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Abstract
This paper uses a bioinspired neurodynamic (BIN) approach to investigate the formation control problem of leader-
follower nonholonomic multiagent systems. In scenarios where not all followers can receive the leader’s state, a
distributed adaptive estimator is presented to estimate the leader’s state. The distributed formation controller, de-
signed using the backstepping technique, utilizes the estimated leader states and neighboring formation tracking
error. To address the issue of impractical velocity jumps, a BIN-based approach is integrated into the backstepping
controller. Furthermore, considering the practical applications of nonholonomic multiagent systems, a backstepping
controller with a saturation velocity constraint is proposed. Rigorous proofs are provided. Finally, the effectiveness
of the presented formation control law is illustrated through numerical simulations.

Keywords: Leader-follower formation control, distributed estimation, nonholonomicmultiagent systems, bioinspired
neurodynamics, constrained control

1. INTRODUCTION
In recent years, the distributed cooperative control of multiagent systems has received extensive attention from
the control engineering research community due to its potential in various practical applications [1–3]. Exam-
ples of cooperative of multiagent systems include consensus [4], flocking [5], synchronization [6], rendezvous [7],
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and formation [8]. Formation control, as an active research topic in this field, finds extensive applications in
traffic control, logistics transportation, distributed prediction, monitoring, and diagnosis [9–14]. The main goal
of multiagent formation control is to coordinate and control multiple agents to reach and maintain a specific
formation by designing a controller.

Most of the existing research papers on formation control are applied to solve the kinematic modeling of a
single integrator or double integrator. However, the multiagent systems with nonholonomic constraints in
formation control are a more realistic model. Due to the characteristics of the nonholonomic motion model,
the agent cannot freely rotate or slide, which makes our design more challenging. Among the various forma-
tion control laws andmethods, the leader-follower method has gained popularity due to its simplicity and ease
of control. In [15], the study focuses on the leader-follower flexible formation controller without considering
the global pose measurement information for a class of nonholonomic mobile robots. Considering the various
constraints existing in practical applications [16], studied the problem of formation constraints, such as feasibil-
ity, communication, and performance constraints for nonholonomic systems in the leader-follower framework.
In [17], an embedded control technique is proposed to split the formation controller task into two parts, which
improves the generality and scalability of the controller. However, common to all the aforementioned litera-
ture is the context in which all followers have knowledge of the state information of the leader. Considering
the packet loss in communication and the limited bandwidth, it seems more reasonable to assume that just a
portion of neighboring robots can receive the leader’s state. To address this issue [18], proposed a linear pro-
tocol to estimate the position and orientation of the Leader and used a sliding mode approach to estimate
the linear velocity of the leader. However, designed an adaptive edge-event-triggered observer to estimate the
matrix and state of the leader [19]. In [18], it is assumed that the upper bound of the linear velocity of the Leader
is known, which is not easy in practical applications. Therefore, it is necessary to study a practical distributed
estimator for estimating the state information of the leader.

The literature lists various tracking control methods for multiagent systems, including neural network and
fuzzy system control [20,21], robust control [22], iterative learning control [23], sliding mode control [24], and back-
stepping control [25–27]. Among these methods, the backstepping approach is often preferred. The utilization
of the backstepping technique not only simplifies the tracking controller but also ensures system stability by
leveraging the Lyapunov stability theory. For instance, [25] proposed a hybrid backstepping control strategy
based on neural networks for nonholonomic systems with unknown wheel slips and external disturbances.
Similarly, in [26], the study presented a backstepping control strategy based on the saturation adaptive law for
uncertain nonlinear systems with external dynamic disturbances. However, traditional backstepping-based
controllers may experience unrealistic velocity jumps when encountering sudden changes in tracking errors,
causing the robot to start at a very high-velocity value. To address this, a bioinspired neurodynamic (BIN)
approach developed from the Hodgkin and Huxley membrane equations was introduced in [28]. In [29], the
authors developed a BIN-based tracking controller for the nonholonomic mobile robot that generates steady
and continuous control signals. Similarly, presents a novel BIN approach to the formation control of under-
actuated systems under uncertain dynamics [30]. Recent research by ref [31] has investigated trajectory tracking
control for wheeled mobile robots using the BIN technique. Inspired by the problem of designing control
in biological models, this paper combines backstepping techniques with a neurodynamic model to design a
nonholonomic multiagent controller to solve the velocity jump problem.

In practice scenarios, the motors of nonholonomic multiagents are constrained by technical limitations, result-
ing in a saturation constraint on the velocity of the nonholonomic system. Large tracking errors can cause the
control input to exceed the system’s allowed speed range, leading to the nonholonomic multiagent sliding and
violating the nonholonomic constraint. In fact, a lot of ground vehicles and most aircraft are subject to this
physical constraint. Examples include fixed-wing drones and flying robots [32–34]. Therefore, investigating the
formation control issue of a group of nonholonomic multiagents under velocity limitations is crucial. Moti-
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vated by the above observations, this paper presents a distributed formation control approach that utilizes the
backstepping technique with BIN modeling for the formation control of leader-follower nonholonomic multi-
agents. The technical difficulties mainly stem from that: (1) A distributed estimator is designed to estimate the
leader’s velocity under the assumption that the desired velocity boundary is unknown; (2) Unrealistic velocity
jumps occur when using backstepping controllers to implement formation control problem; (3) The forma-
tion controller with velocity constraints is further investigated. The main contribution can be summarized as
follows:

1. A distributed observer is proposed to estimate the leader’s state. Unlike the approaches in references [34]

and [35] that assume the desired velocity has known boundaries during implementation and design, we
propose an adaptive estimator with dynamic control gain. This eliminates the need for assuming known
velocity bounds and enables the estimation of the leader’s linear velocities and leader’s angular velocities.
By incorporating this observer, the followers can estimate the velocity of the leader, which is essential for
formation control.

2. The proposed control strategy employs a bioinspired backstepping controller for a group of nonholonomic
mobile robots. This controller addresses the issue of impractical velocity jumps commonly encountered
in traditional backstepping-based controllers. By leveraging the BIN approach, which is derived from bio-
logical nervous systems, the control signals generated by the controller are continuous and smooth. This
ensures that the robots’ velocities do not experience abrupt changes, leading to better tracking performance
and improved stability. Additionally, the introduction of tracking errors of neighborhood formation en-
hances the effectiveness of the algorithm, enabling tighter formation control.

3. In practical scenarios, nonholonomic mobile robots often have velocity constraints due to motor limita-
tions. To account for this, a saturated velocity constrained controller is designed in the proposed strategy.
This controller prevents input saturation caused by velocity saturation, ensuring that the control inputs re-
main within the allowable velocity range of the robots. By considering the velocity constraints, the control
strategy ensures that the nonholonomic constraints are respected, preventing the robots from sliding and
maintaining their intended motion. In addition, compared with literature [34], our designed controller can
achieve the formation objective with a faster convergence rate while satisfying the same constraints.

The outline of this paper is presented as follows. In Section 2, the mathematical foundations and the formula-
tion of the problem are presented. Section 3 proposes the distributed estimator and error dynamics. Section
4 covers the BIN model and the design of formation control strategy. In Section 5, the case of saturated ve-
locity constraints is considered. Finally, Section 6 presents numerical simulation results to demonstrate the
effectiveness of the controller.

2. PRELIMINARIES AND PROBLEM STATEMENT
2.1 Algebraic graph theory
Let G = (V, E) denote undirected graph interactions among agents, whereV = {1, . . . , 𝑁} is the node set and
E ⊆ V ×V is the edge set. The edge between the node 𝑖, 𝑗 ∈ V is bidirectional. An edge ( 𝑗 , 𝑖) ∈ E denotes
that the information of node 𝑖 can be obtained by the node 𝑗 . Let A = [𝑎𝑖 𝑗 ]𝑛×𝑛 be the adjacency matrix as
defined as follows: 𝑎𝑖 𝑗 > 0 if ( 𝑗 , 𝑖) ∈ E; otherwise, 𝑎𝑖 𝑗 = 0. In this work, we assume that 𝑎𝑖𝑖 = 0 for all agents
𝑖. The set of neighbors of agents 𝑖 is denoted by N𝑖 := { 𝑗 ∈ V|(𝑖, 𝑗) ∈ E}. The Laplacian matrix L = [𝑙𝑖 𝑗 ] is
defined as 𝑙𝑖 𝑗 = −𝑎𝑖 𝑗 if 𝑗 ≠ 𝑖, and 𝑙𝑖 𝑗 =

∑𝑁
𝑗=1 𝑎𝑖 𝑗 if 𝑗 = 𝑖.

In this paper, the followers are represented by nodes {1, . . . , 𝑁}, and the leader is represented by the node 𝑟 .
Ḡ is an undirected augmented graph with V̄ = V ∪ {𝑟}. The interaction between each follower and leader
can be expressed as a diagonal matrix B = 𝑑𝑖𝑎𝑔(𝑏1, . . . , 𝑏𝑁 ) with 𝑏𝑖 = 1 if the leader is a neighbor of follower
𝑖, and otherwise 𝑏𝑖 = 0. Finally, define matrixH as

𝐻 = L + B. (1)
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Figure 1. Configuration of the nonholonomic mobile robot.

