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Hypoxia is a well-established characteristic of prostate tumors and is now recognised as 
a major contributory factor to both tumor progression and increased resistance to therapy. 
One strategy to target hypoxic tumor cells is the development of hypoxia-activated prodrugs 
(HAPs), which are activated in low oxygen environments. Several HAPs have been developed 
but despite encouraging results from preclinical studies many of these have performed 
disappointingly in clinical trials. In the developing era of precision medicine, it is clear that 
more strategic deployment of these agents is required, based on reliable methods that can 
identify patients who will benefit from HAP treatment, either alone or in combination with 
other drugs. This review discusses the primary limitations of using HAPs to treat hypoxic 
tumors and explains how these challenges can be addressed. In particular, it emphasises 
the importance of tumor imaging and identification of reliable biomarkers for measuring 
hypoxia and monitoring cellular response to treatment in individual patients. Developing 
predictive assays for clinical use will be paramount in demonstrating the patient impact and 
effectiveness of HAPs for personalised medicine. 
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INTRODUCTION

A large body of evidence now exists to show that 
hypoxia occurs in most solid tumors and can have 
a major influence on treatment response[1-3]. Under 
hypoxic stress, cells respond in a number of ways 

This is an open access article licensed under the terms of Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, 

and reproduction in any medium, as long as the original author is credited and the new creations are licensed under the 
identical terms.

For reprints contact: service@oaepublish.com

which are primarily mediated through hypoxia-inducible 
factors (HIFs)[4]. When cellular oxygen levels are 
normal HIFα subunits are degraded by the proteasome 
following hydroxylation by prolyl hydroxylase domain 
(PHD) proteins and poly-ubiquination by the von 
Hippel-Lindau tumor suppressor, which is the substrate 
recognition component of an E3-ubiquitin ligase. When 
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oxygen levels are low, the PHD enzymes become 
inactive, thereby reducing the degradation of HIFα. The 
stabilised HIFα molecules translocate to the nucleus, 
form dimers with constitutively expressed HIFβ 
subunit, and bind to DNA to initiate gene transcription in 
response to the hypoxic environment[5]. HIF-independent 
hypoxia responses have also been described, including 
adaptive mechanisms regulated by mTOR signalling[6], 
p38 MAPK[7] and NF-κB[8]. It is therefore clear that a 
complex network of cellular and molecular signalling 
occurs when cells are exposed to hypoxic stress[9,10].

This is important during cancer progression, because 
accelerated proliferation of cancer cells can result in 
abnormal vascularization, unstable blood flow and 
reduced O2 diffusion within a solid tumor, causing 
hypoxic regions to develop. This is significant because 
tumor hypoxia has been shown to cause numerous 
molecular and genetic changes within cells which 
promote cell survival and drive tumor development 
[Figure 1][9,10].

Table 1 shows the reported values from different studies 
on various cancers, demonstrating that the oxygen 
level in normal tissues can vary from approximately 
4%-6% oxygen depending on the tissue; the normal 
prostate has one of the lowest reported median 
oxygen levels (~4%)[3]. Normal physiological stress 
responses to a reducing level of oxygen probably 
occur between 1% and 3% although the exact level 
is difficult to define and may well depend on multiple 
factors including the tissue under investigation. In 
tumors, oxygen levels are frequently reported at well 
below 1% indicating that tumor cells are exposed 
to severe hypoxic stresses. The proportion of the 
cells exposed to these extreme hypoxic stresses will 
vary across the tumor and can also be modified by 
responses to treatment.

Untreated prostate tumors are known to be very 
hypoxic (~0.3% oxygen)[3,4], which is > 12 times lower 
than oxygen levels found in the normal prostate[3,11]. 
Prostate tumor hypoxia has been implicated as a 
causative factor in malignant progression[12,13], genetic 

