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Abstract
Neurodegenerative disorders represent a group of aging-related diseases affecting the different parts of the central 
nervous system. Axonal degeneration is among the leading causes of morbidity and disease progression in 
Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and other 
neurogenerative disorders. The unique structures of axons may make them particularly vulnerable to internal 
homeostasis. The axonal endoplasmic reticulum (ER) has emerged as one of the most important hallmarks in those 
neurodegenerative disorders associated with dysfunction of axonal transport, lipid synthesis, calcium dynamics, 
and interactions with other organelles. In this review, we summarize the role of tubular ER and its resident proteins 
in axonal degeneration, which emerges as an early pathological event in the axonal degeneration process. We also 
discuss the potential relationship between autophagy and tubular ER. With this review, we can consolidate the 
recent research advances in the role of tubular ER in axonal degeneration associated with several major 
neurodegenerative disorders and improve our understanding of axon pathophysiology and potential target 
therapies.
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INTRODUCTION
The morpho-functional organization of matured neurons is divided into the soma, dendrites, and axons. 
Dendrites are branched extensions that extend radially from the soma and receive synaptic inputs, whereas 
axons are longer and thinner projections that create action potentials and send them to the presynaptic 
terminal for neurotransmitter release. Axonal degeneration, featured by axonal swellings and axonal 
fragments, is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease 
(AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS)[1-3]. Axons disintegrate in various 
ways, depending on the biological context. Local axonal degeneration is characterized by axon 
disintegration into separated axonal fragments. Injured axons may degenerate retrogradely (distal to 
proximal direction), anterogradely (proximal to distal direction), or in a Wallerian degeneration pattern 
(the distal part of the axon from the injury site), resulting in axonal fragments. Axonal swellings (axonal 
beadings, bubblings, or spheroids) are hallmarks of degenerating axons, which contain a disorganized 
cytoskeleton and organelles resulting from an interruption of axonal transport[4]. Axonal swellings usually 
precede axon fragmentation[5], and they are considered an early pathological event in AD[6], PD[7], and 
ALS[8].

The contents of swollen axons vary depending on the specific neurodegenerative disorder. In a mouse 
model of PD, small axonal swellings called globules have been observed, which contain autophagosome-like 
membranes[7]. In PD and Lewy body dementia, the presynaptic axon terminal in the dentate hippocampus 
has been found to contain α-, β-, and γ-synuclein[9]. In AD, axonal dystrophy can lead to swellings in both 
dendrites and axons, and the β-site APP-cleaving enzyme 1 (BACE1) has been observed to accumulate in 
axonal swellings when axonal trafficking is disrupted[6]. Galectin-1, a member of the β-galactoside-binding 
lectin family, accumulates in motor axonal spheroids and colocalizes with aggregated neurofilaments before 
developing ALS-like symptoms and is associated with early processes of axonal degeneration in SOD1G93A 
mice[8].

Although neurodegenerative disorders involve a wide range of axonal degenerative characteristics, they may 
share a common pathogenetic pathway. In particular, intracellular organelles play a critical role in 
maintaining axonal and microdomain functions. Evidence from eukaryotic cell studies suggests that ER 
regulates many intracellular biological activities. However, the importance and significance of ER in axons 
are only now recognized. Recently, tubular ER has attracted attention for its biological distribution and role 
in axonal homeostasis[10-12]. Axonal ER comprises tubular ER and forms a network of interconnected tubular 
structures, participating in axonal morphology, transport, and material metabolism, suggesting its potential 
role in neurodegeneration. Axonal degeneration may originate from the dysfunction of axonal ER in 
neurodegenerative disorders, and tubular ER proteins and dysfunctional tubular ER accumulate in axonal 
swellings[10-12]. Mutations in ER-shaping proteins cause neurodegenerative diseases such as hereditary spastic 
paraplegias (HSPs). Hereby we will discuss the biological function of tubular ER and its role in axonal 
degeneration in neurodegenerative disorders, including AD, ALS, PD, HSPs, and Huntington’s disease 
(HD).

AXONAL TUBULAR ER STRUCTURAL CHARACTERISTICS AND BIOLOGICAL 
REGULATORY FUNCTIONS
Intracellular organelles maintain the functions of axons and microdomains. Evidence suggests that the ER 
regulates intracellular calcium levels, lipid synthesis, protein translation, quality control, and trafficking and 
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interacts with other membrane-bound organelles such as mitochondria, vesicles, and endosomes[13]. The 
axonal tubular ER is a specialized structure found in the neuronal axons. It is characterized by its long, 
narrow, and highly interconnected tubular structure, which extends throughout the entire length of 
axons[14]. This unique structure allows the axonal tubular ER to regulate several biological processes critical 
for axonal function and neuronal communication. The axonal tubular ER network is considered to be part 
of the ER throughout the neuron. Understanding the axonal network and the biological function may 
contribute to uncovering the pathogenesis of a variety of neurodegenerative disorders. However, scientists 
have only recently begun to comprehend the relevance of the structural properties of axonal tubular ER, its 
biological function, and axonal tubular ER regulation.