2.2 Problem Formulation
Amulti-robot system with 𝑁 +1 nonholonomic multiagents, where 𝑁 followers and one leader are considered.
A typical configuration of them is shown in Figure 1. For each follower, the kinematics can be expressed as

¤𝑥𝑖 = 𝑣𝑖 cos 𝜃𝑖 ,
¤𝑦𝑖 = 𝑣𝑖 sin 𝜃𝑖 ,
¤𝜃𝑖 = 𝜔𝑖 ,

(2)

where 𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖]T ∈ R2 and 𝜃𝑖 are the position of the center of mass and the orientation of each agent 𝑖,
respectively. 𝑣𝑖 ∈ R and 𝜔𝑖 ∈ R are the linear velocity and angular velocity of agents 𝑖, respectively, which also
are the control input. The leader’s kinematics is given as

¤𝑥𝑟 = 𝑣𝑟 cos 𝜃𝑟 ,
¤𝑦𝑟 = 𝑣𝑟 sin 𝜃𝑟 ,
¤𝜃𝑟 = 𝜔𝑟 ,

(3)

where 𝑝𝑟 = [𝑥𝑟 , 𝑦𝑟 ]T ∈ R2 is the position coordinates and 𝜃𝑟 is the orientation, respectively. 𝑣𝑟 ∈ R is the linear
velocity and 𝜔𝑟 ∈ R is the angular velocity.

The objective of the formation control is to develop a formation control law that ensures each follower main-
tains a specific position and orientation in relation to the leader. In this work, the desired relative position
of the agent 𝑖 with respect to the reference position 𝑝𝑟 is defined as Δ𝑖 = [Δ𝑖𝑥 ,Δ𝑖𝑦]T ∈ R2, and we expect all
follower agents to have the same orientation as the leader agent.

The formation control problem in this paper is then stated as follows.

Problem 1 Consider 𝑁 + 1 nonholonomic multiagents and the network topology Ḡ. For each follower 𝑖 in (2),
develop the control law (𝑣𝑖 , 𝜔𝑖) to align the orientation with the leader and hold the desired geometrical shape,
as follows:

lim
𝑡→∞

(𝑝𝑟 (𝑡) − 𝑝𝑖 (𝑡) + Δ𝑖) = 0, (4)

lim
𝑡→∞

(𝜃𝑟 (𝑡) − 𝜃𝑖 (𝑡)) = 0. (5)

http://dx.doi.org/10.20517/ir.2024.21


Zhao et al. Intell Robot 2024;4(4):339-62 I http://dx.doi.org/10.20517/ir.2024.21 Page 343

The following lemma and assumptions are used to address the proposed formation control problem.

Assumption 1The undirected augmented graph Ḡ has a spanning tree in which the root of the spanning tree
is the leader.

Remark 1 Given the aforementioned assumption, matrix 𝐻 is symmetric positive definite.

Assumption 2The desired velocity 𝑣𝑟 , 𝜔𝑟 and acceleration ¤𝑣𝑟 , ¤𝜔𝑟 are both bounded.

Considering that only a portion of robots can receive the leader’s state, an estimator will be developed to
estimate the leader’s states. To facilitate the estimator design analysis, we provide the technical lemma as
follows.

Lemma 1 (Nonsmooth Barbalat’s Lemma [36]) Assume that for all 𝑡 ≥ 𝑡0, there exists a compact setΩ such that
the Filippov solution of ¤𝑥 = 𝑓 (𝑥, 𝑡) always remains within it. If ¤̃𝑈 is an empty set, there is a regular function
of the change over time 𝑈 : Ω → R with 𝑣 ≤ 0 ∀𝑣 ∈ ¤̃𝑈 is ordinary. So in Ω, all trajectories will converge to a
fixed point 𝑠, where 𝑠 belongs to 𝑆 = {𝑥 ∈ Ω|0 ∈ ¤̃𝑈} closure.

3. ESTIMATION AND CONTROL DESIGN
This section first establishes the distributed estimator. Next, the error dynamics system is built, and the back-
stepping controller is presented to control the nonholonomic multiagents.

3.1 The proposed distributed estimator
The following distributed estimators of estimating the leader’s states are defined as

¤𝑥𝑖𝑟 = 𝑣𝑖𝑟 cos 𝜃𝑖𝑟 +
𝑛∑

𝑗=𝑁𝑖

𝑎𝑖 𝑗
(
𝑥 𝑗𝑟 − 𝑥𝑖𝑟

)
+ 𝑏𝑖 (𝑥𝑟 − 𝑥𝑖𝑟 ), (6a)

¤𝑦𝑖𝑟 = 𝑣𝑖𝑟 sin 𝜃𝑖𝑟 +
𝑛∑

𝑗=𝑁𝑖

𝑎𝑖 𝑗
(
𝑦 𝑗𝑟 − 𝑦𝑖𝑟

)
+ 𝑏𝑖 ( 𝑦̂𝑟 − 𝑦𝑖𝑟 ), (6b)

¤𝜃𝑖𝑟 = 𝜔𝑖𝑟 +
𝑛∑

𝑗=𝑁𝑖

𝑎𝑖 𝑗
(
𝜃 𝑗𝑟 − 𝜃𝑖𝑟

)
+ 𝑏𝑖

(
𝜃𝑟 − 𝜃𝑖𝑟

)
, (6c)

¤𝑣𝑖𝑟 =
(

𝑛∑
𝑗=𝑁𝑖

𝑎𝑖 𝑗
(
𝑣 𝑗𝑟 − 𝑣𝑖𝑟

)
+ 𝑏𝑖 (𝑣𝑟 − 𝑣𝑖𝑟 )

)
+

𝑛∑
𝑗=𝑁𝑖

𝑐𝑖 𝑗𝑎𝑖 𝑗 𝑠𝑖𝑔𝑛
(
𝑣 𝑗𝑟 − 𝑣𝑖𝑟

)
+ 𝑐𝑖𝑏𝑖𝑠𝑖𝑔𝑛 (𝑣̂𝑟 − 𝑣𝑖𝑟 ), (6d)

¤𝜔𝑖𝑟 =

(
𝑛∑

𝑗=𝑁𝑖

𝑎𝑖 𝑗
(
𝜔 𝑗𝑟 − 𝜔𝑖𝑟

)
+ 𝑏𝑖 (𝜔𝑟 − 𝜔𝑖𝑟 )

)
+

𝑛∑
𝑗=𝑁𝑖

𝑑𝑖 𝑗𝑎𝑖 𝑗 𝑠𝑖𝑔𝑛
(
𝜔 𝑗𝑟 − 𝜔𝑖𝑟

)
+ 𝑑𝑖𝑏𝑖𝑠𝑖𝑔𝑛 (𝜔̂𝑟 − 𝜔𝑖𝑟 ) . (6e)

The adaptive weights 𝑐𝑖 𝑗 , 𝑐𝑖 , 𝑑𝑖 𝑗 , 𝑑𝑖 are updated by

¤𝑐𝑖 𝑗 = 𝜎1


𝑣 𝑗𝑟 − 𝑣𝑖𝑟




1, ¤𝑐𝑖 = 𝜎1‖𝑣̂𝑟 − 𝑣𝑖𝑟 ‖1, (7)

¤𝑑𝑖 𝑗 = 𝜎2


𝜔 𝑗𝑟 − 𝜔𝑖𝑟




1,

¤𝑑𝑖 = 𝜎2‖𝜔̂𝑟 − 𝜔𝑖𝑟 ‖1, (8)

where 𝑥𝑖𝑟 , 𝑦𝑖𝑟 , 𝜃𝑖𝑟 , 𝑣𝑖𝑟 , 𝜔𝑖𝑟 are estimates of 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 , 𝜔𝑟 obtained by each robot 𝑖, and 𝑥𝑟 ≡ 𝑥𝑟 , 𝑦̂𝑟 ≡ 𝑦𝑟 ,
𝜃𝑟 ≡ 𝜃𝑟 , 𝑣̂𝑟 ≡ 𝑣𝑟 , 𝜔̂𝑟 ≡ 𝜔𝑟 . Additionally, 𝜎1, 𝜎2 are positive control gains.

Theorem 1 Consider nonholonomic multiagent systems (2). Assuming that Assumption 1 holds, by choosing
suitable control gains 𝜎1 and 𝜎2, the distributed estimator (6) is capable of asymptotically estimating the state
of the leader agent, including 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 , and 𝑤𝑟 .
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Proof. Define the estimate error of each agent as 𝑥 := 𝑥 − 𝑥𝑟1𝑁 , 𝑦̃ := 𝑦̂ − 𝑦𝑟1𝑁 , 𝜃 := 𝜃 − 𝜃𝑟1𝑁 , 𝑣̃ := 𝑣̂𝑟1𝑁 ,
𝜔̃ := 𝜔̂𝑟1𝑁 , where 𝑥 = (𝑥1𝑟 , . . . , 𝑥𝑁𝑟 )T, 𝑦̂ = (𝑦1𝑟 , . . . , 𝑦𝑁𝑟 )T, 𝜃 = (𝜃1𝑟 , . . . , 𝜃𝑁𝑟 )T, 𝑣̂ = (𝑣1𝑟 , . . . , 𝑣𝑁𝑟 )T, 𝜔̂ =
(𝜔1𝑟 , . . . , 𝜔𝑁𝑟 )T.