Figure 1: Hypoxia impacts upon a number of important pathways which can promote tumor growth and progression
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instability[14], endothelial-to-mesenchymal transition[15,16] 

and selection of cells with diminished apoptotic potential 
and a greater invasive potential[17,18]. These plethora 
of changes means that the presence of hypoxia has 
significant implications for cancer therapy[11,19]. Indeed, 
as far back as the 1950s, it was realised that hypoxia is 
an underlying cause of resistance to radiotherapy[20,21]. 
Since then it has been consistently shown that high 
levels of hypoxia significantly correlate with increasing 
clinical stage and can predict biochemical failure 
following radiotherapy[22]. Recent studies have shown 
that hypoxic conditions significantly enhances exosome 
secretion in a HIF-1α-dependent way[23]. Exosomes are 
microvesicles containing a cargo of signature proteins, 
lipids, nucleic acid and metabolites that can contribute 
to the remodelling of the tissue microenvironment[24,25]. 
In prostate cancer models they have been shown to 
mediate angiogenesis, cell stemness and activation 
of the surrounding tumor stroma[26]. Similarly, 
hypoxia has been linked with increased resistance 
to chemotherapeutic drugs[27,28]. Therefore, hypoxia 
is clearly a significant obstacle to the effective 
treatment of tumors, so it is a viable therapeutic 
strategy to directly target hypoxic tumor cells in an 
attempt to improve treatment[27,29,30]. Although such a 
strategy has yet to establish clinical acceptance, one 
of the most promising translational approaches for 
patient treatment is based on the use of bioreductive 
drugs[31,32]. These are now more commonly known 
as hypoxia activated prodrugs (HAPs) or, in the 

case of the metabolically distinct anthraquinone-
derived compounds, unidirectional HAPs (uHAPs). This 
review will focus on the therapeutic potential of these 
compounds in targeting hypoxic tumor cells, although 
the molecular targeting of hypoxia factors such as HIF 
is an equally valid strategy for targeting hypoxia and is 
reviewed elsewhere[30,33].

The concept underpinning the use of HAPs is well-
established and several recent reviews exist, which we 
refer to for further understanding[32,33]. When oxygen 
levels are very low HAPs or uHAPs are reduced to 
covalently-binding active cytotoxins or release DNA-
damaging radicals[31,32]. Thus the incorporation of 
a HAP into a treatment regime should be an ideal 
approach to specifically target tumor cells, particularly 
as hypoxia is rare in normal tissues[34]. Other 
properties for an effective HAP, discussed throughout 
this review, include (1) the ability to reach hypoxic 
cells, (2) pharmacological features which allow it to be 
metabolised effectively, and (3) exertion of a lasting, 
targeted effect on the tumor[32]. With these in mind 
several compounds have been developed and tested 
in vitro, in vivo and in patients with different cancers 
[Table 2 and Figure 2].

However, although encouraging results have been 
obtained from preclinical studies many of the HAPs 
listed in Table 2 have not been realised in clinical trials. 
Currently, only a few of these molecules are being 

Table 1: Reported values of the partial pO2 in human tumors and corresponding normal tissues

Tumor type n Median tumor 
pO2

Median % 
oxygen

n Median 
normal 

tissue pO2

Median % 
oxygen

Fold pO2 
decreasea

Reference

Brain (6) 104 13 1.7 104 26 3.4 2 [11]

Head and neck cancer 
(13)

592 10 1.3 ND 5.9 4.5 [11]

30 12.2 1.6 14 40 5.3 3.3 [88]

23 14.7 1.9 30 43.8 5.8 3 [89]

65 14.6 1.9 65 51.2 6.7 3.5 [90]

Lung cancer 6 14.3 1.9 ND 5.6 3 [91]

20 16.6 2.2 42.8 5.6 2.6 [92]

Breast cancer (10) 212 10 1.3 212 52 6.8 5.2 [11,93]

Pancreatic cancer 7 2.7 0.4 7 51.6 6.8 19.1 [94]

1 2 0.3 22.7 [95]

Prostate cancer 59 2.4 0.3 59 30 3.9 12.5b [96]

55 4.5 0.6 ND 6.7b [97]

10 9.4 1.2 2 26.2 3.4 2.8c [98]

Melanoma 18 11.6 1.5 20 40.5 5.3 3.5 [99]

Rectal carcinoma 14 32 4.2 52 6.8 1.6 [100]

15 19 2.5 52 6.8 2.7 [101]

Sarcoma (14) 283 14 1.8 283 51 6.7 3.6 [11]