The structural characteristics of axonal tubular ER
The ER structure is highly conserved in eukaryotes, including neurons. The ER has the most surface area of 
any organelle found in eukaryotic cells. In light of the fact that the surface area of neurons is, on average, 
four orders of magnitude larger than that of other tiny and less polarized cells, the expansion of the 
neuronal ER represents a remarkable evolutionary accomplishment[14]. ER is a pervasive and continuous 
membrane-bound system throughout the cytoplasm of all eukaryotic cells[15,16]. The neuronal ER consists of 
three components: nuclear envelope, the ribosome-rich rough ER, and the ribosome-devoid smooth 
ER[17,18]. Neuronal ER forms a continuous network of tubules and cisternae that extends throughout all cell 
compartments, including neuronal dendrites and axons. This network is capable of communicating with the 
majority of the cell's other organelles through the use of vesicular transport as well as through contacts that 
do not result in fusion but facilitate cross-talk across adjacent bilayers[19].

The axonal ER exhibits a significantly high surface-to-volume ratio among cellular compartments. 
However, it is unclear how this massive amount of ER membrane is arranged in axons to maintain 
function[20]. The tubular ER, which primarily resides in the peripheral region of cell, is a complex network of 
smooth ER that consists of interconnected tubules, typically 50 nm in diameter in mammals, interspersed 
with occasional and irregularly spaced sheets or cisternae characterized by larger and less regular lumens[21]. 
In neurons, the axonal ER comprises a tubular ER, forming a network of interconnected structures[11]. The 
diameter of the axonal ER is notably narrow, averaging approximately 40 nm, whereas the diameter ranges 
from 25 to 90 nm in other cell types[22]. This thin and elongated morphology makes the axonal ER 
susceptible to internal and external stimuli perturbations.

The tubular ER is dynamic and characterized by high membrane curvature in cross-section, with tubules 
undergoing continuous fusion and fission to generate and eliminate three-way junctions[23]. Two families of 
curvature-stabile proteins shape ER tubules, reticulons (RTNs) that comprise four reticulons in mammals 
(RTN1-4)[24], and DP1 that includes six mammalian DP1/ receptor accessory proteins (REEPs)[25]. Members 
of both families are ubiquitously expressed in all eukaryotes and localize predominantly to the tubular ER, 
where they have a conserved domain containing two long hydrophobic segments that sit in the membrane 
as hairpins[26]. These hairpins may stabilize the high curvature of tubules in cross-section by forming a 
wedge in the lipid bilayer[26].

There are further factors that regulate ER tubule shape. Atlastins (ATLs), a family of GTPases, mediate 
fusion between ER membranes in a GTP-dependent manner[27,28]. The small ras-related GTP-binding 
protein 10 (Rab10) and Rab18 regulate tubular ER morphology[29]. Deletion of Rab10 produces expansion of 
cisternal ER and fewer ER tubules, and loss of Rab18 causes fragmentation of the tubular ER and spread of 
ER sheets[29,30]. Lunapark is a protein that shapes the ER tubular network by stabilizing three-way junctions 
between ER tubules[31]. Other tubular ER regulatory proteins include ADP ribosylation factor-like 6 
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interacting protein 1 (ARL6IP1) and protrudin, which are found in tubular ER and possess hairpin domains 
determining their role in shaping the tubular ER like RTNs and REEPs[32,33]. Multiple C2 domains consist of 
transmembrane proteins (MCTP1 and MCTP2), which contain a reticulon homology domain. Like RTNs, 
these proteins tubulate the ER membrane and favor highly curved regions of the ER[34].

The biological function and regulation of axonal tubular ER
In neurons, the somatodendritic ER is an important biosynthetic site. Therefore, neuronal components such 
as lipids and transmembrane or secreted proteins may originate in the soma and migrate to the axons via 
rapid vesicular transport[35,36]. However, timely delivery of components may be difficult in neuronal 
compartments, particularly in the presence of fast metabolic demands during axonal development, 
plasticity, or regeneration. This is especially the case if the compartments are very large. Thus, the local 
synthesis of lipids and secreted and transmembrane proteins may support axons’ remarkable extension and 
complexity. Remarkable progress has been achieved in the evolution of molecular markers, mastery of EM 
staining techniques, and determination of models for axonal ER network proteins. These advancements 
have unveiled the crucial involvement of numerous proteins in shaping and maintaining the structural 
integrity and continuous functioning of the axonal ER[37]. These findings suggest the roles in axonal ER 
function and the progression of neurological disorders. In human neurons, axonal ER is the potential player 
in the processes along axons for transporting physical cargoes[38], lipid biosynthesis, glucose homeostasis, 
Ca2+ storage, protein export, and contacting and regulating other organelles. ER contains a variety of 
conserved proteins that specialize in regulating particular features of its morphology. The majority of an 
axonal ER molecule is made up of tubular ER. Consequently, to understand the biology of the axonal ER, it 
is essential to understand the regulation of the tubular ER network. Table 1 summarizes the axonal tubular 
ER functional proteins. ER, tubules network keeps relative dynamics in the cell for communications and 
substance exchange.

