the computational efficiency. In the following, the potential de-
crease of accuracy is studied. The proposed methodology still ensures pure underestimation of the true solu-
tion. For 𝑟 = 5, compare Equation (21), the computation time already decreases significantly while the contour
plots of the error appear similar, see Figure 23b.

For 𝑟 = 3, the computation time can be further reduced as 𝐽 decreases significantly. Thereby, it can be observed
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(a) Continuous-state survival function by means
of DASCR.
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(b) Error between MCS estimate and DASCR ap-
proximation.

Figure 23. 18-Component-Infrastructure-System: Continuous-state survival functions computed by means of DASCR with 𝑟 = 5 and the
corresponding error.
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(a) Continuous-state survival function by means
of DASCR.
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(b) Error between MCS estimate and DASCR ap-
proximation.

Figure 24. 18-Component-Infrastructure-System: Continuous-state survival functions computed by means of DASCR with 𝑟 = 3 and the
corresponding error.

that the accuracy increases as all regions of error contour curves decrease in terms of their area, see Figure 24.
The same observation can be made for 𝑟 = 2: A tremendous reduction of computation time could be achieved
as the DASCR further condenses the information in the DASC. By applying 𝑟 = 2, 𝐽 could be significantly
decreased for all 𝑠 along the diagonal of the state space and all 𝑙𝑠. In addition, it is noteworthy that the accuracy
further increases, compare Figure 25 with Figure 24 and Figure 23.

DISCUSSION
Case studies
The case studies show that the DAS converges to the true solution of the continuous-state survival function
for all MinMax-Systems regardless of their dimensionality. The global error vanishes for 𝑁 → ∞ as can be
seen in the convergence studies. As the sample size 𝑁𝐷𝐴𝑆 for the establishment of 𝑅𝑥 (𝑠, 𝑡) is assigned to be
large, the convergence of theMCS solutions to the DAS solution can be observed for all case studies conducted
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(a) Continuous-state survival function by means
of DASCR.
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(b) Error between MCS estimate and DASCR ap-
proximation.

Figure 25. 18-Component-Infrastructure-System: Continuous-state survival functions computed by means of DASCR with 𝑟 = 2 and the
corresponding error.

for the proof of concept. Besides the theoretical prove these results underline the capability of the concept of
DAS to achieve exact results for diagonally state constant systems. These findings verify in particular that the
fundamental methodology introduced in Equation (14) can be utilized as explicit formula when considering
a diagonally state at least neutral, diagonal state extreme and coherent structure function. Further, the results
show that the computation time is independent of the sample size when deploying the concept of DAS. For
the DAS, the computation time in the online phase purely depends on the total number of components 𝑛
and the number of considered components.Thereby, the DAS exhibits a linear relation between computation
time and number of considered states, depending on the factor that is determined by 𝑛 and correspondingly
the binomial coefficient

( 𝑛
𝑙𝑠

)
. The observations coincide with the theory established in section ”PROPOSED

METHODOLOGY”. The formula Equation (14) is independent of the sample size 𝑁𝐷𝐴𝑆 and clearly depending
on the number of states that are considered and inserted as 𝑠. It can be observed that this basic approach
becomes impractical for systems with 𝑛 >> 10 combined with a number of considered states that is >> 10.
For the first two case studies, the DAS still outperforms theMCS, although the evaluation of the corresponding
structure function imposes minimal costs in the case of the MCS. For more complex structure function this
difference in computational effort becomes even more evident.

The DASC was introduced and investigated as a naive solution to achieve increased computational efficiency
also for larger systems that are characterized by an at least diagonally state constant and at least diagonally
state neutral coherent structure function. The performance enhancement is achieved by condensing the DAS
in terms of all possible permutations depending on 𝑙𝑠. In order to compute a DASC entry Ψ(𝑙𝑠, 𝑗) = (|𝐶 𝑗 |, 𝑣 𝑗 ),
the number of occurrences of a valueΦ(𝑙𝑠, 𝑝) is determined and stored together with the value itself as a tuple.
Thereby, the computational effort is reduced from a sum over 𝑝 = 1, 2, . . . ,

( 𝑛
𝑙𝑠

)
to a sum over 𝑗 = 1, 2, . . . , 𝐽,

where 𝐽 is the maximum number of different values for the DAS. The DASC shares the same convergence
characteristics for diagonally state constant and extreme systems. Simultaneously, this approach exhibits sig-
nificantly reduced numerical effort compared to its predecessor. The achieved reduction of 𝐽 by means infor-
mation condensation is optimal with 𝐽 = 2 for diagonally state extreme structure functions as the number
of tuples Ψ(𝑙𝑠, 𝑗) for a given number of components working in state 𝑠 or above 𝑙𝑠. This can be explicitly
expressed as 𝑣 𝑗 ∈ {0, 𝑠} and their corresponding occurences |𝐶 𝑗 (𝑣 𝑗 ) |.