The data in the table is adapted with permission from a review by McKeown (2014). The number of studies included for each tumor type 
is indicated by the number in the “tumor type” column. Other data are from single studies, as referenced. aFold reduction of tumor vs. 
normal tissue is based on all the data presented in the table (except prostate; see below); bfold reduction calculated on contemporaneous 
measurements in the psoas muscle; cdata from a pilot study that included values from the “normal” prostate of two bladder cancer patients. 
ND: not determined; pO2: pressure of oxygen
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actively pursued, whereas the clinical development 
of others has been discontinued[31,32]. It has become 
clear that future large HAP clinical registration trials 
need to incorporate biomarkers of hypoxia to identify 
patients who would benefit from this type of treatment. 
Furthermore, in some clinical trials involving HAPs, 
later retrospective analyses were carried out and 
showed that specific cohorts treated did have a 
significant survival advantage. Thus, as with many 
cancer therapies there is a requirement to stratify 
patients for a number of different factors including 
importantly hypoxia. As Table 1 shows, there is 
considerable variation in tumor hypoxia between 
patients, meaning not every patient will show the 
same response to HAP therapy. Nonetheless, a proof-
of-principle study has demonstrated that in patients 
with different tumor types, AQ4N was activated 
selectively in hypoxic regions in human solid tumors 
to AQ4 the hypoxia-activated metabolite of AQ4N and 

a potent DNA intercalator and topo II poison[35]. This 
phase I study, has been vital to the identification of the 
potential clinical efficacy of this prodrug. 

Furthermore, tumor heterogeneity will also mean that 
not all cancer cells will have the innate capacity to 
be targeted in the same way or to the same extent, 
as the HAP may not be effectively metabolised to the 
same degree across the tumor micro-environment. 
Another difficult question to address clinically is 
also whether the reductases that are identified as 
capable of activating the HAPs in preclinical models 
are present in all hypoxic cells within a heterogenous 
tumor. Most HAPs (including nitroaromatics, quinones 
and benzotriazine di-oxides) are activated via a 
mechanism that begins with one-electron reduction 
by flavin-dependent oxidoreductases to generate 
a metabolite which can be readily back-oxidised 
during fluctuating oxygen tensions; this might be a 

Table 2: HAPs which have been tested in human clinical trials

NCI: National Cancer Institute; CRUK: Cancer Research UK; HER: human epidermal growth factor receptor; HAPs: hypoxia-activated 
prodrugs

Prodrug Company or institution Chemical class Mechanism of cytotoxicity References
Tirapazamine (SR 4233) SRI International/NCI Aromatic N-oxide Complex DNA damage [102,103]

Apaziquone (E09) Spectrum Quinone DNA interstrand crosslink [104,105]

Evofosfamide TH-302 Threshold Nitroaromatic DNA interstrand crosslink [106-108]

Tarloxitinib
TH-4000

Threshold and University of 
Auckland

Nitroaromatic Pan-HER inhibitor
Tyrosine kinase inhibitor

[109]

PR-104 Proacta and University of 
Auckland

Nitroaromatic DNA interstrand crosslink [110,111]

Banoxantrone (AQ4N) KuDOS/Novacea Aliphatic N-oxide DNA intercalator and topo II 
inhibitor

[35]

Porfiromycin Vion Pharmaceuticals Quinone DNA interstrand crosslink [112,113]

RH1 CRUK Quinone DNA interstrand crosslink [114]

Figure 2: Chemical structures of HAPs that have been under clinical evaluation. HAPs: hypoxia-activated prodrugs
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contributing factor to resistance mechanisms under 
acute hypoxia but not chronic fractions of solid 
tumors[31]. HAPs such as AQ4N that rely on an aliphatic 
tertiary amine N-oxide are activated via two-electron 
reduction that is catalysed by CYP isoforms[36-41] is 
not oxygen sensitive and hence a more persistent cell 
killing effect may be observed; the more metabolically 
stable, deuterated analogue of AQ4N, OCT1002 is 
described further below.