Then, rewrite (6) in the matrix-vector form, as given below

¤̂𝑥 = 𝑑𝑖𝑎𝑔
(
cos 𝜃

)
𝑣̂ − 𝐻𝑥, (9a)

¤̂𝑦 = 𝑑𝑖𝑎𝑔
(
sin 𝜃

)
𝑣̂ − 𝐻𝑦̃, (9b)

¤̂𝜃 = 𝜔̂ − 𝐻𝜃, (9c)
¤̃𝑣 ∈ −𝐻𝑣̃ + F [−𝐿𝐶1𝑠𝑖𝑔𝑛 (𝐿𝑣̃) − 𝐵𝐶2𝑠𝑖𝑔𝑛(𝑣̃) − (1𝑁 ⊗ ¤𝑣𝑟 )] , (9d)
¤̃𝜔 ∈ −𝐻𝜔̃ + F [−𝐿𝐷1𝑠𝑖𝑔𝑛(𝐿𝜔̃) − 𝐵𝐷2𝑠𝑖𝑔𝑛(𝜔̃) − (1𝑁 ⊗ ¤𝜔𝑟 )] . (9e)

Since the sign functions in (6d) and (6e) are discontinuous, a nonsmooth analysis will be performed to inves-
tigate their stability. For this purpose, the Filippov solution of (6d) and (6e) is defined as to be an absolutely
continuous differential inclusion solution, as (9d) and (9e), respectively. 𝐶1 ≡ 𝑑𝑖𝑎𝑔(𝑐𝑖 𝑗 ), 𝐶2 ≡ 𝑑𝑖𝑎𝑔(𝑐𝑖),
𝐷1 ≡ 𝑑𝑖𝑎𝑔(𝑑𝑖 𝑗 ), 𝐷2 ≡ 𝑑𝑖𝑎𝑔(𝑑𝑖).

Choose the Lyapunov function candidate for (9d)

𝑉1 =
1
2
𝑣̃𝑇 𝑣̃ + 1

2

𝑁∑
𝑖=1

∑
𝑗∈𝑁𝑖

(𝑐𝑖 𝑗 − 𝑐∗𝑒)2

𝜎1
+ 1

2

𝑙∑
𝑖=1

(𝑐𝑖 − 𝑐∗𝑝)2

𝜎1
, (10)

where the positive constants 𝑐∗𝑒 and 𝑐∗𝑝 will be determined later. The set-valued Lie derivative of 𝑉1 along the
solution of (9d) is

¤𝑉1 =𝑣̃𝑇 ¤̃𝑣 +
𝑁∑
𝑖=1

∑
𝑗∈𝑁𝑖

(𝑐𝑖 𝑗 − 𝑐∗𝑒)
𝜎1

¤𝑐𝑖 𝑗 +
𝑙∑

𝑖=1

(𝑐𝑖 − 𝑐∗𝑝)
𝜎1

¤𝑐𝑖

= − 𝑣̃𝑇𝐻𝑣̃ + F
[
− 𝑣̃𝑇𝐿𝑐1𝑠𝑖𝑔𝑛 (𝐿𝑣̃) 𝑣̃𝑇𝑐2𝐵𝑠𝑖𝑔𝑛(𝑣̃) − 𝑣̃𝑇 (1𝑁 ⊗ ¤𝑣𝑟 )

+
𝑁∑
𝑖=1

∑
𝑗∈𝑁𝑖

(𝑐𝑖 𝑗 − 𝑐∗𝑒)


𝑣̃ 𝑗 − 𝑣̃𝑖




1+

𝑙∑
𝑖=1

(𝑐𝑖 − 𝑐∗𝑝)‖𝑣̃‖1

]
. (11)

Notice that by using 𝛿𝑠𝑖𝑔𝑛(𝛿) = ‖𝛿‖1
[32], we can get

𝑣̃𝑇𝐿𝑐1𝑠𝑖𝑔𝑛 (𝐿𝑣̃) =
𝑁∑
𝑖=1

∑
𝑗∈𝑁𝑖

𝑐𝑖 𝑗


𝑣̃ 𝑗 − 𝑣̃𝑖




1, (12)

𝑣̃𝑇𝐵𝑐2𝑠𝑖𝑔𝑛 (𝑣̃) =
𝑙∑

𝑖=1
𝑐𝑖 ‖𝑣̃‖1. (13)

In addition

𝑣̃𝑇 (1𝑁 ⊗ ¤𝑣𝑟 ) = 𝑣̃𝑇𝐻𝐻−1 (1𝑁 ⊗ ¤𝑣𝑟 )
≤ ‖𝐻𝑣̃‖1



𝐻−1 (1𝑁 ⊗ ¤𝑣𝑟 )



∞

≤ 𝜌

𝜆min(𝐻)

(
𝑁∑
𝑖=1

∑
𝑗∈𝑁𝑖



𝑣̃ 𝑗 − 𝑣̃𝑖




1 +
𝑙∑

𝑖=1
‖𝑣̃‖1

)
. (14)
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Then, combining (11)-(14) yields, we can get

¤𝑉1 ≤ −𝑣̃𝑇𝐻𝑣̃ + F
[
−

𝑁∑
𝑖=1

∑
𝑗∈𝑁𝑖

(
𝑐∗𝑒 −

𝜌

𝜆min(𝐻)

) 

𝑣̃ 𝑗 − 𝑣̃𝑖




1 −
𝑙∑

𝑖=1

(
𝑐∗𝑝 −

𝜌

𝜆min(𝐻)

)
‖𝑣̃‖1

]
. (15)

Choosing 𝑐∗𝑒 >
𝜌

𝜆min (𝐻) , 𝑐
∗
𝑝 > 𝜌

𝜆min (𝐻) , such that ¤𝑉1 ≤ −𝑣̃𝑇𝐻𝑣̃, 𝐻 is positive definite matrix, so 𝑣̃ asymptotically
converges to 0𝑁 .

Likewise, consider Lyapunov function 𝑉2 = 1
2 𝜔̃

𝑇 𝜔̃ + 1
2

𝑁∑
𝑖=1

∑
𝑗∈𝑁𝑖

(𝑑𝑖 𝑗−𝑑∗𝑒)2
𝜎2

+ 1
2

𝑙∑
𝑖=1

(𝑑𝑖−𝑑∗𝑝)2
𝜎2

. The set-valued Lie

derivative of 𝑉2 along the solutions of (9e) also can be derived, yielding ¤𝑉2 ≤ −𝜔̃𝑇𝐻𝜔̃ ≤ 0. So, 𝜔̃ converges to
0𝑁 asymptotically.

Next, we consider the estimation dynamics (9c) for 𝜃𝑖𝑟 . The estimation error’s time derivative is provided by

¤̃𝜃 = −𝐻𝜃 + 𝜔̂ − 𝜔𝑟1𝑁 = −𝐻𝜃 + 𝜔̃.

We can get the solutions as 𝜃 = 𝑒−𝐻𝑡𝜃 (0) +
∫ 𝑡

0 𝑒−𝐻 (𝑡−𝑠)𝜔̃(𝑠)𝑑𝑠. Because the matrix H is Hurwitz and 𝜔̃ asymp-
totically converges to 0𝑁 , we have

lim
𝑡→∞

𝜃 = lim
𝑡→∞

𝑒−𝐻𝑡𝜃 (0) + lim
𝑡→∞

∫ 𝑡

0
𝑒−𝐻 (𝑡−𝑠)𝜔̃(𝑠)𝑑𝑠 = 0𝑁 .

Therefore, it can be said that 𝜃 converges to 0𝑁 asymptotically.

In addition, we can obtain from (9a),

¤̃𝑥 = 𝑑𝑖𝑎𝑔
(
cos 𝜃

)
(𝑣̂ − 𝑣𝑟1𝑁 ) + 𝑣𝑟𝑑𝑖𝑎𝑔

(
cos 𝜃 − cos 𝜃𝑟1𝑁

)
− 𝐻𝑥.

Inspired by the above, let 𝜔̄ := 𝑑𝑖𝑎𝑔
(
cos 𝜃

)
(𝑣̂ − 𝑣𝑟1𝑁 ) + 𝑣𝑟𝑑𝑖𝑎𝑔

(
cos 𝜃 − cos 𝜃𝑟1𝑁

)
. Then, 𝑥 = 𝑒−𝐻𝑡 𝑣̃(0) +∫ 𝑡

0 𝑒−𝐻 (𝑡−𝑠)𝜔̄(𝑠)𝑑𝑠. Since 𝜃 and 𝑣̃ asymptotically converge to 0𝑁 , we have

lim
𝑡→∞

𝜔̄ = lim
𝑡→∞

𝑑𝑖𝑎𝑔
(
cos 𝜃

)
(𝑣̂ − 𝑣𝑟1𝑁 ) + lim

𝑡→∞
𝑣𝑟𝑑𝑖𝑎𝑔

(
cos 𝜃 − cos 𝜃𝑟1𝑁

)
= 0𝑁 .

Consequently, it can be verified that 𝑥 converges to 0𝑁 asymptotically. In the same way, it can be demonstrated
that 𝑦̃ converges to 0𝑁 asymptotically. This completes the proof.

Remark 1 In this paper, we assume that only part of the followers can obtain the state information 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 ,
𝜔𝑟 of the leader. This part is reflected as the neighbors of the leader in the paper, and 𝑏𝑖 is used to represent the
interaction relationship between the follower and the leader. If follower 𝑖 is the neighbor of the leader, 𝑏𝑖 = 1,
otherwise 𝑏𝑖 = 0. The variables 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 , 𝜔𝑟 in estimator (6) are used on the premise that 𝑏𝑖 = 1, meaning
that the agent is a neighbor of the leader and can obtain the state 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 , 𝜔𝑟 of the leader, satisfying our
assumption. For clarity of presentation, we use 𝑥𝑟 , 𝑦̂𝑟 , 𝜃𝑟 , 𝑣̂𝑟 , 𝜔̂𝑟 instead of 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 , 𝜔𝑟 , where 𝑥𝑟 ≡ 𝑥𝑟 ,
𝑦̂𝑟 ≡ 𝑦𝑟 , 𝜃𝑟 ≡ 𝜃𝑟 , 𝑣̂𝑟 ≡ 𝑣𝑟 , 𝜔̂𝑟 ≡ 𝜔𝑟 . This notation makes the expression of the estimator more rigorous.