Microtubules (MTs) are involved in driving ER tubule movement, depending on two mechanisms[39] 
[Figure 1]. One is mediated by the tip attachment complex (TAC)[40,41]; in TAC, the tip of an ER tubule is 
attached to the (+) tip of the MTs through the complex composed of the ER protein stromal interaction 
molecule 1 and the MTs-associated protein end-binding 1 (EB1)[42]. This binding facilitates the ER tubule 
movement when MTs grow or retract. Another is the “ER sliding” effect driven by MTs motor proteins, 
including kinesin-1 and dynein[43,44]. This process is faster and more frequent than TAC-mediated ER tubule 
movement[44]. Knockdown of EB1 and EB3 in neurons has been shown to reduce dendritic ER expansion 
without affecting axonal ER distribution[39]. Additionally, the knockdown of kinesin-1 or dynein disrupts 
anterograde or retrograde transport of ER tubules along the axon, supporting a critical role for ER sliding in 
axonal ER transport[39]. Several integral ER membrane proteins can bind MTs as potential adapters that 
facilitate axonal tubular ER movement, including P180 protein, also known as ribosome binding protein 1 
homolog 180-kDa[45], Sec61, REEP1, and spastins (SPASTs)[46,47]. Nevertheless, the potential roles of these ER 
proteins in axonal ER transport remain to be explored. The ER network requires a regulated system to 
remove excessive ER expansion to maintain ER homeostasis. ER, autophagy (ER-phagy) allows the turnover 
and clearance of ER mediated by integral ER proteins, which act as ER-phagy receptors, targeting ER 
fragments to autophagosomes for lysosomal degradation[48-50]. The molecule identified as the tubular ER-
phagy receptor is a tubular ER-shaping protein. The long N-terminal region of RTN3 contains several newly 
identified microtubule-associated protein 1 light chain 3 (LC3)-interacting regions that can promote the 
degradation of ER tubules[51]. Atlastin GTPase 3 (ATL3), a dynamin-like GTPase commonly believed to 
promote tubular ER fusion, also functions as an ER-phagy receptor to mediate ER tubule degradation[52]. 
Recently, the predicted single-pass transmembrane ER protein, testis expressed 264 (TEX264), was 
identified as an ER-phagy receptor, specifically mediating the degradation of ER tubule three-way 
junctions[53,54]. These ER-phagy receptors have been studied in non-neuronal mammalian cells, and their 
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Table 1. The roles of axon-resident tubular ER proteins

Proteins Roles in tubular ER Roles in axons

RTNs Tubular ER-shaping protein shape ER tube 
formation[26]. RTN3 is a receptor for the 
turnover of ER tubules via ER-phagy[51]

Inhibition of axonal growth[134]; Involved in regulating levels of neurotransmission[56]; 
Effect in axonal development[55]; Contribute to the axonal degeneration[114]; As an 
ER-phage receptor contributing to the axonal ER turnover[51,135]; Involved in axonal 
transport[136], and axonal regeneration[137]; Promote the formation of dystrophic 
neurites[66]

REEPs Tubular ER-shaping and curvature-
stabilizing proteins shape ER tube 
formation[25,26]. Coordinate MT 
interactions with the tubular ER 
network[46,138]

Shaping and continuity of axonal ER[37]; Contribute to axonal degeneration[114], and 
mutations of REEP1 lead to hereditary spastic paraplegias (HSPs)[139]

ATLs Homotypic membrane fusion between ER 
tubules[28,140]. Coordinate MT interactions 
with the tubular ER network[46,100]. ATL3 is 
a receptor for the turnover of ER tubules 
via ER-phagy[52]

Regulate morphology and function of endoplasmic reticulum in dendrites[141]; 
Regulate dendritic morphogenesis[27]; Promote axon regeneration[142]; Contribute to 
axonal degeneration, are responsible for HSP cases, account for up to 50% of all HSP 
cases[139,143]; Affect ER-mitochondria contact sites and axonal mitochondrial 
distribution[144]; Contribute distribution of presynaptic components and mobilization 
of synaptic vesicles[143]

Lunapark As a curvature-stabilizing protein within 
tubular three-way junctions of the tubular 
ER[145,146]

Present in neurite-like processes[147]

RAB10 Tubular ER network organization[29] Contributes to the axonal development[148]; Promotes axonal membrane trafficking 
with Lgl1 underlying neuronal polarization[149]; Regulates neurite outgrowth[150]

RAB18 Tubular ER network organization[30] Contributes to sensory axonal degeneration[151]; Involved in neurite growth[152]

MCTPs 
(MCTP1, 
MCTP2)

ER membrane tubulating proteins tubulate 
the ER membrane, favor highly curved ER 
regions, and generally link tubular ER to 
organelle contact sites[34]

Function as ER-localized calcium sensor, regulate presynaptic calcium influx to 
stabilize baseline transmission, short-term release dynamics, and presynaptic 
homeostatic plasticity[153]

VAPA/B Regulate the morphogenesis and 
dynamics of the tubular ER network[154,155]