COMBINATION TREATMENT WITH HAPS

It is clear from clinical results thus far that an 
increased understanding of how HAPs are activated 
in different tumor types is required in order to develop 
reliable predictors of tumor sensitivity to this type of 
treatment. Moreover, as with most chemotherapeutic 
drugs, it is unlikely that monotherapy with any given 
HAP will prove to be wholly effective. A more realistic 
scenario is that susceptible tumors can be treated 
with combinatorial therapy which includes a HAP. In 
the preclinical setting, enhanced anticancer activity 
has been demonstrated by combining chemotherapy 
with HAPs. In prostate cancer, synergistic effect has 
e.g. been achieved using doxorubicin or docetaxel 
in combination with TH-302, supporting HAPs with 
cycle-active chemotherapy to treat aggressive forms 
of prostate cancer[42].

In a clinical context, several HAPs have been 
investigated in combination with conventional 
cytotoxic chemotherapy or radiotherapy[43,44]. Although 
some patients have benefitted from the combination 
therapy, the results of these trials have at large been 
disappointing as reflected upon by Hunter et al.[31]. 
However, with the increasing knowledge we have 
gained, especially over the past decade, perhaps 
other combination drugs that address molecular 
targets, oncogenic drivers and exploit DNA damage 
response (DDR) pathways will pave the way for the 
next generation of HAPs.

For example, there is evidence to suggest that DDR 
induced by hypoxia is altered from the classical 
pathways induced by damaging agents[45]. There 
are possibly several reasons for this and include 
repression of DNA repair in hypoxic conditions. 
Treatment is complicated further by several reports 
indicating that DNA repair under hypoxia is defective 
or abnormal and hence may not respond to exposure 
of the bioreduced metabolites of the HAPs that have 
undergone clinical evaluation. 

The complex nature of a heterogenous tumor is likely 

to result in a number of alterations and include (1) 
alteration of the catalytic activity of drug-metabolizing 
enzymes that are responsible for HAP bioconversion, 
and (2) the DDR may be differently regulated in different 
types of cells, e.g. a hypoxic cell and a hypoxia-located 
cancer stem cell. Some evidence indicate that hypoxia-
induced DDR under more extreme hypoxia (< 0.1%) 
occurs in the absence of detectable single- or double-
strand breaks and in a background of repressed DNA 
repair (Olcina & Hammond). In this regard, it could be 
important in the future to explore how DNA-targeted 
metabolites derived from HAPs can be used to exploit 
changes in DDR influenced by hypoxia. 

It is likely that the single electron-reduced HAPs 
could be sensitive to changes in DDR. HAPs such as 
tirapazamine and PR-104A that are reduced to DNA-
reactive metabolites via one-electron reduction have 
been shown to be more potent in cancer cells harbouring 
DDR pathways that include dysfunctional homologous 
recombination repair (HRR)[46,47]. Exploitation of 
dysfunctional HRR genes in hypoxic tumors require 
the discovery of biomarkers that can help to predict 
a better response to HAPs, however there has been 
very little systematic effort to discover and fully unravel 
the potential of such biomarkers[31]. This is in part 
due to the nature of such research, complicated by 
tumor reoxygenation that often occurs as a result of 
spontaneous changes in blood flow and therapy with 
subsequent impact on DDR pathways[48]. An example 
of how improved understanding of the DDR machinery 
provides an opportunity for combination therapy was 
demonstrated by Lindquist et al.[49] who investigated the 
potential for inhibiting DNA double strand break repair 
in hypoxic cells by targeting DNA-dependent protein 
kinase (DNA-PK). BCCA621C, a DNA-PK inhibitor was 
shown to be able to radiosensitize NCI-H460 cells under 
hypoxic but not normoxic conditions using a range of 
clinically relevant ionising radiation doses. There is also 
evidence that Chk1, ATM, ATR and poly (ADP-ribose) 
polymerase (PARP) are affected by hypoxia[48]. In 
regard to the latter, several PARP inhibitors are under 
clinical evaluation and information from these trials will 
provide key information on how HAPs could be used in 
combination with PARP inhibition (PARPi) alone or with 
additional radiotherapy. Preclinical data have shown 
that PARPi can be used as a radiosensitizing agent, 
which may increase the efficacy of radiotherapy in 
prostate cancer[50]. Recently, Hammond and co-workers 
have shown that olaparib and radiotherapy combination 
therapy had significant effect in hypoxic lung cancer 
xenografts but limited efficacy in less hypoxic tumors[51]. 
It is possible this effect was due to hypoxia-induced 
contextual synthetic cell-killing events[52]. The nature of 
the tumor microenvironment has an impact on treatment 
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outcome. Veliparib has been shown to potentiate PC-3 
but not DU-145 tumors to radiotherapy, which may be 
correlated with higher levels of hypoxia in PC-3 tumors 
compared with DU-145 tumors[53]. These studies did not 
include pharmacokinetics of either olaparib or veliparib 
and hence the distribution of the PARP inhibitors within 
the tumor microenvironment is unknown. It is tempting to 
speculate that improved delivery of the PARP inhibitors 
to the hypoxic fractions or inclusion of an appropriate 
HAP could lead to an enhanced therapeutic index.

