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Abstract
The physical and biochemical indices of apple fruit serve as crucial phenotypic parameters in genomic cultivation. 
Among them, the soluble solids content (SSC), titratable acid content (TAC), and firmness are the three most 
paramount parameters that directly reflect the inner quality of apples. To achieve a more accurate prediction of the 
internal physicochemical indicators, a novel non-destructive detection approach fused with nonlinear and multi-
features using a multilayer autoencoder (MAE) was proposed. For non-destructive detection of internal 
physicochemical indicators, a dielectric spectrum device was employed to gather the electrical parameters of 300 
Fuji genomic sample apples. These measurements were taken at nine distinct frequencies, spanning from 0.158 to 
3,980 kHz. For the normal control group for validation, to precisely detect its physical and biochemical parameters, 
special physicochemical analysis apparatuses were utilized to collect data on firmness, SSCs, and TACs. To predict 
key genomic parameters such as firmness and SSC/TAC, three classical regression models were implemented and 
subject to comprehensive analysis. The experimental results reveal that the nonlinear feature variable selection 
based on MAE and multilayer perceptron (MLP) achieved the best prediction performance. Specifically, the 
correlation coefficients (R2) for predicting firmness and SSC/TAC reached up to 0.88 and 0.82, respectively, with 
root mean square errors (RMSEs) of 0.66 and 2.08. Regarding state-of-the-art dimensionality reduction, MAE can 
be validated as a nonlinear feature extraction methodology for complex electrical parameters. It demonstrates 
robust applicability in predicting a diverse array of other genomic parameters.
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1. INTRODUCTION
Firmness, along with the ratio of soluble solids content (SSC) to titratable acid content (TAC), denoted as 
SSC/TAC, constitutes direct and determinable biophysical and biochemical indicators reflective of the 
internal quality of apple fruit[1,2]. Nevertheless, traditional approaches of gauging firmness and SSC/TAC, 
which typically involve the employment of a penetration tester and a special sugar-acidity meter, are 
inherently destructive. Consequently, the fruit subjected to such tests cannot be made available for 
consumption. In contrast, the dielectric spectroscopy measurement, serving as an effective non-destructive 
detection[3-6], has been widely applied in the internal quality analysis of fruits, such as firmness[7,8], SSC[9-12] 
and maturity detection[13-16], and so on. With this dielectric spectroscopy, the electrical parameters could be 
effectively measured and comprehensively analyzed at different frequency points[17,18]. It should be noted 
that all the electrical parameters exhibit nonlinear and irregular characteristics. To accurately predict the 
firmness and SSC/TAC, it was a prevalent and essential practice to construct computational models by in-
depth analysis of nonlinear characteristic parameters reflecting the internal qualities of the fruit. Therefore, 
devising a calculation model for non-destructive detection with higher accuracy has emerged as the focus of 
research efforts and has received increasing attention.

The variation in apple quality has always been correlated with variations in electrical parameters, and there 
has been a correlation established between dielectric properties and biophysical and biochemical indices. 
The dielectric property data can be captured non-destructively for analysis of biological genomic 
characteristics, as the biological characteristics are related to resonant frequencies of the fruit. Żywica et al. 
found an application of calculating electrical model parameters for evaluating the dilution of apple puree of 
the Champion variety[19]. Bian et al. demonstrated that there was a correlation between the electrical 
properties and internal qualities of Fuji apples, which reflected changes in the degree of damage and 
physiological state[20]. At nine specific frequency points ranging from 0.158 to 3,980 kHz, Cai et al. 
constructed the correlation between electrical characteristics and apple quality (taste brittleness, acidity, 
sweetness, palatability, pulp, aroma), and detected freshness and moldy core disease of Fuji apple[21]. 
Nevertheless, there exists a deficiency in the availability of electrical parameters for evaluating the firmness 
and the ratio of SSC/TAC for apple fruit.

Machine learning and deep learning have been applied in the field of agriculture[22]. All methods, 
characterized by their data-driven nature, are capable of extracting features, patterns, and trends from real-
world data. This facilitates tasks such as dimensionality reduction[23], cluster analysis[24], classification 
prediction[25], and regression prediction[26]. Additionally, these methods fuse electrical spectroscopy 
parameters in order to determine the physicochemical contents of fruit. Liu et al. constructed a prediction 
model for SSC of persimmon fruit using partial least squares regression (PLSR) and least squares support 
vector regression (SVR)[27]. Using a generalized regression neural network, SVR and extreme learning 
machine (ELM) modeling, Guo et al. established a prediction model on SSC of three varieties of fresh 
apples, Fuji, Pink Lady, and Red Rome[28]. The same predictive models were also used to effectively evaluate 
the SSC and TAC for pears[29]. Reyes et al. used multiple linear regression (MLR) to predict SSC and pH of 
red delicious apples[30]. Bian et al. used linear regression to predict quality parameters such as sugar content 
and TAC of bruised apples[31]. Liu et al. used PLSR and ELM to predict the sugar content of melons[12]. Wang 
et al. applied linear regression to predict the TAC of kiwifruit[32]. Mohammed et al. utilized artificial neural 
networks (ANNs) and MLR to predict the sugar content, pH, total soluble solids (TSS), water activity, and 
moisture content (MC) of date fruit (Tamar)[33]. The electrical properties of fruit measured by dielectric 
spectra have been processed with ANN because of its diverse and multiple data analysis qualities and 
performance in data analysis, including fault tolerance, nonlinearity, self-learning, and generalization.
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To reduce model complexity and simplify model input, most researchers use feature selection and feature 
extraction methods to reduce redundant variables[34]. The methodology has also been employed during the 
processing of electrical parameters. In feature selection, correlation analysis[35] and sparse principal 
component analysis (PCA)[36] are commonly used to select parameters that are strongly correlated with 
physicochemical indicators as input for prediction models. PCA was popular for feature extraction. Based 
on this method, Bian et al. selected two principal components to represent the dielectric parameters of 
bruised apples and established a prediction model of physicochemical indicators[37]. Albelda Aparisi et al. 
used PCA for feature extraction and achieved accurate classification of orange frost damage based on the 
extracted features[38]. Guo et al. used the method to realize the feature extraction of the apple dielectric 
spectrum[39]. The results show that the model performance based on PCA was the best, and the prediction 
correlation coefficient (R2) was generally high. Liu et al. processed data and combined different prediction 
models to forecast the physical and chemical index content of pears[12]. Shang et al. employed PCA to extract 
features from the original variables for identifying apple varieties, and their experimental results 
demonstrate the potential of the method[40]. Wang et al. also used this method to simplify the input of the 
discriminant model and reduce the complexity of the model to construct the detection model for apple 
water core and moldy core disease[41]. Although the two methods mentioned above simplify the model, they 
only select a few variables or the linear characteristics between variables as the input for the prediction 
model, ignoring the nonlinear data characteristics between the sample variables.