The application of the DASCR is not required for diagonally state extreme structure functions. In contrast, it is
particularly useful when this criterion is not fulfilled. In the case of a diagonally state constant or higher order

http://dx.doi.org/10.20517/dpr.2023.03


Page 28 of 33 Winnewisser et al. Dis Prev Res 2023;2:4 I http://dx.doi.org/10.20517/dpr.2023.03

structure function an iteration has to be performed in order to approximate the DAS for each combination of
𝑠, 𝑙𝑠 and 𝑝. Values in the along the 𝑝-sum that are in the direct neighborhood in [0, 1] are matched by means
of a rounding procedure applied to Φ(𝑙𝑠, 𝑝) and and Ψ(𝑙𝑠, 𝑗) is further condensed to Ψ𝑟 (𝑙𝑠, 𝑗). Thereby, for a
naive approach a trade-off has to bemade in terms of computational cost and surrogate performance. Typically,
it can be expected that 𝐽𝑟−1 ≪ 𝐽𝑟 but also that |𝑒𝑟−1(𝑅(𝑠, 𝑡)) |𝐹 ≥ |𝑒𝑟 (𝑅(𝑠, 𝑡)) |𝐹 , where |𝑒𝑟 (𝑅(𝑠, 𝑡)) |𝐹 is the
Frobenius norm of the error between the DASCR approximation and the theoretically available true solution.
However, a sophisticated rounding procedure should check the lower and upper digits and determine themore
favorable choice. Consequently, applying a sophisticated rounding procedure can improve the results obtained
by DASC and DASCR with high 𝑟 .

In the test of applicability for an arbitrary infrastructure system, the first-orderDASC andDASCR5,3,2 perform
well and underestimate the true solution of the continuous-state survival function as expected. Depending on
the parameter 𝑟 ∈ {5, 3, 2} significant efficiency improvements can be achieved. The largest errors occur
in the central region. The concepts of DAS become particularly useful for demanding structure functions.
The evaluation of the weighted network efficiency is computationally more demanding than a composition
of min- and max-operators. At the same time, highly demanding structure functions are neither diagonally
state neutral or positive nor diagonally extreme or constant. Consequently, the proposed approaches can be
applied in these cases when higher-order schemes are integrated or schemes for the estimation of the error are
established. In contrast, conventional approaches could not address such structure functions at all.

In its basic form, the DAS requires
∑
𝑠

∑
𝑙𝑠 (𝑛)

∑
𝑝(𝑙𝑠) entries to be stored. The DASC already condenses the

last sum that is the most critical for systems with a larger number of components up to a minimum of 𝐽 = 2.
Considering the storage requirement, the property of a structure function to be diagonally state invariant
becomes important. However, note that for at least partly diagonally state invariant structure functions the
entries of the Φ(𝑙𝑠, 𝑝) and Ψ(𝑙𝑠, 𝑗) can be expressed in a linear relation for the range of 𝑠 that is diagonally
state invariant. The representation of the DAS andDASC bymeans of any type of function can enable to reduce
the storage required among the first sum

∑
𝑠, tremendously.