USE OF OCT1002 TO IMPROVE EXISTING 
THERAPY

Research in our own labs have focused on how uHAPs 
can improve androgen deprivation therapy (ADT) for 
prostate tumors. Most HAPs are reduced in single-
electron reduction steps, a process which is reversible 
if oxygen levels increase. However, AQ4N[54], its 
deuterated analogue OCT1002 (OncoTherics Ltd)[55] 
and AQ4N analogues with potential to covalently 
adduct DNA/topo II[56] can be considered uHAPs. 
These compounds are alkylaminoanthraquinone di-
N-oxides, which are irreversibly bioactivated via a 
two-step, two electron reduction to form the reduction 
products (AQ4 and OCT1001, respectively). These 
are metabolically stable, highly toxic DNA-affinic 
reduction products which exist independent of any 
further change in oxygenation. OCT1002 differs 
from AQ4N through highly selective deuterium 
substitution of the 12 hydrogen atoms contained 
within the two N-oxide side chains[55]. This results 
in superior intracellular persistence of the activated 
form OCT1001, since deuteration slows cytochrome 
P450 metabolism, alters subcellular localisation and 
sequestration properties, thereby contributing to an 
enhanced intracellular persistence of the activated 
drug as described for other drugs[57,58]. Consequently, 
it is predicted that OCT1002 should be an improved 
analogue and is therefore under extensive preclinical 
evaluation. 

A recent study has investigated how OCT1002 may 
be combined with existing therapies for prostate 
cancer to prevent ADT resistance and progression to 
castrate resistant prostate cancer (CRPC)[55]. It was 
shown that OCT1002 has a hypoxia-dependent anti-
tumor effect in androgen-sensitive LNCaP prostate 
tumor xenografts and the effect can be markedly 
enhanced when combined with bicalutamide, an ADT 
drug which inhibits androgen signaling by targeting 
the androgen receptor (AR). The study also showed 
that it could block significantly the molecular changes 
caused by bicalutamide alone. This is consistent with 

previous studies in the same model which showed 
that bicalutamide induces hypoxia through vascular 
collapse[15,57] resulting in molecular changes that 
included evidence of endothelial to mesenchymal 
transition and increased metastasis to the lungs 
within 4 weeks[15]. These hypoxia-induced responses 
may help explain why patients treated solely with 
ADT often relapse; the hypoxic stress selects for 
resistant cells which survive to establish a tumor 
with a more malignant phenotype. Along with other 
studies investigating the link between hypoxia ADT on 
tumors[59,60], this lends weight to the idea that drug-
induced hypoxia may in fact drive prostate cancer 
progression and that HAPs may be a valuable way to 
address this issue.

This is timely work as the idea of combinatorial 
drug treatment has gained considerable traction in 
recent years. In particular, recent results from the 
CHAARTED[61] and STAMPEDE[62] clinical trials 
have revealed that use of docetaxel in combination 
with ADT improved relapse-free survival in patients 
with high-risk localised prostate cancer, proving that 
combining ADT with other types of drug can benefit 
prostate cancer sufferers. Since hypoxia is a major 
factor in developing ADT resistance, it makes sense 
to combine ADT with HAPs or uHAPs as a therapeutic 
strategy. However, as discussed above the absolute 
requirement for patient derived evidence-led decision 
making during clinical development of various HAPs 
demonstrates that translating these compounds into 
clinically accepted drugs needs careful consideration 
of tumor micro-environment and related hypoxic 
status. It requires both improved understanding of 
the action of these agents, as well as methods with 
which to clearly identify tumors which will be sensitive 
to HAPs. We still need improved ways to predict 
which patients will respond to which drugs. Making 
the right decisions on whether to use HAPs require 
increased knowledge about the hypoxic mechanisms 
which drive prostate cancer progression in order to 
improve patient stratification in the clinic. This means 
developing accurate, sensitive ways to identify tumors 
that are likely to be susceptible to hypoxic targeting. 