Hinton et al. and Vincent et al. used neural networks and autoencoder (AE) for nonlinear feature 
extraction, achieving better results by representing high-dimensional data with low-dimensional data[42,43]. 
The AE was widely used in different machine learning tasks to extract key features from variables[44-47]. 
Regarding effective data encoding and decoding performance, AE was regarded as one of the important 
tools for nonlinear feature extraction in deep models, such as dynamic convolutional neural network 
(DCNN)[48] and deep auto-encoder models[49]. To achieve high performance in nonlinear feature extraction 
with deep AE, it was often used to reduce the dimensionality of sample variables and improve regression 
models.

Multilayer autoencoder (MAE) can learn deep nonlinear features of data by stacking multiple hidden layers. 
Each layer captures different levels of abstract representations of the data, thus better handling complex 
nonlinear relationships[50]. Compared to other new feature extraction algorithms, MAE is more suitable for 
extracting features from high-dimensional, nonlinear electrical parameters. Multilayer perceptron (MLP) 
uses nonlinear activation functions to introduce nonlinearity. This enables MLP to learn and represent 
complex nonlinear relationships, making them excel in handling nonlinear data[51]. Compared to some 
complex black-box models, the internal structure of MLP is relatively transparent, making them easier to 
understand and interpret[52]. Compared to other regression models, MLP is more suitable for predicting 
high-dimensional, small-sample, and nonlinear data.

This paper proposes a novel prediction method on non-destructive detection of physiochemical parameters 
of apple, firmness and SSC/TAC, featuring the fusion of MAEs and regression models. The proposal is 
illustrated in Figure 1. The main contributions include correlation analysis of nonlinear genomics input 
features and optimal regression prediction for reducing data dimensionality. To begin with, three regression 
methods were applied to develop firmness and SSC/TAC prediction models based on full frequency 
spectrums (FFSs), PCA and MAE. In addition, the prediction performance of apple SSC/TAC and firmness 
after the fusion of three feature extraction methods and regression models was comparatively evaluated. 
Last but not least, the applicability of nonlinear feature extraction to the processing of electrical parameters 
was verified. The remainder of this paper is organized as follows: Section “MATERIALS AND METHODS” 
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Figure 1. The complete data processing flowchart of proposed approach.

outlines the materials and methods for acquisition and establishment of genomic datasets, preprocessing 
and redefinition of the deep prediction model. Section “RESULTS” describes the results and provides a 
discussion of prediction accuracy. The final section summarizes our findings.

2. MATERIALS AND METHODS
2.1. Sample collection
All “Fuji” apple fruits were produced from Luochuan County in Shaanxi Province, which is regarded as a 
renowned prime area for apple-producing and cultivar breeding region on the Loess Plateau of China. 
Apple samples were collected from six different cultivations, as detailed in Table 1. All these samples were 
bagging-free apples. To preserve good discrepancies and stable genomics properties among various apple 
cultivars, 300 samples were randomly gathered from modern orchards. These samples were carefully 
selected to be free from any surface defects and damage. The samples were stored in an environment where 
the temperature was regulated at 4 ℃ and relative humidity was maintained at 90% until genomic analysis 
was conducted. This storage protocol was implemented to ensure the integrity and stability of the samples’ 
genomic material, ensuring the reliability of subsequent research findings.

2.2. Electrical parameters measurement
Before starting the analysis of the genomic properties of the apples, it is necessary to ensure that all samples 
are placed outside of storage at room temperature for more than twelve hours but within twenty-four hours. 
This will help to maintain the temperature balance between the apples and the room, preventing other 
biochemical reactions from occurring. The electrical characteristics of each apple were then measured in a 
non-destructive manner using a GW Instek LCR-8205 high-frequency LCR meter [inductance (L), 
capacitance (C), and resistance (R); GW Instek Corp., Taiwan, China]. A total of 135 electrical parameters 
of each apple are presented in Table 2, including 15 electrical parameters, such as impedance Z, phase angle 
θ, quality factor Q, and others, measured at nine frequencies spanning the range of 0.158 to 3,980 kHz.