Regulate synaptic activity as ER-mitochondria contacts protein[156] S

Stromal 
interaction 
molecule 1

MT-mediated transport of ER tubules by 
interacting with EB1[42]; Required for 
Remodeling of tubular ER[157]

Plays a role in midline axon guidance of commissural interneurons[158]; Contributes to 
synaptic function and neurite development[159]; affects axonal development[160,161]

P180 MT stabilization[39] Controls axon specification by regulating local MTs remodeling[39]

Sec61β Interacts with MT to maintain ER 
homeostasis[162]

Distributes in dendrites and axons, directly interacts with MTs, and may play a role in 
locally immobilizing the ER to drive efficient protein synthesis[162]

SPAST Regulates MT-severing and tubular ER-
morphogenesis[108] Regulates axonal MT 
stability[46,163]

Promotes axonal regeneration[142]; Contributes to degeneration of corticospinal tract 
axons, mutations of SPAST account for up to 50% of all HSP cases[139]; Involved in 
axonal swellings and axonal transport[105,106]

TEX264 As a receptor for the turnover of ER 
tubules via ER-phagy[53,54]

Unknown

roles in neurons remain to be explored. Notably, RTN3 is highly expressed in the brain and is essential in 
axonal development[55]. Recent studies demonstrated that RTN3 overexpression causes the clustering of the 
tubular ER in the dystrophic neurites of axons and dendrites in the hippocampus from amyloid precursor 
protein (APP) mice[12] and AD patients[12]. The underlying mechanisms remain unclear. However, a recent 
study suggests that autophagy is involved in the tubular ER accumulation in axons of hippocampal 
neurons[56], suggesting that autophagy deficits may accelerate tubular ER accumulation in axons.

Studies of the relationship between autophagy and tubular ER showed that ATL3 Y192C mutation resulted 
in axon growth deficits by reducing autophagy and the number of ER exit sites[57]. Autophagy and the 
tubular ER were detected in the early stage during dystrophic neurite (DN) growth in AD models[58]. RTN3 
and the pre-autophagosome protein ATG9A enriched DNs when plaques began to develop, and LC3 
appeared in DNs at later stages, proving that DNs evolve from dysfunctional pre-autophagosomes, tubular 
ER, and mature autophagosomes[58]. Although these studies determine the relationship between autophagy 
and tubular ER in axons, much remains unknown about how autophagy regulates tubular ER in axonal 
degeneration and whether autophagy modulation could be a potential therapeutic strategy for tubular ER-
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Figure 1. Influence of the axonal ER morphology and dynamics on healthy and pathological axons. A: Factors important in the 
morphogenesis process and the dynamics of ER-related axonal tubular function [See Table 1 and Figure 2]; B: The axonal ER in a normal 
cell is active, exhibiting normal anterograde and retrograde trafficking; C:However, when tubular ER protein aggregates and other 
organelles accumulate in the axons under certain conditions (like gene mutation or failed clearance), leading to axonal deformation, 
there are axonal transport abnormalities; ER: Endoplasmic reticulum; Rab10,18: ras-related GTP-binding protein 10,18; EB1: End-binding 
1; STIM1: Stromal interaction molecule 1; REEPs: Receptor accessory proteins; ATL: Atlastin; RTNs: Reticulons; P180: Protein 180; MTs: 
Microtubules.

related dysfunction in neurodegenerative disorders.

THE CONTRIBUTION OF TUBULAR ER IN THE AXONAL DEGENERATION OF 
NEURODEGENERATIVE DISORDERS
The process of axonal degradation, which takes place in the early stages of neurodegenerative illnesses, 
nevertheless occurs as a natural consequence of aging. Several age-related alterations in cellular mechanisms 
have been found to contribute to axonal degeneration. A growing body of evidence suggests a close 
association between axonal tubular ER and various neurodegenerative disorders; nevertheless, the 
underlying pathogenic processes and molecular mechanisms of tubular ER in the axonal degeneration of 
neurodegenerative disorders have not been fully understood. Although the molecular basis leading an 
individual to develop the neurodegenerative disorder is largely unknown, the growing body of evidence 
supports the important role of axonal degeneration and ER proteostasis impairment in the pathophysiology 
of those disorders.
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Tubular ER dysfunction and axonal degeneration in AD
AD is a neurodegenerative disorder with insidious onset and slow progression, causing a decline in memory 
and difficulties in speaking, writing, understanding, identifying objects, and disorientation. The 
neuropathological hallmarks of the AD brain are diffuse and neuritic extracellular amyloid plaques, which 
are commonly surrounded by DNs and intracellular neurofibrillary tangles[59]. Mutations in APP and in the 
proteases that create beta-amyloid from APP, Presenilin-1, and-2 can cause early-onset AD. Apolipoprotein 
E/E4, a protein implicated in lipid metabolism and inflammation, is a substantial genetic risk factor for late-
onset AD. APP is a transmembrane protein folded and processed in the ER before being transported to the 
outer membrane via the Golgi apparatus[60,61]. Dysfunctional tubular ER in DNs is a feature of AD 
pathogenesis. DNs are swollen dendrites or axons recognizable near amyloid plaques as an early event of 
AD[62,63]; they represent axonal structures with cytoskeletal abnormalities in AD patients and AD models. In 
preclinical AD cases, DNs contain neurofilament (NF) triplet proteins, phospho-APP (T668), and α-
internexin, but not phosphorylated tau[64]. In contrast, DNs in AD cases are labeled with phosphorylated 
tau[65]. Thus, the biochemical properties of DNs reflect disease progression.