DETECTION OF PRODRUG CONVERSION 
AND PREDICTION OF RESPONSES TO HAPS

The key to ascertaining or indeed stratifying a prostate 
tumor for sensitivity to hypoxia targeting through 
HAP treatment requires a multi-pronged approach 
which has to take into consideration multiple aspects. 
Importantly this requirement provides an opportunity 
to bring new technologies and innovations to bear 
in order to really elucidate the effectiveness of the 
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drug from molecular profiling to potentially single 
cell functional analysis. Thus here we consider 
approaches aimed at developing novel and functional 
assays for tumor stratification. 

Many hypoxia-targeting small molecules, for example, 
[(18)F]FAZA, [(18)F]FMISO, [(18)F]EF5, and [(123)
I]IAZA, have been shown to accrue selectively in 
hypoxic cells. These positron emission tomography 
molecular contrast agents have been extensively 
applied in clinical hypoxia imaging, including 
cancer[63]. However the outstanding challenge is to 
multiplex these imaging readouts with the delivery 
and conversion of prodrug in the same tumor and 
package the acquisition and analysis algorithms such 
that they offer pragmatic solutions for advancing our 
understanding of HAP bioavailability and conversion. 

Many bioactive molecules have chromophores[64] 
thus offering the prospect for tracking target 
interactions through methods such as steady-state 
fluorescence readouts, or determining fluorescence 
quenching properties and fluorescence lifetime 
measurements for detecting drug tethering to target. 
Fluorescence life-time and quenching analyses can 
lead to a unique means for dissecting sub-resolution 
molecular interactions in situ[65]. For instance, 
recent spectroscopic investigations show molecular 
properties of doxorubicin change due to alterations 
in the local environment, such as when the drug is 
encapsulated to nanoparticles. Thus we suggest that 
fluorescence imaging provides a powerful tool for 
investigating drug delivery in tumor cells and tissue, 
and further allows for the linking of multi-scalar 
features of drug design, stability and metabolism 
together with the complexities imposed by the 
biological system including tissue penetration and 
drug-target interactions. 

All these fluorescent modalities are very much 
applicable for the uHAPs such as AQ4N and OCT1002 
which are fluorescent due to the anthraquinone 
chromophore and detectable in vitro and in vivo[55,66] 
and also retained in tissue even after snap-freezing 
of xenograft material. Cryosections of frozen 
xenograft tumor tissue slices were examined for 
AQ4 fluorescence and distribution by fluorescence 
microscopy, alongside HPLC/mass spectroscopy 
analysis[67]. To extend the concept further, the 
efficiency of drug-target interaction of the prodrug is 
driven by not only pharmacokinetic factors but a host 
of parallel cellular status and events that are required 
to elicit the sought pharmacodynamic responses, 
which are also heterogeneously expressed through 
the tumor. Hence the requirement for in vivo 

pharmacodynamics readouts, such as that provided 
by a truncated 53BP1 double-strand reporter, recently 
shown to accentuate the approach for in situ single 
cell analysis of cancer therapeutics[68]. Applying 
this PK-PD linked imaging at the single cell would 
provide the evidence and mechanisms essential for 
the development of HAP therapeutic strategies that 
address changing patterns of target presentation in 
different cellular microenvironments, and prostate 
tissue architecture. 