As illustrated in Figure 2, the measurement process was conducted as follows. The apple designated for 
measurement was positioned with its maximum cross-section placed between two parallel electrode plates 
in a manual shielding box. This configuration ensured attainment of the maximum effective contact area 
between the apple and the two parallel electrode plates, allowing the apple to function as a dielectric 
medium for capacitance generation between the electrode plates. The LCR-8205 LCR meter was utilized to 
measure each electrical parameter at a specific frequency for every individual apple, with each measurement 
repeated three times. Concurrently, all the measured data were transmitted in real-time to a computer that 
was connected to the LCR-8205 meter via USB cables. For each apple, the final measurement value of every 
electrical characteristic parameter was derived by calculating the mean of three electrical parameters 
corresponding to a single frequency. Before conducting each dielectric measurement, the LCR-8205 meter 
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Table 1. Apple specimens under six different cultivations

Subgroup index Cultivations Samples

1 Bagging-free apples without spraying ecological film agent 93

2 Bagged apples with spraying ecological agent 57

3 Bagging-free apples with spraying ecological film agent 48

4 Bagging-free apples with spraying oligosaccharins 22

5 Apples planting with potash fertilizer 60

6 Apples with inter-row gramineous grasses in orchard 20

In total 300

Table 2. Description of electrical parameters

Electrical parameter Meaning Unit

Z Impedance Ohm (Ω)

DEG Phase angle Degree (°)

Ls Series inductance

Lp Parallel inductance

Henry (H)

Cs Series capacitance

Cp Parallel capacitance

Farad (F)

Rs Series resistance

Rp Parallel resistance

R Resistance

X Reactance

Ohm (Ω)

Y Admittance

G Conductance

B Susceptance

Siemens (S)

Q Quality factor -

D Dissipation factor -

Figure 2. Electrical parameter measurement principle.

must undergo calibration following the procedures outlined in the user guide for opening and shorting 
circuit operations to ensure accuracy. However, given that the diameter of the samples ranged from 65 to 70 
millimeters and their shapes and sizes were almost uniform, it can be postulated that neither the shape nor 
the size of the samples influence the outcomes of the experimental electrode potential during the 
measurement of the electrical parameters.
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2.3. SSC/TAC and firmness measurement
During the process of collecting electrical characteristics of apples, it is important to promptly detect and 
analyze crucial physical and biochemical parameters such as SSC, TAC, the ratio of SSC/TAC and firmness. 
For the analysis of SSC and TAC of apples, a special sugar and acidity meter, ATAGO PAL-BX/ACID, was 
employed. Meanwhile, apple firmness was measured using food testing texture analysis instruments, 
specifically the FTC TMS-Pro (manufactured by Food Technology Corp. Ltd., U.S.A.) equipped with a five-
millimeter-diameter probe. As with the previous procedures, each apple was analyzed three times, and the 
final value was determined by averaging the results. It is essential that the non-destructive detection of 
electrical characteristics be conducted before the analysis of SSC/TAC and firmness, because the physical 
and biochemical parameter analysis requires that almost the entire apple be destroyed and unusable.

2.4. Prediction model for physicochemical properties
2.4.1. Feature extraction of electrical parameters
Multicollinearity frequently emerges as an issue when using the collected electrical parameters to formulate 
a prediction model. Implementing effective feature extraction and selection strategies can mitigate the 
complexity of multiple analyses, enhance model robustness, and improve overall performance. Here, 
PCA[36,53]and MAE[50] were selected to extract effective feature information from electrical parameters, with 
the aim of predicting the SSC/TAC ratio and firmness of apples. PCA creates linear combinations of the 
original variables and can be utilized for both dimensionality reduction and data visualization. By 
decreasing the number of variables, PCA can effectively compress the data while preserving crucial 
information. It transforms a dataset into a new set of variables such that these components are chosen to 
capture the maximum variance in the data. Specifically, the first principal component accounts for the 
greatest possible variance, and each subsequent component accounts for the largest remaining variance.

MAE is a nonlinear feature extraction approach that consists of an encoder and a decoder. It compresses the 
input data into a low-dimensional representation (encoding) and subsequently reconstructs it back into the 
original data (decoding). This structure enables it to proficiently capture the intrinsic structure and 
nonlinear relationships within the data. MAE can automatically extract meaningful feature combinations 
and hierarchies from high-dimensional data, reducing dimensionality complexity while retaining essential 
information. Consequently, MAE proves to be especially well-suited for processing high-dimensional and 
nonlinear data. The schematic structure of MAE is illustrated in Figure 3.

The encoder was used to derive the hidden layer output h, as given by

where f ( ) was referred to as the activation function. The rectified linear unit (ReLU) function is chosen; W 
represented the weight matrix of the encoder; be denoted the bias of the input; and X represents the input 
matrix comprising a total of 135 electrical parameters corresponding to each apple, which were adopted for 
the MAE analysis.

The decoded value is X, with the decoding process as

where W was the weight matrix of the decoder, set W = WT; bd was the bias in the output layer; and X 
obtained herein was the reconstruction of the original data.

(1)

(2)
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Figure 3. The structure of MAE. MAE: Multilayer autoencoder.

The reconstruction error, Loss, is expressed as

where s was the number of samples, Xi was the original input data, and Xi was the reconstruction of the 
original data.