Remark 2 Noteworthy is the fact that equations (7) and (8) present an adaptive dynamic control law that
depends entirely on the estimation errors. Therefore, it is not necessary to determine the desired velocity’s
bound. In equation (6), the sign function enables the asymptotically estimation of the leader’s information.
However, if you substitute a sigmoid or saturation function for the sign function, you can avoid chattering.
The downside is that you will lose the ability to reconstruct the leader’s state asymptotically.
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3.2 Tracking error and error dynamics
This section discusses the scenario where certain follower agents are only aware of their intended relative
position in relation to other follower agents. Using the leader’s estimated states, the following defines the
formation tracking errors

𝑝𝑖 = 𝑝𝑖𝑟 − 𝑝𝑖 + Δ𝑖 , 𝜃𝑖 = 𝜃𝑖𝑟 − 𝜃𝑖 , (16)

Then, the tracking error system is given as

¤̃𝑝𝑖 = 𝑅𝑇 (𝜃𝑖)
[
𝑣𝑖𝑟 cos 𝜃𝑖 − 𝑣𝑖

𝑣𝑖𝑟 sin 𝜃𝑖

]
+ 𝜚𝑖 ,

¤̃𝜃𝑖 = ¤𝜃𝑖𝑟 − 𝜔𝑖 , (17)

where 𝑅(𝜃𝑖) and 𝜚𝑖 are given by

𝑅 (𝜃𝑖) =
[

cos 𝜃𝑖 sin 𝜃𝑖
− sin 𝜃𝑖 cos 𝜃𝑖

]
, 𝜚𝑖 =

[
¤𝑥𝑖𝑟 − 𝑣𝑖𝑟 cos 𝜃𝑖𝑟
¤𝑦𝑖𝑟 − 𝑣𝑖𝑟 sin 𝜃𝑖𝑟

]
.

The neighborhood formation tracking error is designed in the control law to prevent relying solely on the
tracking error 𝑝𝑖 . Define

𝑒𝑖 =
𝑛∑
𝑗=1

𝑎𝑖 𝑗
(
𝑝 𝑗 − 𝑝𝑖 + Δ𝑖 𝑗

)
+ 𝑏𝑖𝑝𝑖 , (18)

Below is the distributed formation controller based on a typical backstepping technique.

𝑣𝑖 = 𝑣𝑖𝑟 cos 𝜃𝑖 + 𝑘1𝑥𝑖 ,

𝜔𝑖 = 𝑘2𝜃𝑖 + ¤𝜃𝑖𝑟 + 𝑘3
sin 𝜃𝑖
𝜃𝑖

𝑣𝑖𝑟 𝑦̃𝑖 , (19)

where 𝑘1, 𝑘2, and 𝑘3 are positive constants. However, the current formation controller, which is based on the
backstepping technique, has an issue with velocity jumps. After analyzing it, we found that the velocity jumps
occur due to abrupt changes in the tracking error, specifically 𝜃𝑖 . To enhance the controller’s efficiency and
performance, we have introduced a BIN model into the backstepping control.

4. THE BIN CONTROLLER DESIGN
4.1 The bioinspried neurodynamics model
Using circuit elements, Hodgkin andHuxley developed amembrane blockmodel of a biological neural system.
In their membrane block model, the state equation of voltage across the membrane 𝑉𝑚 is given as follows.

𝐶𝑚 ¤𝑉𝑚 = −(𝐸𝑝 +𝑉𝑚)𝑔𝑝 + (𝐸𝑁𝑎 −𝑉𝑚)𝑔𝑁𝑎 − (𝐸𝑘 +𝑉𝑚)𝑔𝑘 (20)

where 𝐶𝑚 is the membrane capacitance, and 𝐸𝑘 , 𝐸𝑁𝑎 , and 𝐸𝑝 are the Nernst potentials for the potassium ions,
the sodium ions, and the passive leak current, respectively. In addition, the parameters 𝑔𝑘 , 𝑔𝑁𝑎 and 𝑔𝑝 are the
Conductance of potassium, Conductance of sodium and Conductance of passive channels, respectively. By
setting 𝐶𝑚 = 1 and substituting 𝑥𝑖 = 𝐸𝑝 + 𝑉𝑚 , 𝐴𝑖 = 𝑔𝑝 , 𝐵𝑖 = 𝐸𝑁𝑎 + 𝐸𝑝 , 𝐷𝑖 = 𝐸𝑘 − 𝐸𝑝 , 𝑆+𝑖 = 𝑔𝑁𝑎 , and 𝑆−𝑖 = 𝑔𝑘 .
Later, a typical shunting neural dynamic model was derived as follows

¤𝑥𝑖 = −𝐴𝑖𝑥𝑖 + (𝐵𝑖 − 𝑥𝑖) 𝑆+𝑖 (𝑡) − (𝐷𝑖 + 𝑥𝑖) 𝑆−𝑖 (𝑡). (21)

The i-th neuron’s neuronal activity is represented by the equation, involving the membrane potential 𝑥𝑖 , non-
negative constants 𝐴𝑖 , 𝐵𝑖 , and 𝐷𝑖 representing passive decay rate, upper bounds and lower bounds. Variables
𝑆+𝑖 and 𝑆−𝑖 express excitatory and inhibitory inputs. The BIN model has the following properties: (1) For ar-
bitrary excitatory and inhibitory inputs, the neural activity will eventually stay in this region [𝐷, 𝐵]; (2) The
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neural dynamic system is stable in the Lyapunov sense. We use the BIN technique to address the velocity jump
problem in backstepping control. This method helps to eliminate the challenges and provides smooth velocity
commands.

Replacing 𝐴𝑖 = 𝐴, 𝐵𝑖 = 𝐵, 𝐷𝑖 = 𝐷, 𝑥𝑖 = 𝛽𝑖 , 𝑆+𝑖 (𝑡) = 𝑓1𝑖 (𝜃𝑖), 𝑆−𝑖 (𝑡) = 𝑔1𝑖 (𝜃𝑖) in (21), we can get

¤𝛽𝑖 = −𝐴𝛽𝑖 + (𝐵 − 𝛽𝑖) 𝑓1𝑖
(
𝜃𝑖

)
− (𝐷 + 𝛽𝑖) 𝑔1𝑖

(
𝜃𝑖

)
. (22)

Similarly, replacing 𝐴𝑖 = 𝐴, 𝐵𝑖 = 𝐵, 𝐷𝑖 = 𝐷, 𝑥𝑖 = 𝛾𝑖 , 𝑆+𝑖 (𝑡) = 𝑓2𝑖 (𝜃𝑖), 𝑆−𝑖 (𝑡) = 𝑔2𝑖 (𝜃𝑖) in (21), we can obtain

¤𝛾𝑖 = −𝐴𝛾𝑖 + (𝐵 − 𝛾𝑖) 𝑓2𝑖
(
𝜃𝑖

)
− (𝐷 + 𝛾𝑖) 𝑔2𝑖

(
𝜃𝑖

)
, (23)

where 𝑓1𝑖 (𝜃𝑖), 𝑔1𝑖 (𝜃𝑖), 𝑓2𝑖 (𝜃𝑖) and 𝑔2𝑖 (𝜃𝑖) are defined as

𝑓1𝑖
(
𝜃𝑖

)
= max

{
𝑘2

𝑘3
𝜃𝑖 , 0

}
, 𝑔1𝑖

(
𝜃𝑖

)
= max

{
− 𝑘2

𝑘3
𝜃𝑖 , 0

}
, (24)

𝑓2𝑖
(
𝜃𝑖

)
= max

{
𝑘5

𝑘6
√
𝑌 + 1

𝜃𝑖 , 0
}
, 𝑔2𝑖

(
𝜃𝑖

)
= max

{
− 𝑘5

𝑘6
√
𝑌 + 1

𝜃𝑖 , 0
}
. (25)

where 𝑘2, 𝑘3, 𝑘5 and 𝑘6 are positive constants.

4.2 Tracking control algorithm
We design a distributed formation control law to accomplish formation objectives (4) and (5) by utilizing the
neighborhood formation tracking error and the leader’s estimated state. The control law is designed using a
combination of a BIN approach and a backstepping model. By replacing the variable 𝜃𝑖 in equation (22) with
𝛽𝑖 , we obtain the proposed formation control law for each follower agent.

𝑣𝑖 = 𝑣𝑖𝑟 cos 𝜃𝑖 + 𝑘1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑒𝑖 ,

𝜔𝑖 = 𝑘2𝛽𝑖 + ¤𝜃𝑖𝑟 + 𝑘3
sin 𝜃𝑖
𝜃𝑖

𝑣𝑖𝑟𝛼2
𝑇𝑅 (𝜃𝑖) 𝑒𝑖 , (26)

where 𝑘1, 𝑘2, and 𝑘3 are positive control gains, and 𝛼1, 𝛼2 are constant vectors given by 𝛼1 = [1, 0]𝑇 and
𝛼2 = [0, 1]𝑇 .

It is evident from equation (22) that the value of 𝛽𝑖 relies on the tracking error 𝜃𝑖 , and as the input state changes,
so does the shunting neural dynamic model’s output state. The shunting model is dynamic in nature, and thus,
the proposed control law (26) is a smooth function. This ensures that the output state of the shunting neural
dynamic model changes gradually without any abrupt jumps, even in cases of abrupt input changes.