Over the past two decades, many genetic and biochemical studies have revealed various molecular 
mechanisms contributing to the pathology of DNs. Even though proteins such as APP, neurofilament, 
ubiquitin, α-internexin, and GAP-43 were reported to label DNs in areas surrounding amyloid plaques in 
AD brains[63], tubular ER recently has come to the attention of researchers because it actively participates in 
forming DNs and participates in AD pathophysiology[12,66].

Recent studies have shown that the tubular ER actively forms DNs and contributes to AD pathophysiology. 
Specifically, Hu first found the formation of high molecular-weight RTN3 aggregates near the amyloid 
plaques in brains of AD cases and mice expressing mutant AP, and overexpressing RTN3 can induce DNs 
in the hippocampus, accompanied by impaired learning and memory and synaptic plasticity in mice[66]. 
Moreover, the tubular ER was fragmented and accumulated in the axonal terminals of the brains of AD 
patients and AD mouse models[12]. However, only RTN3, but not other members of the RTNs family, 
accumulate in the DNs[12], which may be associated with the RTN3 mediate-tubular ER trafficking in axons 
by interacting with dynactin 6, a protein involved in dynein-mediated retrograde transport of cargo 
vesicles[67].

RTN3 is most often studied in the association of tubular ER and AD pathology, and other genes associated 
with tubular ER have been identified that participate in AD pathological progression. REEP2 and REEP5 
colocalized with DNs[12]. Protein 600 (p600) colocalized with mitochondria and the ER marker Bip in a 
vesicular or punctate pattern in primary mouse cortical neurons. Silencing of p600 destabilized neuronal 
processes in young primary neurons undergoing neurite extension and contained scarce staining of the ER 
marker Bip. Disruption of the neuronal tubular ER and mitochondria interaction may impact cellular 
processes, including neuronal maturation and axonal transport[68]. RAB10 is found to have a role in AD, and 
its expression is significantly elevated in the human AD brain[69]. Rab10 knockdown leads to a significant 
decrease in amyloid β 42 (Aβ42) and Aβ42/Aβ40 ratio[70]. ER dynamics and morphology control tubulation 
along MTs and tubule fusion[29]. Functional categorization of the list of proteins, enriched explicitly in ER 
tubules, reveals that the tubular ER network is involved in membrane trafficking, organelle contact, and 
stress sensing in Saccharomyces cerevisiae[11,71], which supports the notion that the ER tubules are broadly 
involved in lipid metabolism[71]. Mammalian serine palmitoyltransferase (SPT) regulates ceramide levels that 
directly mediate Aβ levels, and inhibition of serine SPT reduces Aβ and tau hyperphosphorylation in an AD 
mouse model, providing a potential therapeutic strategy for AD[72]. Activated astrocytes via serine 
palmitoyltransferase increase BACE1 in primary neurons, contributing to AD progress[73]. It is believed that 
tubular ER proteins contribute to AD pathogenesis by regulating lipid metabolism, forming DNs, and 
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interacting with other cellular components, including mitochondria. Identifying these proteins provides 
new targets for developing therapeutic strategies for AD.

Tubular ER degeneration in PD
PD is the second most common neurodegenerative disease after AD. The movement disorder is caused by 
the loss of dopaminergic neurons in the substantia nigra pars compacta, with intracellular aggregation of α-
synuclein in Lewy bodies (LBs) and Lewy neurites (LNs)[74]. LBs are protein inclusions containing 
disaggregated oligomers of many cellular proteins, and LNs are precursors of LBs with deposits of ubiquitin 
and α-synuclein and possibly other molecules that accumulate in synaptic terminals and axonal processes 
and linked to neuroinflammation and synucleinopathies[75,76]. Autophagosome-like membranes were 
observed in globules, small axonal swellings derived from the PD mouse model expressing human wild-type 
α-synuclein or β-synuclein[7], suggesting that autophagy contributes to LN formation.

α-Synuclein neurotoxicity has been linked to impairments in various cellular functioning features, including 
mitochondrial, proteasomal, and lysosomal abnormalities, axonal transport deficits, and synaptic 
transmission changes[77]. ER, stress has recently emerged as a mediator of α-synuclein toxicity[78]. In addition, 
the dominant family variants of PD are caused by mutations in α-synuclein which disrupts ER-
mitochondria tethering by binding to vesicle-associated membrane-protein-associated protein B 
(VAPB)[79,80]. Furthermore, VAPB has altered binding to protein tyrosine phosphatase interacting protein-51 
and increases Ca2+ uptake by mitochondria following release from ER stores[79]. Also, the Ca2+ homeostasis is 
one of the primary functions of the tubular ER. A PINK1 mutation causes mitochondrial abnormalities such 
as loss of membrane potential, increased size, and decreased ATP levels, all of which are reversed in PD cell 
models by inhibiting mitochondrial calcium uniporters, which take up Ca2+ released from the ER[81]. These 
findings suggest that ER-mitochondria interactions may influence the severity of PD symptoms.