The determination of the number of hidden layers relied on calculating the exponent of the base of two, 
where the value fell between the number of input variables and the number of features to be extracted. The 
number of hidden layers was fine-tuned based on the number of features obtained. In this case, there are 
135 input variables and 20 features to be extracted. The encoder was configured with three hidden layers 
(135 - 128 - 64 - 32 - 20), while the decoder mirrored the encoder’s structure symmetrically (20 - 32 - 64 - 
128 - 135). The exponents of the base of two, lying within the range defined by the number of input 
variables and the number of features, were 32, 64, or 128.

2.4.2. Regression model
MLP is a feedforward ANN that constructs intricate nonlinear models by combining multiple elementary 
artificial neurons. When applied to diverse data tasks, MLP exhibits outstanding performance and 
adaptability, particularly in scenarios involving small samples, nonlinearity, and high-dimensional data. The 
multilayered structure of the MLP, in conjunction with the implementation of activation functions, 
facilitates the network’s capacity for profound abstraction and integration of input data. This ability to 
collect key information from data, enhance predictive accuracy and stability in scenarios with limited data, 
and learn and simulate complex data relationships leads to accurate predictions and analysis. Moreover, the 
training process of MLP can proficiently optimize weights via backpropagation algorithms so as to align 
with the characteristics of high-dimensional data. Algorithm 1 describes the detailed steps of the MAE-MLP 
model, including the training process of MAE for feature extraction and the training process of MLP for 
regression prediction.

(3)
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Algorithm 1.
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To validate the prediction accuracy, several performance evaluation indicators, such as the R2 and the root 
mean square error (RMSE) were used. These indicators consisted of the RMSE of the calibration set 
(RMSEC), the R2 of the calibration set (Rc

2), the RMSE of the prediction set (RMSEP) and the R2 of the 
prediction set (Rp

2). A well-fitted model would typically exhibit an R2 value approaching 1, while a smaller 
RMSE would signify stronger predictive capabilities. Additionally, it is of utmost importance to minimize 
the number of input variables to the greatest extent possible.

3. RESULTS
3.1. Experiment parameters configuration
To establish a prediction model elucidating the relationship between electrical parameters and SSC/TAC as 
well as firmness, three conventional regression methods were adopted: PLSR, SVR, and MLP. Each of these 
methods respectively utilized both FFS, which denotes the values of electrical parameters gauged at all 
frequency points, and the outcomes of feature extraction on electrical parameters as inputs. Concurrently, a 
comparative analysis was conducted on the prediction results.

The MAE model was trained using ReLU serving as the activation function. During the training process, a 
learning rate of 0.01 was set, and the model underwent 100 iterations, with a batch size of 5 for each batch. 
Adam was used as the optimizer to fine-tune this model. To prevent overfitting, L1 and L2 regularization 
operations were incorporated. To achieve the highest possible accuracy for the regression model, 10-fold 
cross-validation to fine-tune hyperparameters was employed. The ultimate objective was to identify the 
optimal hyperparameter combination required for the algorithm to achieve peak performance. In the 
process of predicting SSC/TAC, SVR was employed, utilizing the radial basis function (RBF) kernel to 
project the original data into a higher-dimensional space. The parameters were calibrated as follows: γ was 
set to 0.01 and the regularization parameter C was fixed to 5. Meanwhile, the hidden layer nodes in MLP 
model were configured as 60 and 30, respectively, employing the ReLU as activation function and mean 
squared error (MSE) as the loss function. In the Adam optimizer, an initial learning rate was set to 0.001 
and a maximum iteration limit of 500. For the firmness prediction, the RBF kernel was again employed in 
SVR. Here, γ was adjusted to 0.001 and the regularization parameter C was held constant at 10. For the MLP 
model, its hidden layer nodes were configured as 40 and 29, respectively. All remaining parameters were 
consistent with the settings used in the previously described SSC/TAC prediction task.

3.2. Analysis of physiochemistry properties and datasets
The phenotypic characteristics of apple varieties, such as surface color, size, single fruit weight, shape index 
and maturity, exhibit substantial variability depending on the cultivation method. Table 3 shows the specific 
physicochemical properties of all samples in each genomics group, with noticeable disparities in the 
standard deviations of SSC/TAC. Noticeable fluctuations were observed in the minimum, maximum, mean 
values, standard deviation of SSC/TAC, and firmness. As shown in Table 3 for SSC/TAC of apples, the 
variation range between the minimum and maximum values was extensive. The standard deviations 
manifested a random, discrete, and irregular pattern, with mean values exceeding the minimum by a factor 
of two or more. For instance, Subgroup one had maximum and minimum values of 89.55 and 8.27 for SSC/
TAC, respectively. Subgroup five exhibited a maximum standard deviation of 19.77, whereas Subgroup two 
had a minimum standard deviation of 5.87. Regarding the firmness of the apples, significant differences 
were also observed across the different subgroups. Subgroup one recorded a maximum value of 13.42 and a 
minimum value of 6.63. The standard deviation varied considerably as well, with Subgroup one exhibiting a 
maximum standard deviation of 1.22 and Subgroup four showing a minimum standard deviation of 0.73. 
These results indicate the necessity for a nonlinear analysis method to accommodate the extensive diversity 
in SSC/TAC and firmness across different cultivations, as the existing linear approaches might not 
adequately capture such complex variations.
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Table 3. SSC in subgroup samples

Physiochemistry indicator Subgroup index Minimum Maximum Mean value Standard deviation

1 8.27 89.55 26.02 11.96

2 9.39 35.15 18.28 5.87

3 17.11 76.22 33.47 12.59

4 10.96 57.64 31.25 12.81

5 13.56 82.60 33.50 19.77

SSC/TAC, %

6 12.23 58.80 21.58 10.15

1 6.63 13.42 10.08 1.22

2 7.98 12.14 10.34 0.93

3 8.74 12.93 10.09 0.86

4 9.45 12.02 10.74 0.73

5 6.83 11.49 8.33 0.79

Firmness, N

6 7.72 11.19 8.64 0.84

SSC: Soluble solids content; TAC: titratable acid content.