Comparison with related research
Subsequently, the developed concept of DAS is compared to approaches based on the concept of survival sig-
nature with regard to the properties of diagonal state sign, order, and variance and also based on the findings
of the case studies. In [31], Eryilmaz & Tuncel introduced an explicit formula from a combinatorial perspec-
tive to compute a multi-state survival signature based on multiple path-wise binary-state structure functions
to model the discrete multi-state perspective. The fundamental decomposition is based on the number of
components in 𝑙𝑠. Thereby, the term path-wise corresponds to the terminology of a diagonally state extreme
structure function. A classification in terms of the diagonal state sign is not reasonable in this case. The ap-
proach might consider diagonal state variance, as the structure functions can vary for each level. Theoretically,
it is possible to define as many structure functions as states considered. In practice, however, this may prove
infeasible when approaching a continuous view. However, these systems would still need to have some sort of
path-wise measurability. The approach proposed in [34] by Qin & Coolen exhibits similar properties to those of
the concept developed by Eryilmaz & Tuncel. The authors investigate discrete multi-state systems with multi-
state components based on rule-based structure functions. In comparison with [31], Qin & Coolen developed
a refined notation. The researchers based the combinatorial decomposition on the number of components
working in state 𝑠. The computation of the multi-state survival function describing the probability of a system
to be in state 𝑠 or above is then performed in a post-processing step. In [33], Yi et al. proposed a fundamentally
different approach on how to establish the discrete multi-state survival signature values. The authors adopt
an probabilistic and conditional interpretation of the survival signature and further establish transformation
relations [54].
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Recent developments show that the survival signature finds increased attention in the field of stress-strength
reliability. The works [55,56] investigate approaches for statistical inference based on the concept of survival
signature for multi-state system with multi-state components in this context. In [32], Liu et al. proposed an
approach to compute 𝑅(𝑠) for discrete and multi-state systems with discrete and continuous multi-state stress-
strength components. The authors applied their approach to diagonally state neutral, state invariant and state
extreme systems. Thereby, a single vector is sufficient to represent the continuous-state survival signature of
the diagonally state invariant systems with a single component type.

In contrast to the approaches presented above, the DAS was developed to evaluate the continuous-state sur-
vival function 𝑅(𝑠, 𝑡), introduced in section ”PROPOSED METHODOLOGY”. Analogously, the concept of
DAS and its variants can be utilized to compute 𝑅(𝑡) as well as 𝑅(𝑠). Recent literature in the context of survival
signature addresses the computation of diagonally state extreme systems, i.e., path-wise measurable structure
functions. In contrast, the methodology proposed in the current work enables surrogate modeling poten-
tially for any kind of coherent structure function. Consequently, such structure functions might be diagonally
state constant or of higher order. In the case of structure functions that are of higher order, the current con-
cept of DAS yields an approximation error. It appears practical to reduce this error by developing higher
order schemes and more sophisticated rounding procedures for the concept of DAS. Some of the reviewed
approaches take into account diagonally state variance by establishing one corresponding survival signature
for each considered state or level. For diagonally state invariant structure functions the DASC(R) comprises∑𝑛
𝑙𝑠

∑𝐽
𝑝(𝑙𝑠) elements. The conventional concepts of survival signature are only applicable to diagonally state

extreme structure functions. Considering systems with a single component type and let them be diagonally
state invariant for the ease of notation, conventional approaches require the storage of 𝑛 values for the repre-
sentation and the computation of the sum

∑𝑛
𝑙𝑠
to evaluate 𝑅(𝑡) or 𝑅(𝑠) for a single 𝑡 or 𝑠. In the same case,

the DASC includes
∑𝑛
𝑙𝑠

∑2
𝑝(𝑙𝑠) elements to be stored and evaluated. In summary, the DAS concept enables a

broader range of applications than similar and recently developed approaches, despite a slightly higher com-
putational cost. The extent to which the range of applications can be broadened needs to be investigated in
future work but the current findings appear promising.

Contextualization in terms of resilience
Three different approaches to determine 𝑅(𝑠, 𝑡) were outlined in section ”PROPOSED METHODOLOGY”.
Regardless of the approach utilized to establish 𝑅(𝑠, 𝑡), the continuous-state survival function inherently cap-
tures the probability of occurrence of disruptive events and their effect on the performance of the considered
entity. Thus, 𝑅(𝑠, 𝑡) strongly relates to two properties of a system, reliability and robustness, shown in Figure 1
that govern its resilience when interpreted as in [17]. To show this theoretically, suppose that the performance
deterioration over time being investigated empirically by exposing the entity to a certain environment in which
potentially damaging effects or events occur in some frequency. Suppose the measurement only observes the
state 𝑢𝑠 at time 𝑡, where Δ𝑡 between two time steps might be infinitesimal small. The occurrence of an event at 𝑡
counts to the probabilitymeasure of the random variable to be less than 𝑠 only if a deterioration in performance
occurs as a consequence at the next time step under consideration. Thereby, the probability of the magnitude
of the performance degradation of such a deteriorating event is intrinsically quantified as well. When estab-
lished properly, both parts of information should also be captured when the continuous-state survival function
is generated via stochastic processes modeling disruptive events either explicitly or implicitly. And similarly
for the approach including a structure function, the disruptive events acting on components propagate their
effects through the structure function 𝜙(𝒙) to the system state 𝑢𝑠 and are captured by the continuous-state
survival function. Eventually, despite not directly sampling a disruptive event from 𝑅(𝑠, 𝑡) but rather com-
ponent performances, the occurrence of certain state sample is governed by the fundamental, measured or
modeled disruptive events and the according response of the considered entity. Thereby, the structure func-
tion is critical for mitigating the effect of disruptive events acting on components. To conclude with regard
to Figure 1, it quantifies not only if and when a performance deterioration occurs (reliability) but also its mag-
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nitude (robustness). The continuous-state survival function incorporates both notions simultaneously simply
by representing the time-dependent probability distribution of each state of functionality.