The MCTP2 gene, a human homolog of Pex30 with N-terminal reticulon homology domain and putative 
functions in tubular ER formation, has been identified as a risk factor for developing early-onset PD49[34,82], 
suggesting that ER organization disruption in dopaminergic axons might accelerate PD development. In 
addition, increases in ER-mitochondria contact sites generate abnormal lipid trafficking, which depletes 
phosphatidylserine from ER in Drosophila and PD cell models. This ER lipid abnormality disrupts sleep 
patterns[83], the common non-motor manifestation of PD. It is known that PD links to impairments in 
various cellular functions, including mitochondrial, proteasomal, and lysosomal abnormalities, ER stress, 
and ER-mitochondria tethering disruption. The importance of Tubular ER degeneration in PD could help 
understand the role of tubular ER and its interactions in PD pathology and develop targeted therapies that 
can prevent or slow disease progression.

Tubular ER degeneration in ALS
ALS is a fatal neurodegenerative disease caused by gradually deteriorating upper and lower motor 
neurons[84]. In ALS, neurodegeneration is characterized by distal axonopathy that begins at the distal axons, 
including the neuromuscular junctions, and progresses proximally in a “dying back” manner prior to the 
degeneration of cell bodies[85]. However, the molecular mechanism for distal axonopathy in ALS has not 
been fully elucidated. A toxic gain of function caused by aberrant protein aggregation in axons is likely one 
of the major drivers of axonopathy[86]. Spheroids are found in proximal axons of motor neurons of lumbar 
spinal cords in ALS patients but are not specific to ALS, and small numbers of spheroids may also appear 
with increasing age in healthy elderly individuals and non-ALS neurological patients[85]. However, axonal 
spheroids with accumulated some aberrant protein aggregations, such as phosphorylated neurofilaments[87], 
and phosphorylated TAR DNA binding protein 43[88], were specific to ALS patients but not to disease 
controls.
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Several lines of evidence suggest that RTNs, particularly members of the neuronal surface 
glycosylphosphatidylinositol-linked receptor (Nogo) (also called RTN4) subfamily, are involved in ALS 
pathogenesis[89]. Nogo isoforms, especially Nogo-A, are expressed in the skeletal muscles and brains of ALS 
mouse models and patients, and their levels correlate with the disease severity[90]. Nogo-A overexpression 
destabilizes neuromuscular junctions, which may cause terminal nerve retraction and denervation with 
motor neuron death and muscle atrophy[89,91]. Nogo inhibits the axonal outgrowth and regeneration in the 
central nervous system via the Nogo-A receptor (NgR)[92]. Ablation of Nogo delays disease progression in 
the SOD1 G93A mouse model of ALS[93], and targeting NgR can reduce ALS protein ataxin-2[94], suggesting 
that pharmacological inhibition of Nogo-A or NgR may be a disease-modifying approach in ALS. Nogo-A 
expression may be a helpful biomarker for identifying ALS in the early stages when the diagnosis is difficult 
to confirm. Increased Nogo-A mRNA is found in the transgenic ALS model at early asymptomatic stages, 
while Nogo-A levels are barely detectable in healthy adult muscles[95]. Muscle Nogo-A expression could be a 
prognostic marker in the lower motor neuron syndrome (LMNS), considered the initial stage of ALS.

Enhanced Nogo-A expression in biopsy samples from patients with LMNS allows for identifying patients at 
higher risk of progressing to ALS[96]. Nogo-A may be an early indicator of the disease and an adverse 
prognostic factor in patients with ALS, for ALS-related denervation was excluded in Nogo-A-negative 
patients. VAPA/VAPB participates in mitochondrial-associated membranes, and dysfunction could disturb 
ER membrane trafficking and promote axonal degeneration. A point mutation (P56S) in the VAPB leads to 
an autosomal dominant form of ALS, involved with ER-associated aggregates that completely reorganize ER 
structures[97]. ALS-related protein at Ataxin-2 may also contribute to the ALS process by stabilizing MT and 
actin networks and maintaining tubular ER morphogenesis and dynamics[98,99].