Electrical parameter measurement represents a non-destructive method for scrutinizing the effect of 
electrolytes on apples. Nevertheless, given the subtlety of this influence, it proves arduous to directly 
ascertain various physicochemical properties within the apple, such as SSC, TAC, and firmness. 
Additionally, electrical parameters gauged at a solitary frequency point fail to exhibit a direct and robust 
correlation when predicting the content of physicochemical properties in apples. The frequency range of 
electrical parameters was determined to be between 158 Hz and 3.98 MHz[54]. Table 2 showcases various 
electrical parameters, each endowed with a distinct meaning and corresponding dimensional unit. Despite 
the seemingly homogeneous initial distribution, there are significant dimensional variations among the 
parameters. In experiments, the magnitude of the data exerts a substantial influence on model training. 
Insufficient data volume might lead to certain data subsets being overlooked, thereby resulting in the 
omission of important information. Therefore, it is essential to subject all sampled data to a preprocessing 
method that ensures the retention of the original data information within the samples.

To accurately predict apple physicochemical properties (SSC/TAC and firmness) using electrical 
parameters, 300 apple samples were employed, which were randomly partitioned into two subsets: a 
calibration set comprising 255 samples and a prediction set consisting of 45 samples. The calibration set was 
dedicated to training the prediction model, whereas the prediction set was used to validate the accuracy of 
the predictions. Table 4 presents the random sample set and the range of values for the physicochemical 
indices. The calibration samples cover the prediction set well. The range of SSC/TAC values spanned from 
8.27 to 89.55, and the range of firmness values extended from 6.63 to 13.42.

3.3. Preprocessing of electrical parameters and correlation analysis
To improve prediction performance regarding SSC/TAC and firmness, it is necessary to first remove 
outliers from each group of electrical parameters. Outliers, singular points, or redundant variables cannot 
fully represent the genuine variables among the electrical parameters. To ascertain the singular value of each 
electrical parameter at nine distinct frequencies, a statistical representation in the form of a box-whisker 
plot was used. This method calculates the first and third quartiles and identifies any outlier points, which 
are then replaced with the median. To eliminate the influence of different dimensions of these parameters 
on each apple sample, standardization procedures were applied.
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Table 4. The results of dataset partitioning

Physiochemical indicator Sample set Sample sizes Range Mean ± Std (%)

Calibration set 255 8.27~89.55 27.74 ± 14.52SSC/TAC, %

Prediction set 45 12.23~68.77 24.95 ± 12.66

Calibration set 255 6.63~13.42 9.95 ± 1.20Firmness, N

Prediction set 45 7.10~11.49 8.51 ± 0.96

Std: Standard deviation; SSC: soluble solids content; TAC: titratable acid content.

To ensure the reliability of the electrical parameters of the samples, we employed box-whisker plots to 
remove any outliers, followed by normalization. After removing any abnormal values, the Kolmogorov-
Smirnov test (K-S test)[55] was employed to determine the normality between the electrical parameters and 
physiochemistry indicators. If the P-value exceeded the significance level (P-value ≥ 0.05), it indicated that 
the electrical parameters generally followed a normal distribution. As shown in Figure 4, only 57 electrical 
parameters satisfied normal distribution. As a result, the data did not meet the prerequisites for Pearson’s 
bivariate correlation analysis. Therefore, only Spearman correlation analysis[56] can be used to determine the 
correlation between electrical parameters and SSC/TAC as well as firmness. Figure 5 shows that there was 
no strong linear correlation between the electrical parameters and either SSC/TAC or firmness, with 
maximum correlation values reaching merely 0.34 and 0.33, respectively.

Through the comprehensive analysis of physicochemical properties and datasets, this paper pinpoints 
several inherent challenges, such as small sample size, high parameter dimensions, and pronounced 
nonlinearity. Therefore, given these circumstances, it becomes imperative to employ dimensionality 
reduction that is capable of preserving the original data information while also conducting nonlinear feature 
extraction. Additionally, the construction of nonlinear regression models is essential, as these models can 
yield favorable predictive outcomes even when dealing with small sample data. In light of this, MAE for 
feature extraction and MLP for regression prediction were adopted and analyzed.

3.4. Prediction of SSC/TAC and firmness
3.4.1. Feature of electrical parameters extracted by PCA and MAE
The optimally extracted features served as inputs for regression methods to fine-tune the parameters and 
optimize the prediction of physicochemical properties. A comparison was drawn between two feature 
extraction algorithms: the linear PCA and nonlinear MAE. Here, 40 main features were selected using PCA, 
attaining a cumulative contribution rate of 98.9%.