In the context of the multidimensional and sub-structured resilience framework established in [25], the fact
that 𝑅(𝑠, 𝑡) models both reliability and robustness can be exploited to enhance the stochastic simulation of
subsystem as well as components during the evaluation of the resilience metric. For basic components, 𝑅(𝑠, 𝑡)
can be established empirically or based on a stochastic process. Then, the generated 𝑅(𝑠, 𝑡) characterizing
the stochastic degradation behavior are propagated from bottom level to top level of the sub-structured sys-
tem. The utilization of 𝑅(𝑠, 𝑡) allows for reduced computational effort in repeated evaluations of structure
functions in subordinate levels during resilience optimization at 𝐿 ≥ 1 levels of subsystems. The concept of
DAS enables a direct propagation of the 𝑅(𝑠, 𝑡) through each level by means of the explicit formulas provided
in section ”PROPOSED METHODOLOGY”. On the top-level, the overall structure function is evaluated by
means of performance samples in order to quantify the resilience metric. The corresponding performances
can be retrieved by sampling the state from the individual 𝑅𝑖 (𝑠, 𝑡𝑐), where 𝑡𝑐 denotes the currently considered
time step. The DASC approach developed in the current work is immediately applicable to the case studies
investigated in [25] after establishing a monotone sampling procedure based on 𝑅(𝑠, 𝑡) describing performance.
Future work addresses the detailed investigation concerning the integration of the continuous-state survival
function as reliability and robustness representation into the resilience framework for sub-structured systems.

CONCLUSIONS & OUTLOOK
In this work, the notion of the continuous-state survival function was presented and the concept of DAS was
introduced as a corresponding surrogate modeling procedure. Thereby, the continuous-state survival function
is defined as a time-dependent probability measure that characterizes the distribution of performance states
of the considered system over time. This consideration gives engineers a new perspective when faced with the
challenge of maintaining system performance in the face of disruptive events in a hostile environment. In light
of the theoretical proof and the results in the case studies, the concept of DAS appears to be a solid foundation
for more sophisticated surrogate modeling techniques. The relations to the phases characterized by reliability
and robustness when quantifying system resilience were identified and discussed. The proposed methodology
appears as an adequate approach to integrate a continuous-state consideration into a sub-structured resilience
framework, as presented in [25].

In the course of this work, three different variants of the concept of DAS were established: At first, the funda-
mental statement Equation (14) was introduced to provide a comprehensive proof that DAS yields exact results
for diagonal extremal and constant structure functions. For systems with a small number of components the
DAS outperforms the MCS in terms of both computational time and accuracy. Secondly, the DASC Equa-
tion (20) was developed to overcome the limitations for larger systems. Moreover, DASCR was defined in
Equation (21) to consider structure functions with a diagonal state order higher than constant. Thus, the
current methodology extends the range of application of the separation property inherited by the concept of
survival signature. It should be noted that the code can be further optimized, e.g., by integrating parallel com-
puting. This leads to an additional increase in computational efficiency. In summary, the concepts of DAS
developed in the current work show good results and open a rich and promising research topic.

The following items can be listed as critical developments concerning the concept ofDAS as an autonomous sur-
rogatemodel but also in particular its integration into the resilience framework for complex and sub-structured
systems [25].

• Integration into the resilience framework: The behavior of the DAS when integrated to the multidimen-
sional and sub-structured resilience decision-making framework should be investigated in detail. The re-
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lationship between the endowment properties and the continuous-state survival function should also be
explored.

• Broadening the range of application: Higher-order schemes should be addressed to reduce the approxima-
tion error for structure functions that are not diagonally state constant. Further, the DAS formulas should
be extended for diagonally state negative structure functions and multiple component types.

• Consideration of uncertainties: Extension of the DAS towards a consideration of uncertainties based on the
proposed approach in [28] and integration into the multidimensional resilience decision-making framework
for complex and sub-structured systems [25]. Approaches to reduce the storage requirements and to further
condensate the developed formulas for enhanced efficiency during the online phase are of great interest.
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