Remark 3The control laws (26) have a similar structure to the tracking controllers in [17]. However, there are
two main differences: (1) instead of the actual leader states 𝑣𝑟 , ¤𝜃𝑟 , the estimated leader states 𝑣𝑖𝑟 , ¤𝜃𝑖𝑟 are used;
and (2) the control law is developed using the followers’ coordination error 𝑝 𝑗 − 𝑝𝑖 +Δ𝑖 𝑗 and the tracking error
𝑝𝑖 . In this way, each follower robot does not need to know the leader’s full state. The reliance on the state
estimation of the leader is reduced, and the decentralization of the control is enhanced.

In the following, in order to facilitate the stability analysis, we define

𝑠𝑖 =
𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝𝑖 𝑗 + 𝑏𝑖𝑝𝑖 . (27)
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Thus, 𝑒𝑖 given in (18) can be expressed as

𝑒𝑖 = 𝑠𝑖 +
𝑛∑
𝑗=1

𝑎𝑖 𝑗
(
𝑝 𝑗𝑟 − 𝑝𝑖𝑟

)
. (28)

Substituting (26) into (17), the closed-loop system becomes

¤̃𝑝𝑖 = − 𝑘1𝑅
𝑇 (𝜃𝑖) 𝛼1𝛼1

𝑇𝑅 (𝜃𝑖) 𝑠𝑖 + 𝑅𝑇 (𝜃𝑖) 𝛼2𝑣𝑖𝑟 sin 𝜃𝑖 + 𝑚1𝑖 , (29)

¤̃𝜃𝑖 = − 𝑘2𝛽𝑖 − 𝑘3
sin 𝜃𝑖
𝜃𝑖

𝑣𝑖𝑟𝛼2
𝑇𝑅 (𝜃𝑖) 𝑠𝑖 + 𝑛1𝑖 , (30)

where 𝑚1𝑖 ∈ 𝑅2×2 and 𝑛1𝑖 ∈ 𝑅2×2 are calculated using

𝑚1𝑖 = 𝜚𝑖 − 𝑘1𝑅
𝑇 (𝜃𝑖) 𝛼1𝛼1

𝑇𝑅 (𝜃𝑖)
𝑛∑
𝑗=1

𝑎𝑖 𝑗
(
𝑝 𝑗𝑟 − 𝑝𝑖𝑟

)
(31)

𝑛1𝑖 = −𝑘3
sin 𝜃𝑖
𝜃𝑖

𝑣𝑖𝑟𝛼2
𝑇𝑅 (𝜃𝑖)

𝑛∑
𝑗=1

𝑎𝑖 𝑗
(
𝑝 𝑗𝑟 − 𝑝𝑖𝑟

)
. (32)

4.3 Stability analysis
This part will discuss stability conditions using the Lyapunov functional technique. A technical lemma for the
analysis of closed-loop system stability is proposed before the main conclusions.

Lemma 1 [37] For a continuously differentiable function 𝑉 : R+ → R+ and a uniformly continuous function
𝑊 : R+ → R+, if they satisfy the following condition for any 𝑡 ≥ 0

¤𝑉 (𝑡) ≤ −𝑊 (𝑡) + 𝑝1(𝑡)𝑉 (𝑡) + 𝑝2(𝑡)
√
𝑉 (𝑡), (33)

where 𝑝1(𝑡) and 𝑝2(𝑡) are nonnegative functions in 𝐿1 space, and V (t) is bounded, then there is a constant 𝑐,
so that as 𝑡 → ∞,𝑊 (𝑡) → 0 and 𝑉 (𝑡) → 𝑐.

The primary result is now expressed as follows.

Theorem 1 Under Assumptions 1 and 2, the closed-loop systems (29) and (30) are asymptotically stable with
the distributed estimator (6) and the formation controllers (26) by choosing the appropriate control gains 𝑘1,
𝑘2, and 𝑘3; therefore, Problem 1 can be solved.

Proof. Consider the Lyapunov function candidate

𝑉3 =
1
2

𝑛∑
𝑖=1

©­«1
2

𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝
𝑇
𝑖 𝑗 𝑝𝑖 𝑗 + 𝑏𝑖𝑝

𝑇
𝑖 𝑝𝑖 +

1
𝑘3

𝜃2
𝑖 +

1
𝐵
𝛽𝑖

2ª®¬. (34)
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The ¤𝑉3 along (29) and (30) is

¤𝑉3 =
𝑛∑
𝑖=1

(
𝑠𝑖
𝑇 ¤̃𝑝𝑖 +

1
𝑘3

𝜃𝑖
¤̃𝜃𝑖 +

1
𝐵
𝛽𝑖 ¤𝛽𝑖

)
=

𝑛∑
𝑖=1

(
−𝑘1𝑠𝑖

𝑇𝑅𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑠𝑖

)
+

𝑛∑
𝑖=1

(
𝑠𝑖
𝑇𝑅𝑇 (𝜃𝑖) 𝛼2𝑣𝑖𝑟 sin 𝜃𝑖

)
+

𝑛∑
𝑖=1

(
− 𝑘2

𝑘3
𝜃𝑖𝛽𝑖 − sin 𝜃𝑖𝑣𝑖𝑟𝛼2

𝑇𝑅 (𝜃𝑖) 𝑠𝑖
)
+

𝑛∑
𝑖=1

(
𝑠𝑖
𝑇𝑚1𝑖

)
+

𝑛∑
𝑖=1

(
1
𝑘3

𝜃𝑖𝑛1𝑖

)
+ 1
𝐵

𝑛∑
𝑖=1

(
−𝐴𝛽𝑖2 − 𝑓1𝑖

(
𝜃𝑖

)
𝛽𝑖

2 − 𝑔1𝑖
(
𝜃𝑖

)
𝛽𝑖

2
)
+ 1
𝐵

𝑛∑
𝑖=1

(
𝐵 𝑓1𝑖

(
𝜃𝑖

)
𝛽𝑖 − 𝐷𝑔1𝑖

(
𝜃𝑖

)
𝛽𝑖

)
. (35)

Then, we have by set 𝐵 = 𝐷

¤𝑉3 =
𝑛∑
𝑖=1

(
−𝑘1𝑠𝑖

𝑇𝑅𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑠𝑖

)
+ 1
𝐵

𝑛∑
𝑖=1

(
−𝐴 − 𝑓1𝑖

(
𝜃𝑖

)
− 𝑔1𝑖

(
𝜃𝑖

) )
𝛽𝑖

2 +
𝑛∑
𝑖=1

(
𝑓1𝑖

(
𝜃𝑖

)
− 𝑔1𝑖

(
𝜃𝑖

)
− 𝑘2

𝑘3
𝜃𝑖

)
𝛽𝑖

+
𝑛∑
𝑖=1

(
𝑠𝑖
𝑇𝑚1𝑖

)
+

𝑛∑
𝑖=1

(
1
𝑘3

𝜃𝑖𝑛1𝑖

)
. (36)

According to 𝑓1𝑖
(
𝜃𝑖

)
and 𝑔1𝑖

(
𝜃𝑖

)
in (24), whenever 𝜃𝑖 ≥ 0 or 𝜃𝑖 < 0, we can get

𝑓1𝑖
(
𝜃𝑖

)
− 𝑔1𝑖

(
𝜃𝑖

)
− 𝑘2

𝑘3
𝜃𝑖 = 0. (37)

Hence, equation (36) becomes
¤𝑉3 = 𝑊1 +𝑊2, (38)

where𝑊1,𝑊2 are denoted as

𝑊1 =
𝑛∑
𝑖=1

(
−𝑘1𝑠𝑖

𝑇𝑅𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑠𝑖

)
+ 1
𝐵

𝑛∑
𝑖=1

(
−𝐴 − 𝑓1𝑖

(
𝜃𝑖

)
− 𝑔1𝑖

(
𝜃𝑖

) )
𝛽𝑖

2, (39)

𝑊2 =
𝑛∑
𝑖=1

(
𝑠𝑖
𝑇𝑚1𝑖

)
+

𝑛∑
𝑖=1

(
1
𝑘3

𝜃𝑖𝑛1𝑖

)
. (40)

We can get 𝑓1𝑖
(
𝜃𝑖

)
≥ 0 and 𝑔1𝑖

(
𝜃𝑖

)
≥ 0 from (24). Furthermore, 𝐴 and 𝐵 are nonnegative constants. Thus, we

have
1
𝐵

(
−𝐴 − 𝑓1𝑖

(
𝜃𝑖

)
− 𝑔1𝑖

(
𝜃𝑖

) )
𝛽𝑖

2 ≤ 0. (41)

We obtain that 𝑠𝑖 denoted by (27) satisfies the following via the Cauchy-Schwarz inequality

‖𝑠𝑖 ‖2
2 ≤ (𝑛 + 1) max

0≤ 𝑗≤𝑛
𝑎𝑖 𝑗

©­«
𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝
𝑇
𝑖 𝑗 𝑝𝑖 𝑗 + 𝑎𝑖0𝑝

𝑇
𝑖 𝑝𝑖

ª®¬ , (42)

and the Lyapunov function 𝑉3 can be demonstrated to satisfy

𝑉3 ≥ 1
4

𝑛∑
𝑖=1

©­«
𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝
𝑇
𝑖 𝑗 𝑝𝑖 𝑗 + 𝑎𝑖0𝑝

𝑇
𝑖 𝑝𝑖

ª®¬. (43)
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One can derive the inequality as follows