The RMSEC for the regression methods was calculated using MAE under diverse numbers of characteristic 
variables to determine the number of inputs for the prediction model. To avoid underfitting or overfitting 
problems in modeling, a full cross-validation strategy was applied to select the appropriate number of 
features. Figure 6 displayed the changes in RMSEC as the number of features increases in the prediction of 
SSC/TAC and firmness. MAE was combined with different regression algorithms for each prediction. 
Figure 6 showed that the number of features required for prediction varied, and that the RMSEC also varied 
across different fusion models. Notably, there was a significant difference between the predictions of the 
SSC/TAC.

Figure 6A and B presented the variations in prediction results using the MLP as the number of features 
increased. The RMSE decreased as the number of features increased, with a significant drop in prediction 
error for SSC/TAC and firmness when the number of features reached 40. However, if the number of 
features exceeded 40, the prediction error stabilized. Therefore, the final inputs for the prediction model 
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Figure 4. The normalization results of K-S test. K-S test: Kolmogorov-Smirnov test.

Figure 5. The results of correlation analysis.

were selected with fewer features and lower RMSE. Finally, the number of features for SSC/TAC prediction 
was determined to be 46, and for firmness prediction, it was determined to be 67.

Figure 6C and D illustrated the correlation between prediction error and the number of features using SVR. 
The prediction error of SSC/TAC initially decreased and then increased, reaching its minimum when the 
number of features ranged from 50 to 60. If the number was greater than 65, the prediction error of firmness 
was at a lower level. The minimum error recorded was approximately 2.46. The SSC/TAC and firmness 
prediction models had 57 and 68 input features, respectively.
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Figure 6. RMSE variation curve of MAE combined with different regression models. The extracted numbers of features were indicated by 
the red triangle in the figure. RMSE: Root mean square error; MAE: multilayer autoencoder.

Figure 6E and F showed the influence of increasing the number of features on the prediction error using the 
PLSR model. The change tendency presented as V-shaped, with the RMSE of both SSC/TAC and firmness 
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changing more dramatically than the other two models. The range of RMSE variation was relatively small. 
The study found that the prediction error of SSC/TAC was the smallest; the prediction error for SSC/TAC 
reached its minimum when the number of features ranged from 80 to 100. Similarly, for firmness, the 
prediction error was the lowest when the feature ranged between 40 and 60. Therefore, the model 
necessitated 91 input features for optimal prediction of SSC/TAC and 49 input features for firmness.

The final number of input features for different regression models was shown in Table 5. The number of 
features varied depending on the regression model used alongside the MAE. Nevertheless, the MAE enables 
the selection of more features compared to PCA. In the case of predicting the SSC/TAC of apples, the MLP 
based on MAE (MAE-MLP) selected the fewest features but still had six more eigenvalues than the PCA. 
MAE-PLSR selected the most features, with a total of 45 extractions, surpassing the number chosen by 
MAE-MLP. MAE-SVR selected eleven features, which was more than MAE-MLP. Meanwhile, regarding the 
firmness of the apple, the feature numbers selected by MAE-MLP and MAE-SVR were relatively close, with 
a difference of merely one. Significantly, both models selected significantly more features than PCA. 
However, the MAE-PLSR model selected the fewest features, with 18 and 19 fewer than MAE-MLP and 
MAE-SVR, respectively.

3.4.2. Prediction results
3.4.2.1. PLSR model 
Based on dialectical FFS, PCA, and MAE, the PLSR prediction models of SSC/TAC and firmness were 
constructed. The results are shown in Table 6. Generally, in terms of predicting SSC/TAC and firmness, the 
feature selection of PLSR models based on PCA and MAE was comparable to that of the models based on 
FFS. Among them, the PLSR model based on MAE performed the best, followed by PCA, and the FFS-
based was the worst. For the prediction of SSC/TAC, R2 values were 0.57, 0.60, and 0.69 in sequence, and the 
RMSE of predictions was 5.33, 4.63, and 4.05, respectively. For firmness prediction, the PCA-PLSR and 
MAE-PLSR models had similar prediction performance with no significant difference between them. More 
specifically, during the feature extraction process, MAE managed to extract 49 data features, whereas PCA 
only extracted 40. Thus, the PCA-PLSR model is simpler and more effective than the MAE-PLSR model. 
For the prediction of SSC/TAC, the prediction performance of FFS-PLSR was the poorest (Rp

2 = 0.57, 
RMSEP = 5.33). In contrast, the performance of PCA-PLSR and MAE-PLSR was essentially the same, with a 
discrepancy of only 0.07 and 0.09 in Rc

2 and Rp
2, respectively. The employment of MAE resulted in a 

significantly higher number of features compared to PCA-PLSR, and the RMSE of MAE-PLSR was reduced 
by 0.69 and 0.58 on the calibration and prediction sets, respectively. Although both MAE-PLSR and PCA-
PLSR models were used to predict apple’s SSC/TAC and firmness, the former showed slightly better 
performance than the latter. Thus, the outcomes imply that the application of MAE did not significantly 
improve the prediction performance when employing the PLSR.