Tubular ER in HSPs neural degeneration
HSPs are a group of neurodegenerative disorders caused by the degeneration of upper motor neurons and 
their axons in the longest corticospinal tract. They are divided into pure and complex forms, with spasticity 
in lower limbs only, or associated with other neurologic and non-neurologic manifestations, 
respectively[100]. Clinically, patients display lower limb weakness, spasticity, and bladder dysfunction[101]. 
With 87 forms described, they are a significant health and economic problem for society and patients[102]. 
One of the pathogenic mechanisms underlying HSPs appears to be axonal degeneration[103,104]. Defective 
cellular membrane trafficking (and, more specifically, impaired axonal transport of macromolecules and 
organelles) is the genetic mechanism of HSP that has received the most attention and research. 
Approximately 50% of those diagnosed with HSP harbor mutations in tubular ER proteins, including MT-
severing ATPase SPAST, the membrane-bound GTPase ATL1, RTN-like, and MT-binding protein REEP1. 
Transverse ER expansion was found in corticospinal axons of HSP mice[100], suggesting a possible 
connection between tubular ER modeling and axon integrity. SPAST, ATL1, and REEP1 interact within the 
tubular ER membrane in corticospinal neurons to coordinate ER shaping and MT dynamics. Defects in 
tubular ER shaping and network interactions with the axonal MT cytoskeleton seem to be the predominant 
pathogenic mechanism of HSP[46].

Autosomal dominant mutations in the SPAST gene cause spastic paraplegia 4 (SPG4), the most common 
form of pure HSP. Pathological analysis of human SPG4 cases reveals the presence of largely axonal 
swellings, also observed in a mouse model with pathogenic splice site mutation of SPAST[105]. SPAST 
mutation significantly impacts axons in cell and mouse models, illustrating swollen axons with an 
accumulation of acetyl-α-tubulin, tau, cytoskeletal proteins, and APP[106]. These findings suggest that the 
component of axonal swellings may be associated with deficits in axonal transport.
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Poor transportation leads to materials building up in axons and their deformation. The observation 
supports the notion that these swellings of axons are linked to axonal MT dynamics[106]. Because of the 
essential role of MT in axonal transport, defects in axonal transport may underlie at least part of the disease 
process in HSPs[105]. Mitochondrial transport in axons was decreased in SPG4 neurons. Furthermore, the 
mitochondrial axonal transport defects are exacerbated in neurons with axonal swellings, and anterograde 
and retrograde transport between axonal swellings or terminals to axonal swellings were severely 
reduced[107]. The lack of SPAST enlarges the axonal ER and reduces store-operated calcium entry, leading to 
abnormal Ca2+ homeostasis[108], which may serve as a disease-relevant mechanism of SPAST-linked motor 
neuron disease.

Interestingly, studies using transgenic mice with human mutant SPAST gene (hSPAST-C448Y) have shown 
that these animals develop corticospinal dieback and gait deficits but not axonal swellings[109]. However, in 
SPAST knockout mice, axonal swellings are observed, but they neither display dieback degeneration nor gait 
deficiencies[105,106,110]. A debate has arisen in the field of HSPs regarding whether axonal swellings caused by 
reduced SPAST function are the primary cause of the disease or merely exacerbate the toxic effects of the 
mutant protein. A recent study shed light on this issue by crossbreeding SPAST knockout mice with 
transgenic mice carrying hSPAST-C448Y[111]. The study found that the crossbred animals exhibited earlier 
symptoms, worsened gait deficiencies, and corticospinal dieback compared to the hSPAST-C448Y mouse. 
These results suggest that reduced spastin function does not appear to be the primary cause of HSPs but 
contributes to the disease's pathogenesis by exacerbating the toxic effects of the mutant protein. The model 
also provides a more accurate representation of the disease's complexity and enables researchers to 
investigate the molecular mechanisms underlying the disease[111]. Although the exact role of SPAST in 
axonal swellings is not yet fully understood, the above finding provides new insights into future research to 
understand the pathogenesis of HSPs. Recently, additional mutations have been identified in HSPs. REEP1 
mutations have been found to cause axonal degeneration[112,113]. Furthermore, using advanced genetic 
sequencing techniques, three mutations in the RTN2 gene were discovered in families with SPG12[114]. 
Mutated RTN2 links ER shaping with axonopathy, supporting the hypothesis that abnormal ER 
morphogenesis is a pathogenic mechanism in HSPs[114]. ARL6IP1 is an ER-localized anti-apoptotic regulator 
and a potential factor in structuring the ER tubules in mammalian cells. It has been associated with 
regulating glutamate in neurons[115]. When the gene is knocked down in Drosophila, the result is a 
progressive motor deficit[116]. Novarino et al. performed whole exome sequencing and found a homozygous 
loss-of-function mutation in ARL6IP1 in a family with SPG61[117]. Some ER-shaping proteins associated 
with HSPs have functions in other cellular processes, including lipid metabolism[118], Ca2+ signaling[119], and 
mitochondrial regulation[116], which may contribute to the disease process. We believe that mutations in 
genes associated with HSPs can lead to an abnormal expansion of the tubular ER in axons, resulting in 
axonal degeneration. This is due to an imbalance in the regulation of the tubular ER membrane, which leads 
to excessive membrane expansion and a loss of membrane integrity. Further study of how targeting the 
regulation of the tubular ER membrane could be a potential therapeutic strategy for treating HSPs is needed 
to understand the pathogenesis of HSPs and develop targeted treatments.