BH3 PROFILING TO PREDICT CAPACITY FOR 
CELL DEATH AT THE SINGLE CELL LEVEL

The primary action of the AQ4N and OCT1002 
metabolites is through DNA damage and subsequently 
apoptosis. Despite much research into the molecular 
pathways that regulate cell death, the signalling 
networks involved are so complex that molecular 
profiling of key pro-and anti-apoptotic players alone 
does not provide the predictive capability needed to 
assess chemo-responsiveness[69]. Thus, functional 
BH3 profiling would lead to the derivation of cell death 
fingerprinting, determining the sensitivity thresholds 
for apoptosis between and within heterogeneous 
cancer cell populations. The underlying principle of 
BH3 profiling is that mitochondrial depolarization 
or subsequent processes such as BAK/BAX 
oligomerisation or cytochrome release following BH3 
peptide exposure serves as a functional biomarker 
for cellular response to pro-apoptotic cues. A recent 
technology innovation has led to the development 
and implementation of novel nano-tools (cross-linked 
stapled peptides) to aid the understanding of apoptotic 
responses using flow and image cytometry[70,71]. 
Feasibility studies have shown that BH3-derived 
peptides alkylated with azobenzene cross-linkers have 
the ability to induce detectable physiological changes 
paralleling the early events in apoptotic cell death. The 
objective now is to establish a validated BH3-profiling 
pipeline suitable for sample stratification, using these 
peptide BH3 pathway inducers and sensitizers[72]. 
In short, BH3 profiling provides a functional readout 
for the primed apoptotic state of a heterogenous 
population of cells, again which can be directly linked 
to drug bioreduction and retention at the single cell 
level.

MOLECULAR PROFILING AND 
BIOINFORMATIC ANALYSIS

The drive towards personalised medicine depends 
on the discovery of biomarkers which can allow 
molecular stratification of patients. Such information 
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is likely to reside in the vast arrays of data detailing 
the specific genetic characteristics of individual 
prostate tumors which has been gathered by 
genomic profiling in recent years. Comprehensive 
bioinformatics analyses of this data has revealed that 
a wide molecular diversity exists in human cancer, 
including prostate tumors (TCGA Network, 2015)
[73]. Such tumor heterogeneity may help explain why 
patients presenting with pathologically similar tumors 
can have very different responses to the same course 
of treatment. For example, primary prostate cancers 
exhibit a wide variability in AR activity, with increased 
AR-dependent signalling linked to gene mutations in 
SPOP and FOXA1 (TCGA Network, 2015)[73]. Knowing 
whether a tumor carries these mutations or not can 
help determine the most appropriate ADT approach 
for a patient and subsequent tracking of those gene 
mutations can inform adaptive drug administration. 
Likewise, knowing the mutational status of the AR 
gene itself will be critical in helping predict treatment 
outcome. For instance, enzalutamide cannot bind to 
an abnormal splice variant of the AR called AR-V7, so 
patients harbouring this mutation would be unlikely to 
respond to that particular drug, further emphasising 
the need to stratify patients by molecular profiles. 
Indeed, recent research has shown that AR-V7 can 
be detected in patient blood samples and efforts to 
validate this screening for clinical application are 
under way[74].

In a similar manner, it is possible to probe this data 
for hypoxic markers, allowing researchers to identify 
key patterns which may allow patient stratification 
based on hypoxic indices. Hypoxic gene signatures 
with prognostic potential have been identified in 
various cancers, such as breast[75], head and neck[76] 
and laryngeal cancer[77], each study highlighting 
how expression of genes related to hypoxia can 
be used to predict outcome. In a prostate cancer 
setting, a combination of these signatures was 
subsequently used to categorise hypoxic status of a 
total of 271 radical prostatectomy samples from two 
independent cohorts in a study which showed that 
biochemical relapse was associated with indices 
of tumor hypoxia, genomic instability, and genomic 
subtypes based on multivariate analyses[78]. Patients 
with a low percentage of genome alteration and low 
hypoxia had the best outcome, whereas those with 
high levels of both measures had the worst. Another 
study investigated gene expression in prostate 
tumor biopsies staining positive for hypoxia marker 
pimonidazole and also identified a signature of 
hypoxic response genes which correlated with tumor 
aggressiveness[79]. These studies demonstrate the 
value of genetic profiling of hypoxic status to help 

stratify patients for treatment, which possibly could 
include hypoxia targeting in selected groups. As data 
on clinical samples and patient outcome continues 
to be collected and archived in data repositories like 
The Cancer Genome Atlas, these genetic signatures 
can be continually refined by bioinformatic analysis to 
identify the most reliable markers of prostate tumor 
hypoxia.