3.4.2.2. SVR model 
The prediction results of the SVR model were shown in Table 7. Its predictive performance was similar to 
that of the PLSR prediction model. The SVR model based on MAE demonstrated the best performance, 
followed by the PCA-SVR model, while the FFS-SVR model performed the worst. The data from Table 7 
indicated that the prediction performance for firmness was better than that for SSC/TAC. Regarding 
firmness, the prediction performance of PCA-SVR and MAE-SVR did not change much. Compared to FFS-
SVR in the calibration set, the R2 of PCA-SVR and MAE-SVR was increased by 0.03 and 0.04, respectively, 
and RMSEC was decreased by 0.19 and 0.32. In the prediction set, the R2 increased by 0.07 and 0.10, 
respectively, and RMSEP was decreased by 0.25 and 0.28. For the prediction of SSC/TAC, the prediction 
performance of the MAE-SVR model was significantly improved compared to the FFS-SVR model. The 
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Table 5. The results of feature quantity selection

The number of features
Model

SSC/TAC Firmness

MAE-MLP 46 67

MAE-SVR 57 68

MAE-PLSR 91 49

SSC: Soluble solids content; TAC: titratable acid content; MAE: multilayer autoencoder; MLP: multilayer perceptron; SVR: support vector 
regression; PLSR: partial least squares regression.

Table 6. The results of PLSR model prediction

Model Rc
2 RMSEC Rp

2 RMSEP

FFS 0.64 1.14 0.59 1.29

PCA 0.67 1.12 0.61 1.20

Firmness

MAE 0.71 1.04 0.63 1.13

FFS 0.61 4.62 0.57 5.33

PCA 0.65 3.89 0.60 4.63

SSC/TAC

MAE 0.72 3.20 0.69 4.05

PLSR: Partial least squares regression; Rc
2: R2 of the calibration set; RMSEC: RMSE of the calibration set; Rp

2: R2 of the prediction set; RMSEP: RMSE 
of the prediction set; FFS: full frequency spectrum; PCA: principal component analysis; SSC: soluble solids content; TAC: titratable acid content; 
MAE: multilayer autoencoder.

Table 7. The results of SVR model prediction

Model Rc
2 RMSEC Rp

2 RMSEP

FFS 0.74 0.99 0.70 1.06

PCA 0.79 0.78 0.77 0.81

Firmness

MAE 0.86 0.67 0.80 0.78

FFS 0.72 3.18 0.70 3.53

PCA 0.76 2.82 0.72 3.19

SSC/TAC

MAE 0.83 2.10 0.81 2.23

SVR: Support vector regression; Rc
2: R2 of the calibration set; RMSEC: RMSE of the calibration set; Rp

2: R2 of the prediction set; RMSEP: RMSE of the 
prediction set; FFS: full frequency spectrum; PCA: principal component analysis; MAE: multilayer autoencoder; SSC: soluble solids content; TAC: 
titratable acid content.

model’s prediction error was reduced by 1.08 and the R2 was increased by 0.11 on the calibration set. 
Similarly, on the prediction set, the RMSEP of the model was reduced by 1.30 and the R2 was increased by 
0.11. Additionally, compared to PCA-SVR, RMSEP of the model was reduced by 0.96 and the Rp

2 was 
increased by 0.09. The MAE-SVR model exhibited only a marginally superior calibration performance 
compared to PCA-SVR when predicting firmness or SSC/TAC. Its prediction performance achieved 
significant improvement. This indicates that, when employing the SVR model to predict SSC/TAC, the 
MAE feature extraction method was more efficacious than PCA and FFS.

3.4.2.3. MLP model 
Table 8 showed the results of using MLP models to predict SSC/TAC and firmness, which follow a similar 
trend to the PLSR and SVR models. The prediction results for firmness of apples did not change 
significantly for the FFS-MLP and the MLP based on PCA (PCA-MLP) models, with the prediction error of 
PCA-MLP being similar to that of FFS-MLP. In particular, the prediction errors of MAE-MLP on the 
calibration and prediction sets were diminished significantly. On the calibration set, MAE-MLP had a 
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Table 8. The results of MLP model prediction

Model Rc
2 RMSEC Rp

2 RMSEP

FFS 0.80 0.78 0.74 0.89

PCA 0.83 0.70 0.76 0.83

Firmness

MAE 0.92 0.61 0.88 0.66

FFS 0.78 2.79 0.71 3.23

PCA 0.82 2.09 0.78 2.77

SSC/TAC

MAE 0.85 1.62 0.82 2.08

MLP: Multilayer perceptron; Rc
2: R2 of the calibration set; RMSEC: RMSE of the calibration set; Rp

2: R2 of the prediction set; RMSEP: RMSE of the 
prediction set; FFS: full frequency spectrum; PCA: principal component analysis; MAE: multilayer autoencoder; SSC: soluble solids content; TAC: 
titratable acid content.

higher Rc
2 value of 0.92 and a lower RMSEC value of 0.61 compared to PCA-MLP, which had an Rc

2 value of 
0.83 and a RMSEC value of 0.70. Similarly, on the prediction set, MAE-MLP had a higher Rp

2 value of 0.88 
and lower RMSEP value of 0.66 than PCA-MLP, which had an Rp

2 value of 0.76 and an RMSEP value of 
0.83. When compared with FFS-MLP, the R2 of MAE-MLP on the prediction set increased by 18.9 %, and 
the RMSE of prediction decreased by 25.8%. In the case of predicting SSC/TAC of apple, MAE-MLP 
outperformed PCA-MLP in terms of the calibration performance (Rc

2 = 0.85, RMSEC = 1.62) and the 
prediction performance (Rp

2 = 0.82, RMSEP = 2.08) compared with MAE. The Rc
2 and Rp

2 values increased 
by 0.03 and 0.04, respectively, while the RMSE of the calibration and the prediction sets decreased by 0.47 
and 0.69. Among three models, the FFS-MLP model had the poorest prediction performance for apple’s 
SSC/TAC.