𝑛∑
𝑖=1

‖𝑠𝑖 ‖2 ≤
√
ℎ1𝑉3, (44)

where ℎ1 = 4 (𝑛 + 1) max
1≤𝑖≤𝑛,1≤ 𝑗≤𝑛

{
𝑎𝑖 𝑗

}
. Similarly, applying the Cauchy-Schwarz inequality with respect to 𝜃𝑖

can obtain
(
𝑛∑
𝑖=1

��𝜃𝑖 ��)2
≤ 𝑛

𝑛∑
𝑖=1

𝜃2
𝑖 , and along with the fact 𝑉3 ≥ 1

2𝑘3

𝑛∑
𝑖=1

𝜃2
𝑖 , we can get

𝑛∑
𝑖=1

��𝜃𝑖 �� ≤ √
2𝑛𝑘3𝑉3. (45)

Using inequalities (44) and (45), we have

𝑊2 ≤
(
max
0≤𝑖≤𝑛

‖𝑚1𝑖 ‖2
√
ℎ1 + max

0≤𝑖≤𝑛
|𝑛1𝑖 |

√
2𝑛/𝑘3

) √
𝑉3. (46)

Since [𝑥𝑖𝑟 , 𝑦𝑖𝑟 , 𝜃𝑖𝑟 , 𝑣𝑖𝑟 , 𝜔𝑖𝑟 ] asymptotically converges to the leader’s state [𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 , 𝜔𝑟 ], respectively, it can
be verified that both ‖𝑚1𝑖 ‖2 and |𝑛1𝑖 | asymptotically converge to zero. Therefore, the Lyapunov function can-
didate 𝑉3 satisfies Lemma 2’s requirements, and we can obtain that𝑊1 tends to zero, or

lim
𝑡→0

𝛼1
𝑇𝑅 (𝜃𝑖 (𝑡)) 𝑠𝑖 (𝑡) = 0, (47)

lim
𝑡→0

𝛽𝑖 (𝑡) = 0. (48)

By applying Barbalat’s lemma to (30), and considering that 𝜃𝑖 tends to zero, alongwith the facts that lim
𝑡→0

sin 𝜃𝑖
𝜃𝑖

= 1
and lim

𝑡→0
|𝑣𝑟 (𝑡) | ≥ 0 by Assumption1, we have

lim
𝑡→0

𝛼2
𝑇𝑅 (𝜃𝑖 (𝑡)) 𝑠𝑖 (𝑡) = 0. (49)

Combining (47) and (49), we can get
lim
𝑡→0

𝑠𝑖 (𝑡) = 0. (50)

Denote 𝑠 =
[
𝑠1

𝑇 , 𝑠2
𝑇 , · · · , 𝑠𝑛𝑇

]
and 𝑝 =

[
𝑝𝑇1 , 𝑝

𝑇
2 , · · · , 𝑝𝑇𝑛

]
, and given 𝑠 = 𝐻𝑝 as denoted by (27). Thus,

following (50), we can get
lim
𝑡→0

𝑝 (𝑡) = 0. (51)

Since the formation tracking error 𝑝𝑖 and 𝜃𝑖 asymptotically converge to zero, we can achieve the control goals
(4) and (5). This completes the proof.

5. SATURATED VELOCITIES FORMATION TRACKING CONTROLLER DESIGN
Since the velocities of nonholonomicmultiagents are limited, it is necessary to take the control input saturation
into account. Therefore, in order to prevent saturation velocities from causing input saturation, it is essential
to develop a formation controller with saturation velocities for each follower agent 𝑖 to guarantee that 𝑣𝑖 and
𝜔𝑖 satisfy

|𝑣𝑖 (𝑡) | ≤ 𝑣max
𝑖 , |𝜔𝑖 (𝑡) | ≤ 𝜔max

𝑖 , ∀𝑡 ≥ 0, (52)

where 𝑣max
𝑖 and 𝜔max

𝑖 is the maximum of the velocity.

Furthermore, to ensure the feasibility of formation implementation, the leader’s velocity 𝑣𝑟 and 𝜔𝑟 should be
given to satisfy 𝑣max

𝑖 > 𝑣max
𝑟 , 𝜔max

𝑖 > 𝜔max
𝑟 .
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Inspired by a BIN approach and backsteppingmodel, the design of a saturated velocities constrained formation
tracking controller for follower agents is as follows

𝑣𝑖 = 𝑣𝑖𝑟 cos 𝜃𝑖 +
𝑘4𝛼1

𝑇𝑅 (𝜃𝑖) 𝑒𝑖√
𝑋 + 1

,

𝜔𝑖 =
𝑘5𝛾𝑖√
𝑌 + 1

+ ¤𝜃𝑖𝑟 +
𝑘6

sin 𝜃𝑖
𝜃𝑖

𝑣𝑖𝑟𝛼2
𝑇𝑅 (𝜃𝑖) 𝑒𝑖

√
𝑋 + 1

, (53)

where 𝑘4 𝑘5 and 𝑘6 are positive control gains, 𝑋 =
𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝
𝑇
𝑖 𝑗 𝑝𝑖 𝑗 + 𝑏𝑖𝑝

𝑇
𝑖 𝑝𝑖 and 𝑌 = 𝛾𝑖

2. Substituting (53) into

(17), the closed-loop system becomes

¤̃𝑝𝑖 =
−𝑘4𝑅

𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑠𝑖√

𝑋 + 1
+ 𝑅𝑇 (𝜃𝑖) 𝛼2𝑣𝑖𝑟 sin 𝜃𝑖 + 𝑚2𝑖 , (54)

¤̃𝜃𝑖 =
−𝑘5𝛾𝑖√
𝑌 + 1

−
𝑘6

sin 𝜃𝑖
𝜃𝑖

𝑣𝑖𝑟𝛼2
𝑇𝑅 (𝜃𝑖) 𝑠𝑖

√
𝑋 + 1

+ 𝑛2𝑖 , (55)

where 𝑚2𝑖 ∈ 𝑅2×2 and 𝑛2𝑖 ∈ 𝑅2×2 are given by

𝑚2𝑖 = 𝛿𝑖 −
𝑘4𝑅

𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖)

𝑛∑
𝑗=1

𝑎𝑖 𝑗
(
𝑝 𝑗𝑟 − 𝑝𝑖𝑟

)
√
𝑋 + 1

, (56)

𝑛2𝑖 =

−𝑘6
sin 𝜃𝑖
𝜃𝑖

𝑣𝑖𝑟𝛼2
𝑇𝑅 (𝜃𝑖)

𝑛∑
𝑗=1

𝑎𝑖 𝑗
(
𝑝 𝑗𝑟 − 𝑝𝑖𝑟

)
√
𝑋 + 1

. (57)

Theorem 2 Under the formation tracking controller (53), the closed-loop systems (54) and (55) are asymptot-
ically stable, and the formation control objectives (4) and (5) can be achieved. By selecting suitable gains 𝑘4
𝑘5 and 𝑘6, the control inputs 𝑣𝑖 and 𝜔𝑖 satisfy the constraint (52).

Proof. Consider the Lyapunov function candidate

𝑉4 =
1
2

𝑛∑
𝑖=1

(
1
2
(𝑋 + 1) 1

2 + 1
𝑘6

𝜃2
𝑖 +

1
𝐵
𝛾𝑖

2
)
. (58)

The ¤𝑉4 along (54) and (55) is

¤𝑉4 =
𝑛∑
𝑖=1

(
𝑠𝑖
𝑇 ¤̃𝑝𝑖√
𝑋 + 1

+ 1
𝑘6

𝜃𝑖
¤̃𝜃𝑖 +

1
𝐵
𝛾𝑖 ¤𝛾𝑖

)
=

𝑛∑
𝑖=1

(
−𝑘4𝑠𝑖

𝑇𝑅𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑠𝑖

𝑋 + 1
+ 𝑠𝑖

𝑇𝑅𝑇 (𝜃𝑖) 𝛼2𝑣𝑖𝑟 sin 𝜃𝑖√
𝑋 + 1

)
+

𝑛∑
𝑖=1

(
− 𝑘5

𝑘6
√
𝑌 + 1

𝜃𝑖𝛾𝑖 −
sin 𝜃𝑖𝑣𝑖𝑟𝛼2

𝑇𝑅 (𝜃𝑖) 𝑠𝑖√
𝑋 + 1

)
+ 1
𝐵

𝑛∑
𝑖=1

(
𝐵 𝑓2𝑖

(
𝜃𝑖

)
𝛾𝑖 − 𝐷𝑔2𝑖

(
𝜃𝑖

)
𝛾𝑖

)
+ 1
𝐵

𝑛∑
𝑖=1

(
−𝐴𝛾𝑖2 − 𝑓2𝑖

(
𝜃𝑖

)
𝛾𝑖

2 − 𝑔2𝑖
(
𝜃𝑖

)
𝛾𝑖

2
)

+
𝑛∑
𝑖=1

(
𝑠𝑖
𝑇𝑚2𝑖√
𝑋 + 1

)
+

𝑛∑
𝑖=1

(
1
𝑘6

𝜃𝑖𝑛2𝑖

)
. (59)
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Then, we have by set 𝐵 = 𝐷

¤𝑉4 =
𝑛∑
𝑖=1

(
−𝑘4𝑠𝑖

𝑇𝑅𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑠𝑖

𝑋 + 1

)
+ 1
𝐵

𝑛∑
𝑖=1

(
−𝐴 − 𝑓2𝑖

(
𝜃𝑖

)
− 𝑔2𝑖

(
𝜃𝑖

) )
𝛾𝑖

2

+
𝑛∑
𝑖=1

(
𝑓2𝑖

(
𝜃𝑖

)
− 𝑔2𝑖

(
𝜃𝑖

)
− 𝑘5

𝑘6
√
𝑌 + 1

𝜃𝑖

)
𝛾𝑖 +

𝑛∑
𝑖=1

(
𝑠𝑖
𝑇𝑚2𝑖√
𝑋 + 1

)
+

𝑛∑
𝑖=1

(
1
𝑘6

𝜃𝑖𝑛2𝑖

)
. (60)