Tubular ER degeneration in HD
HD is a progressive disorder inherited in an autosomal dominant pattern responsible for many motor, 
mental, and cognitive symptoms[120]. HD is a monogenic disorder caused by an expansion of CAG 
trinucleotide repeats in exon 1 of the HTT gene (also known as the IT15 gene), which encodes the 348 kDa 
huntingtin protein (HTT)[121]. HTT expansions have been linked to abnormalities in anterograde and 
retrograde transport of vesicles carrying growth factors, including brain-derived neurotrophic factors[122]. 
HTT aggregates have been shown in Drosophila and mouse models to be directly neurotoxic by affecting 
axonal transport[123,124]. Another study found that HTT modulates axonal transport by sequestering motor 
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proteins into aggregates, based on the finding that the pool of soluble motors reduces when polyQ HTT 
repeats are expressed[123]. Overall, the findings in HD show that protein aggregation can be a source of 
axonal transport abnormalities.

Ca2+ signaling is disrupted in HD disease models[125], implying that disturbed Ca2+ handling makes spiny 
projection neurons more sensitive to Ca2+-mediated cell death. The binding of HTT to inositol 1,4,5-
trisphosphate (IP3R) improves receptor responsiveness to IP3, leading to increased Ca2+ release[126], which 
may eventually lead to apoptosis. The increased Ca2+ leak also depletes ER Ca2+ reserves, inducing store-
operated channel ER Ca2+ replenishment[125]. This interaction between HTT and IP3R could result in 
neurodegeneration. IP3R blockers prevent increased glutamate-mediated cell death in mouse striatal 
neurons[127,128] and mouse neuronal cell cultures. A repeat expansion in the Junctophilin 3 gene also interacts 
with HD-like 2[129], which phenocopies HD. Junctophilin 3 stimulates ER-plasma membrane contact sites, 
which regulate Ca2+ communication in hippocampus neurons[130]. The chorea-acanthocytosis, which has a 
phenotype similar to HD, is caused by mutations in the gene Vps13A[131]. Vps13A is a lipid-transfer protein 
identified at ER-membrane contact sites with mitochondria and LDs; it also facilitates ER-membrane 
contact sites tethering[132,133]; thus, Vps13A dysfunction could impact Ca2+ communication. These findings 
suggest ER participation in Ca2+ handling is critical for HD pathogenesis and may represent therapeutic 
targets.

CONCLUSION AND PERSPECTIVES
Axonal tubular ER is a distinctive structure found in neuron axons. Its tubular form allows it to regulate 
various biological processes important for axonal function and neural transmission. Axonal tubular ER 
dysfunction has been linked to various neurodegenerative disorders [Figure 2], emphasizing the necessity of 
this structure in preserving neuronal integrity. Axonal degeneration is a pathogenic characteristic shared by 
many neurodegenerative disorders, and it causes a breakdown in neuronal communication. For these 
reasons, axonal ER dysfunction contribute to axonal degeneration, while the original cause of the axonal ER 
abnormality remains unclear. One consideration is structural deficits of axonal ER caused by tubular ER-
shaping gene mutations because the abnormal morphology of tubular ER is incompetent to maintain 
normal function. Another consideration is related to MTs dysfunction because the normal axonal transport 
function depends on the cooperation of tubular ER and MTs, of which MTs deficits also lead to the failed 
transport of axonal materials, causing further axonal deformation and degeneration. The third 
consideration includes cargo clearance in axons, which recapitulates the process of autophagy. ER-phagy is 
the predominant pathway for axonal ER turnover; any disturbance, such as aging or toxic factors, attenuates 
or damages cellular autophagy. Although the tubular ER overlap in the axonal degeneration of 
neurodegenerative disorders with genetic and biological factors likely to play roles in the clinical 
manifestations of axonal degeneration-associated disorders, the relationship requires further study. 
Determining the primary cellular defects and correlating the consequences with the ER tubular changes that 
may appear at different disease stages is crucial to help define the pathogenesis of those neurodegenerative 
disorders. Furthermore, it will be vital to design effective future therapies that specifically counteract the 
causes of tubular ER and axonal degeneration-associated disorders.
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Figure 2. The putative tubular ER neurodegenerative mechanism. This figure illustrates the complex interplay of the main mechanisms 
involved in axonal tubular ER pathology in neurodegenerative disorders. Arrows show the regulation of the specified process. The 
dashed arrows indicate the consequences of interrupting the corresponding process; ER: Endoplasmic reticulum; RTN3: Reticulons3; 
Rab10: ras-related GTP-binding protein 10; p600: Protein 600; VAPB: Vesicle-associated membrane-protein-associated protein B; 
Nogo-A: Neuronal surface glycosylphosphatidylinositol-linked receptor-A; SPAST: Spastin; ATL: Atlastin; REEP1: Receptor accessory 
proteins1; IP3R: Inositol 1,4,5-trisphosphate; ARL6IP1: ADP ribosylation factor-like 6 interacting protein; AD: Alzheimer's disease; PD: 
Parkinson’s disease; ALS: Amyotrophic lateral sclerosis; HSPs: Hereditary spastic paraplegias; HD: Huntington’s disease.
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