In addition to tumor analysis, non-invasive biomarkers 
which can be measured in biofluids are also an 
attractive option for clinical use. In this regard, 
microRNAs have generated much excitement as 
potentially valuable markers of prostate progression 
and treatment response. These small RNA molecules 
are much more stably preserved than other RNA 
species in clinical samples, including fresh and fixed 
tissues, serum and urine, and can be readily detected 
using highly specific and sensitive PCR-based assays. 
miRNAs are important regulators of cell function and 
many of them are aberrantly expressed in prostate 
cancer[80,81]. Of these, miR-210 has been identified as a 
key regulator of hypoxia[82,83] and has been implicated 
in prostate cancer progression[84]. Significantly, serum 
levels of miR-210 have been shown to be elevated in 
prostate cancer patients compared to benign prostatic 
hyperplasia controls[85], as well as in metastatic CRPC 
patients who did not respond to treatment[86]. The goal 
is that miR-210 and other related miRNAs can be used 
as a panel of serum biomarkers that will reflect extent 
of tumor hypoxia. 

It is therefore clear that any strategies for treating 
prostate cancer must embrace molecular profiling as 
a means to stratify patients and also monitor response 
to treatment. Since hypoxia plays such a fundamental 
role in prostate cancer progression, examining the 
altered expression of genes involved in hypoxia-
related pathways, as well as network analysis of their 
interactions, will be an important consideration in 
developing precision medicine for individual patients. 

CONCLUSION

A major challenge in cancer therapy is to develop 
therapeutic agents that selectively target tumor 
cells. One avenue towards the development of more 
selective cancer therapies is to exploit the unique 
physiological properties of solid tumors using prodrug 
approaches. Hypoxia generated as a result of a poor 
and inefficient neovasculature is a characteristic 
feature of many solid tumors and is associated with 
the development of an aggressive phenotype and 
resistance to radiotherapy and chemotherapy. Whilst 
problematical for conventional therapies, hypoxia is 
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regarded as a valid target for drug development and a 
series HAPs have been developed over a period of 30-
40 years with eight HAPs reaching clinical evaluation. 
Currently, no HAP has reached the market and this 
is somewhat perplexing given the overwhelming 
evidence of solid tumors containing significant 
levels of acute and chronic hypoxia. If patients 
were molecularly stratified for treatment based on 
their tumor hypoxia signature including analysis of 
reductase expression, it is possible that the HAPs 
in combination with chemotherapy or radiotherapy 
would have resulted in improved treatment outcomes. 
Prostate tumors are considerably hypoxic as discussed 
in this review, which poses some unique challenges to 
effective treatment of aggressive forms of this disease 
with standard therapies such as docetaxel and/or 
radiotherapy. Clinical trials carried out with AQ4N have 
been promising, demonstrating safe administration of 
a uHAP that rapidly distributes throughout the body 
and penetrates into hypoxic regions where it is bio-
reduced to a persistent DNA-affinic topo II-targeting 
metabolite. The deuterated AQ4N analogue OCT1002 
offers great potential in the treatment of prostate 
cancer, for example in the combination with ADT. 
In prostate cancer, uHAPs could also be used in 
combination with PARP1 inhibitors in patients whose 
tumors harbour DDR deficiencies. Much progress is 
being made on how best to utilise PARP1 inhibitors 
but prior analysis of tumor heterogeneity and target 
expression is vital for clinical success. For example, 
a recent phase 2 trial that concerned patients with 
metastatic prostate cancer benefitted from whole-
exome sequencing and transcriptome analysis on 
DNA from fresh-frozen tumor-biopsy samples prior to 
treatment. In this study, understanding of DNA defects 
enabled clinicians to select patients suitable for the 
PARP inhibitor olaparib to ensure better treatment 
outcome[87]. Finally, the emergence of genetic and 
hypoxic signatures and the ability to image and 
analyse the heterogeneity of prostate tumors provides 
new opportunities for employing HAPs and uHAPs in 
combination with molecularly-targeted agents and/or 
radiotherapy.
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