And according to 𝑓2𝑖
(
𝜃𝑖

)
and 𝑔2𝑖

(
𝜃𝑖

)
in (25), whenever 𝜃𝑖 ≥ 0 or 𝜃𝑖 < 0, we can get

𝑓2𝑖
(
𝜃𝑖

)
− 𝑔2𝑖

(
𝜃𝑖

)
− 𝑘5

𝑘6
√

Y + 1
𝜃𝑖 = 0. (61)

Hence, equation (60) becomes
¤𝑉4 = 𝑊3 +𝑊4, (62)

where𝑊3 and𝑊4 are defined as

𝑊3 =
𝑛∑
𝑖=1

(
−𝑘4𝑠𝑖

𝑇𝑅𝑇 (𝜃𝑖) 𝛼1𝛼1
𝑇𝑅 (𝜃𝑖) 𝑠𝑖

𝑋 + 1

)
+ 1
𝐵

𝑛∑
𝑖=1

(
−𝐴 − 𝑓2𝑖

(
𝜃𝑖

)
− 𝑔2𝑖

(
𝜃𝑖

) )
𝛾𝑖

2, (63)

𝑊4 =
𝑛∑
𝑖=1

(
𝑠𝑖
𝑇𝑚2𝑖√
𝑋 + 1

)
+

𝑛∑
𝑖=1

(
1
𝑘6

𝜃𝑖𝑛2𝑖

)
. (64)

According to the functions of 𝑓2𝑖
(
𝜃𝑖

)
and g2𝑖

(
𝜃𝑖

)
in (25), we have 𝑓2𝑖

(
𝜃𝑖

)
≥ 0 and 𝑔2𝑖

(
𝜃𝑖

)
≥ 0. Therefore, 𝐴

and 𝐵 are nonnegative constants. Thus, we can get

1
𝐵

(
−𝐴 − 𝑓2𝑖

(
𝜃𝑖

)
− 𝑔2𝑖

(
𝜃𝑖

) )
𝛾𝑖

2 ≤ 0. (65)

We obtain that 𝑠𝑖 denoted by (27) satisfies the following via the Cauchy-Schwarz inequality

‖𝑠𝑖 ‖2
2 ≤ (𝑛 + 1) max

0≤ 𝑗≤𝑛
𝑎𝑖 𝑗

©­«
𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝
𝑇
𝑖 𝑗 𝑝𝑖 𝑗 + 𝑎𝑖0𝑝

𝑇
𝑖 𝑝𝑖

ª®¬ (66)

and the Lyapunov function 𝑉4 can be demonstrated to satisfy

𝑉4 ≥ 1
4

𝑛∑
𝑖=1

√√√√©­«
𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝
𝑇
𝑖 𝑗 𝑝𝑖 𝑗 + 𝑎𝑖0𝑝

𝑇
𝑖 𝑝𝑖

ª®¬. (67)

One can derive the inequality as follows
𝑛∑
𝑖=1

‖𝑠𝑖 ‖2 ≤ ℎ2𝑉4, (68)

where ℎ2 = 4
√
(𝑛 + 1) max

1≤𝑖≤𝑛,1≤ 𝑗≤𝑛

{
𝑎𝑖 𝑗

}
. Similarly, applying the Cauchy-Schwarz inequality with respect to 𝜃𝑖

can obtain
(
𝑛∑
𝑖=1

��𝜃𝑖 ��)2
≤ 𝑛

𝑛∑
𝑖=1

𝜃2
𝑖 , and based on the fact 𝑉4 ≥ 1

2𝑘6

𝑛∑
𝑖=1

𝜃2
𝑖 , we get

𝑛∑
𝑖=1

��𝜃𝑖 �� ≤ √
2𝑛𝑘6𝑉4. (69)

Using inequalities (68) and (69), we have

𝑊4 ≤
(
max
0≤𝑖≤𝑛

‖𝑚2𝑖 ‖2√
𝑋 + 1

√
ℎ2

)
𝑉4 +

(
max
0≤𝑖≤𝑛

|𝑛2𝑖 |
√

2𝑛/𝑘6

) √
𝑉4. (70)
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Since [𝑥𝑖𝑟 , 𝑦𝑖𝑟 , 𝜃𝑖𝑟 , 𝑣𝑖𝑟 , 𝜔𝑖𝑟 ] asymptotically converges to the leader’s state [𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 , 𝑣𝑟 , 𝜔𝑟 ] respectively, it can
be verified that both ‖𝑚2𝑖 ‖2 and |𝑛2𝑖 | asymptotically converge to zero. Therefore, the Lyapunov function 𝑉4
satisfies Lemma 2’s requirements and we can obtain that𝑊3 tends to zero, or

lim
𝑡→0

𝛼1
𝑇𝑅 (𝜃𝑖 (𝑡)) 𝑠𝑖 (𝑡) = 0, (71)

lim
𝑡→0

𝛾𝑖 (𝑡) = 0. (72)

Using Barbalat’s lemma to (55), since 𝜃𝑖 tends to zero and the facts that lim
𝑡→0

sin 𝜃𝑖
𝜃𝑖

= 1 and lim
𝑡→0

|𝑣𝑟 (𝑡) | ≥ 0 by
Assumption 1, we have

lim
𝑡→0

𝛼2
𝑇𝑅 (𝜃𝑖 (𝑡)) 𝑠𝑖 (𝑡) = 0. (73)

Combining (71) and (73), we can get
lim
𝑡→0

𝑠𝑖 (𝑡) = 0. (74)

Denote 𝑠 =
[
𝑠1

𝑇 , 𝑠2
𝑇 , · · · , 𝑠𝑛𝑇

]
and 𝑝 =

[
𝑝𝑇1 , 𝑝

𝑇
2 , · · · , 𝑝𝑇𝑛

]
, and given 𝑠 = 𝐻𝑝 as denoted by (27). Thus,

following (74), we can get
lim
𝑡→0

𝑝 (𝑡) = 0. (75)

The formation tracking errors 𝑝𝑖 and 𝜃𝑖 asymptotically converge to zero; thus, we can achieve the control goals
(4) and (5).

Subsequently, by letting 𝑘4 𝑘5 and 𝑘6 satisfy the following inequations

|𝑣𝑖 (𝑡) | ≤ 𝑣max
𝑟 + 𝑘4 ≤ 𝑣max

𝑖 , (76)
|𝜔𝑖 (𝑡) | ≤ 𝑘5 + 𝜔max

𝑟 + 𝑘6𝑣
max
𝑟 ≤ 𝜔max

𝑖 ∀𝑡 ≥ 0, (77)

𝑣𝑖 and 𝜔𝑖 meet the constraints in (52), avoiding input saturation caused by the saturation velocity. The proof
is completed.

Remark 1 Indeed, the constrained controller (53) constructs the nonlinear dynamic gain by dividing by a few

positive error terms, such as
√

𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑝
𝑇
𝑖 𝑗 𝑝𝑖 𝑗 + 𝑏𝑖𝑝

𝑇
𝑖 𝑝𝑖 + 1, and

√
𝛾𝑖2 + 1, so that the structure of this controller

is similar to the unconstrained controller (26). Even though the unconstrained controller (26) can also change
the gain to prevent input saturation due to the saturation velocities, it has the disadvantages of lack of flexi-
bility and inconvenience. On the one hand, the nonlinear dynamic gain of the constrained controller (53) is
relatively small compared with the unconstrained controller (26) with higher gain to guarantee 𝑣𝑖 and 𝜔𝑖 do
not exceed the maximum speed 𝑣max

𝑖 and 𝜔max
𝑖 of the follower. On the other hand, the nonlinear dynamic

gain of the constrained controller (53) is relatively larger and the convergence time is shorter compared to the
unconstrained controller (26) with lower gain.

6. NUMERICAL SIMULATIONS
Several simulations are presented in this section to validate the effectiveness and feasibility of the distributed
estimator and formation control law. In the first part, since the estimation term will be used in the formation
controller, for the unconstrained formation controller (UFC) (26), we confirm the validity of the estimator.
Then, we will prove the validity of the UFC. In the second part, we demonstrate the effectiveness of the velocity
constrained formation controller (CFC) (53). Then, two groups of parameters for the UFC (26) are chosen:
one is a group of higher gains to achieve that the convergence time of formation errors under the UFC (26) is
basically consistent with that under the CFC (53); the other is a group of lower gains to ensure that the control
input amplitudes under the UFC (26) are at the same levels as the control input amplitudes under the CFC
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Follower1

Follower2

Leader

Follower3

Figure 2. Communication topology graph between one leader and three followers.

Table 1. Adjustment time of tracking errors (SEC)

Tracking error 𝑥𝑟 − 𝑥2 + Δ2𝑥 𝑦𝑟 − 𝑦2 + Δ2𝑦 𝜃𝑟 − 𝜃2

Controller(26) (Higher gains) 9.60 12.80 8.70
Controller(54) 9.22 12.34 6.33
Controller(26) (Lower gains) 9.65 15.45 10.97
Controller(80) 19.36 16.74 16.71

(53). At the same time, compared with another saturated velocity formation controller (SFC) proposed in [34],
the superiority of the velocity CFC proposed in this paper is proved.