The final results indicated that the fusion of the nonlinear feature extraction with MAE-based and MLP had 
better prediction performance in the prediction of apple’s SSC/TAC and firmness. Among the 
aforementioned models, MAE-MLP achieved the best prediction results when predicting both SSC/TAC 
and firmness, as illustrated in Figures 7 and 8.

4. DISCUSSIONS
In firmness prediction, a comparative analysis of model performance revealed that the FFS prediction 
model, specifically FFS-MLP, outperformed the FFS-SVR and FFS-PLSR models. Among these models, 
FFS-PLSR exhibited the poorest prediction performance. Among the models based on PCA, PCA-MLP 
demonstrated the best performance when compared with PCA-PLSR and PCA-SVR. The MAE was used to 
extract the characteristics of the sample data and subsequently construct the prediction model. It 
outperformed other prediction models in terms of performance. MAE-MLP exhibited the highest R2 in both 
the calibration and prediction sets, along with lower RMSEC and RMSEP. The predicted R2 reached up to 
0.88, and the predicted RMSE was 0.66.

In predicting SSC/TAC for apples, the FFS-MLP model demonstrated the best performance when utilizing 
FFS data as input to the regression model. It was followed by the FFS-SVR model, while the FFS-PLSR 
model delivered the poorest. Among the models based on PCA, the PCA-MLP model outperformed the 
PCA-SVR and PCA-PLSR models. Additionally, the models based on MAE had similar prediction results.

Upon analyzing the overall prediction results, it was evident that MLP regression method had a pronounced 
advantage. The primary features obtained through the PCA method showed negligible impact on the 
models’ prediction performance. In contrast, employing the MAE-based prediction model resulted in a 
substantial reduction in prediction errors. To illustrate this point, consider the MLP model. In the 
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Figure 7. Optimal prediction results of SSC/TAC. SSC: Soluble solids content; TAC: titratable acid content.

calibration set, compared to the PCA-MLP and FFS-MLP models, the MAE-MLP model achieved a 
reduction in prediction error of 0.47. In the prediction set, the reduction in prediction error was 0.69 and 
1.15. The main rationale for this is the fact that the FFS-based models retain all the original information of 
the electrical spectral data, which increases model complexity and introduces a large amount of redundant 
information. Meanwhile, the predictive results also reflect that the MAE method can effectively extract the 
original information of electrical parameters, improve prediction performance, and simplify the model 
complexity to some extent.

In summary, the electrical spectrum parameters were used to determine the SSC/TAC and firmness content 
of apple fruit. To develop predictions for physical-chemical indices, PLSR, SVR, and MLP models were 
employed using FFS, PCA, and MAE. Nonlinear models were found to surpass linear ones in performance. 
MAE emerged as an effective multivariate data analysis method, capable of extract relevant features between 
multiple variables and achieving good performance on various nonlinear regression models. It can be 
effectively used to extract and enhance nonlinear dynamic features of electrical parameters within apple 
fruit. The experimental results signified that the collection of electrical parameters can serve as an effective 
means to predict SSC/TAC and firmness. In the extraction of apple electrical parameter features, MAE 
showed optimal performance.

5. CONCLUSIONS
This paper has proposed a novel MAE and MLP model (MAE-MLP) to predict SSC, TAC and firmness 
within electrical parameters in a non-destructive way, which are the three most paramount parameters that 
directly reflect the inner quality of apples. The diverse prediction models of apple SSC/TAC and firmness 
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Figure 8. Optimal prediction results of firmness.

were put forward, which were based on the FFS, PCA and MAE methods. Three regression models were 
constructed and analyzed, and the prediction results were shown in Tables 6-8. The results revealed that all 
prediction models under the FFS, PCA, and MAE methods can be applied, with the MLP modeling method 
performing better overall than the other methods. Regardless of the regression model employed, the best 
prediction performance was based on MAE, followed by PCA, with FFS performing the poorest. The 
cumulative contribution rate of the first 40 principal components extracted from all variables by the PCA 
method was close to 98.9%, which reflected the original information of the electrical parameters relatively 
comprehensively. However, all models based on this method had higher prediction errors compared to 
MAE. Although MAE extracted different features for modeling from all electrical parameters and had a 
greater number of features than the PCA method, the model had a lower RMSE. Among them, MAE-MLP 
had the best performance in predicting firmness (Rc

2 = 0.92, RMSEC = 0.61, Rp
2 = 0.88, RMSEP = 0.66) and 

also had the best effect in predicting SSC/TAC (Rc
2 = 0.85, RMSEC = 1.62, Rp

2 = 0.82, RMSEP = 2.08). 
Therefore, MAE demonstrated effective feature extraction for nonlinear parameters and wide applicability 
in predicting the internal quality parameters of fruits and vegetables. Additionally, it emphasized the 
potential of electric spectrum parameters for further research on predicting physical and chemical criteria, 
providing new theories and methods for future studies on non-destructive detection of apples. The 
proposed approach exhibited promise in developing prediction models for determining SSC/TAC and 
firmness of apples. In future research, it may be worthwhile to consider, optimize, and implement various 
nonlinear feature extraction methods to predict SSC/TAC and firmness.
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