6.1 Unconstrained controller
Consider the communication link for a leader agent and three follower agents, as shown in Figure 2. The
leader’s linear velocities and the angular velocities are set as 𝑣0 = 2 − 0.5𝑐𝑜𝑠(𝑡) and 𝜔0 = 0.5𝑐𝑜𝑠(𝑡). The
initial state values of the three followers and one leader are (𝑥1, 𝑦1, 𝜃1) = (1.5, 2, 0, ), (𝑥2, 𝑦2, 𝜃2) = (0, 3,−0.5),
(𝑥3, 𝑦3, 𝜃3) = (0, 0,−1) and (𝑥0, 𝑦0, 𝜃0) = (2, 2.5, 0.6). Moreover, desired relative positions areΔ1𝑥 = −2,Δ2𝑥 =
−4,Δ3𝑥 = 4,Δ1𝑦 = 4,Δ2𝑦 = 2,Δ3𝑦 = −2 for each robot 𝑖. The parameters are chosen in estimation laws
𝜎1 = 5, 𝜎2 = 2. Similarly, the parameters chosen for control law are chosen to be 𝑘1 = 1, 𝑘2 = 2.5, 𝑘3 = 0.5,
𝐴 = 5, 𝐵 = 1, and 𝐷 = 1. Then, by exploiting the estimator (6), Figures 3 and 4 demonstrate that the estimation
errors (𝑥𝑖𝑟−𝑥𝑟 ), (𝑦𝑖𝑟−𝑦𝑟 ), (𝜃𝑖𝑟−𝜃𝑟 ) and (𝑣𝑖𝑟−𝑣𝑟 ), (𝜔𝑖𝑟−𝜔𝑟 ) converge to zero. Furthermore, Figures 5-8 display
the simulation of the UFC (26) using this estimation term. It is evident from Figure 5 that the three follower
robots guided by the leader robot form the desired triangular formation in a certain time, and in Figure 6, the
position and orientation tracking errors converge to zero; i.e., the control objectives (4) and (5) are achieved.
Figures 7 and 8 depict the evolution of linear velocities and angular velocities of one leader and three follower
agents. It is evident that all three of the following agents will ultimately be able to match the leader agent’s
angular and linear velocities.

6.2 Constrained controller
Define the following formation tracking errors as


𝑥𝑒𝑖
𝑦𝑒𝑖
𝜃𝑒𝑖

 =


cos 𝜃𝑖 sin 𝜃𝑖 0
− sin 𝜃𝑖 cos 𝜃𝑖 0

0 0 1



𝑥𝑖𝑟 − 𝑥𝑖 + Δ𝑖𝑥

𝑦𝑖𝑟 − 𝑦𝑖 + Δ𝑖𝑦

𝜃𝑖𝑟 − 𝜃𝑖

 .
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Figure 3. Estimation error (𝑥𝑖𝑟 − 𝑥𝑟 ), (𝑦𝑖𝑟 − 𝑦𝑟 ) and (𝜃𝑖𝑟 − 𝜃𝑟 ).
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Figure 4. Estimation error (𝑣𝑖𝑟 − 𝑣𝑟 ) and (𝜔𝑖𝑟 − 𝜔𝑟 ).

Based on the above formation tracking errors, a constrained formation tracking controller with saturated ve-
locities for the follower agents is given as

𝑣𝑖 = 𝑣𝑖𝑟 +
𝑘7𝑥𝑒𝑖√

𝑥2
𝑒𝑖 + 𝑦2

𝑒𝑖 + 1
,

𝜔𝑖 = 𝜔𝑖𝑟 +
𝑘8 sin 𝜃𝑒𝑖

2√
𝑥2
𝑒𝑖 + 𝑦2

𝑒𝑖 + 1
+
𝑘9𝑣𝑖𝑟 (𝑦𝑒𝑖 cos 𝜃𝑒𝑖

2 − 𝑥𝑒𝑖 sin 𝜃𝑒𝑖
2 )√

𝑥2
𝑒𝑖 + 𝑦2

𝑒𝑖 + 1
(78)
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Figure 5. The evolution trajectory of one leader and three follower robots’ position in the (𝑥, 𝑦, 𝑡 ) plane.
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Figure 6. Evolution of position and orientation tracking error.

where 𝑘7, 𝑘8, and 𝑘9 are positive gains and satisfy the following

|𝑣𝑖 (𝑡) | ≤ 𝑣max
𝑟 + 𝑘7 ≤ 𝑣max

𝑖 , (79)
|𝜔𝑖 (𝑡) | ≤ 𝑘8 + 𝜔max

𝑟 + 2𝑘9𝑣
max
𝑟 ≤ 𝜔max

𝑖 ∀𝑡 ≥ 0, (80)

The velocity constraints are defined as 𝑣𝑖 ∈ [−4, 4] and 𝜔𝑖 ∈ [−3.5, 3.5]. The group reference velocities have
bounds of 𝑣+𝑟 = 2.5, 𝑣−𝑟 = 1.5, and 𝜔+

𝑟 = 0.5, 𝜔−
𝑟 = −0.5. The leader’s linear velocities and the angular

velocities are set as 𝑣0 = 2 − 0.5𝑐𝑜𝑠(𝑡) and 𝜔0 = 0.5𝑐𝑜𝑠(𝑡), which satisfy Assumptions 2. Based on (76)
and (77), adjust the control law parameters 𝑘4 = 1.5, 𝑘5 = 6.8, 𝑘6 = 0.6, 𝐴 = 8, 𝐵 = 1, 𝐷 = 0.2. The
leaders’ initial state value is considered as (𝑥0, 𝑦0, 𝜃0) = (2, 2.5, 0.6). Moreover, desired relative positions are
Δ1𝑥 = −2,Δ2𝑥 = −4,Δ3𝑥 = 4,Δ1𝑦 = 4,Δ2𝑦 = 2,Δ3𝑦 = −2 for each robot 𝑖. For CFC (53), Figure 9 displays the
path of all mobile robots during the 0-20 s, indicating that they converge to the desired formation. Figure 10
demonstrates that the formation tracking errors converge to zero, thereby achieving objectives (4) and (5).
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Figure 7. Evolution of position and orientation tracking error.
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Figure 8. Evolution of angular velocity of one leader and three follower agents.

Then, we choose Follower 2 as the comparison object. The higher gains of the UFC (26) are taken as 𝑘1 = 2,
𝑘2 = 4, and 𝑘3 = 1, and the lower gains of the UFC (26) are taken as 𝑘1 = 0.7, 𝑘2 = 1, and 𝑘3 = 0.2. The gains
of the CFC (53) are taken as 𝑘4 = 1.5, 𝑘5 = 6.8, and 𝑘6 = 0.6. The gains of the SFC (78) are taken as 𝑘7 = 0.7,
𝑘8 = 2.5, and 𝑘9 = 1.5. The rule of parameter selection for the SFC (78) is to make the response curves of
formation errors obtain better dynamic and steady-state performance as far as possible under the premise that
the gains 𝑘7, 𝑘8, and 𝑘9 meet the constraints in (79) and (80) while comparing. Figures 11-13 show the status
errors of follower 2 respectively. The curve of the control input is depicted in Figures 14 and 15. For a clearer
comparison of the performance of the various controllers, tracking error adjustment times are listed in Table 1.

According to Table 1, Figures 14 and 15, the tracking error convergence time of UFC (26) with a higher gain
is almost the same as that of CFC (53), but CFC (53) is effective against input saturation and can keep the
maximum linear velocity and angular velocity not exceeding the threshold. The tracking error convergence
time of the CFC (53) is shorter than that of the UFC (26) with lower gain while ensuring the same control
input amplitude. In addition, through simulation comparison, both CFC (53) and SFC (78) satisfy the velocity
constraint in equation (52), and CFC (53) guarantees better dynamic performance than controller (78).

According to the above simulation results, compared with UFC (26) and SFC (78), CFC (53) ensures that the
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Figure 9. The evolution trajectory of one leader and three follower agents’ position in the (𝑥, 𝑦) plane.
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Figure 10. Evolution of position and orientation tracking error.

control input meets the saturation constraint and does not lead to a significant increase in adjustment time. At
the same time, it is obvious that the convergence time of the UFC (26) is much smaller than that of the SFC
(78) regardless of whether the parameters of the UFC (26) are chosen as high or low gain. The superiority of
the proposed controller is demonstrated.

7. CONCLUSION
By employing a BIN approach, this study addresses the issue of leader-following formation control for a group
of nonholonomic multiagents. For each follower, a distributed estimator is designed to estimate the leaders’
state information. Based on the distributed estimator, we propose backstepping-based unconstrained and
saturated velocity CFCs, respectively. We also introduce BIN modeling to address the problem of impractical
velocity jumps, allowing the follower agent to maintain the desired geometry without relying on the leader’s
state information. Furthermore, sufficient conditions for constructing candidate sets of Lyapunov functionals
are given. Simulation results confirm that the proposed control law is effective. The method proposed in this
paper is based on an undirected graph and has some limitations. In future work, the proposed method will
be extended to directed graphs and the collision and obstacle avoidance problems in the formation control of
nonholonomic multiagent systems will be considered. At the same time, extending the kinematic control to
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Figure 11. Time evolution histories of 𝑥𝑟 − 𝑥2 + Δ2𝑥 of follower2.
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Figure 12. Time evolution histories of 𝑦𝑟 − 𝑦2 + Δ2𝑦 of follower2.
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Figure 13. Time evolution histories of 𝜃𝑟 − 𝜃2 of follower2.

the dynamic level is also a direction of effort.
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Figure 14. Time evolution histories of linear velocity of follower2.
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Figure 15. Time evolution histories of angular velocity of follower2.
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