Research Article

Open Access

Check for updates

Revealing the dynamic formation mechanism of porous Mo₂C: an *in-situ* TEM study

Yongzhao Wang^{1,2,#}, Yiming Niu^{1,2,#}, Yinghui Pu^{1,2}, Shiyan Li³, Yuefeng Liu³, Bingsen Zhang^{1,2,*}

¹Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.

²School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, China.
³Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.

[#]The authors contributed equally to this work.

***Correspondence to:** Prof. Bingsen Zhang, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, Liaoning, China. E-mail: bszhang@imr.ac.cn

How to cite this article: Wang Y, Niu Y, Pu Y, Li S, Liu Y, Zhang B. Revealing the dynamic formation mechanism of porous Mo₂C: an *in-situ* TEM study. *Chem Synth* 2023;3:42. https://dx.doi.org/10.20517/cs.2023.33

Received: 4 Jul 2023 First Decision: 28 Aug 2023 Revised: 11 Sep 2023 Accepted: 28 Sep 2023 Published: 10 Oct 2023

Academic Editors: Ying Wan, Jun Xu Copy Editor: Pei-Yun Wang Production Editor: Pei-Yun Wang

Abstract

In-situ transmission electron microscopy (TEM) enables direct observation of the micromorphology and microstructure evolution of catalysts in the chemical atmosphere. Studying the structural evolution during the formation of molybdenum carbide using *in-situ* TEM is helpful for the preparation of high-performance carbide catalysts. Herein, the formation mechanism of porous Mo_2C from MoO_2 nanoparticles (NPs) was studied by *in-situ* TEM. The formation of Mo_2C was induced by the defects of MoO_2 , and the formed Mo_2C facilitated the carbonization of neighboring MoO_2 NPs. The growth rate of Mo_2C between MoO_2 NPs was slower compared to that within a single MoO_2 NP. In addition, the formation and growth of pores in Mo_2C were also studied; the pores grew radially during the early stages from the nucleation sites and later grew branched and curved. As Mo_2C underwent competitive growth, the pores transitioned from straight to curved. Eventually, during prolonged carbonization at high temperatures, Mo_2C underwent sintering.

Keywords: Mo₂C, porous structure, growth mechanism, in-situ TEM

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

INTRODUCTION

The transition metal carbides are widely used in industry due to their unique physical and chemical properties^[1-7]. For instance, molybdenum (Mo) carbides can serve as supports in solid catalysts, which exhibit good performances in heterogeneous catalysis^[8-10]. Moreover, Mo carbides also are the active phases, owning similar catalytic properties with the precious metals because of the introduction of carbon atoms^[11-18]. They have been applied in hydrogenation^[19-23], steam reforming of methanol^[24], and water gas shift reaction^[25]. Among them, β -Mo₂C demonstrated excellent activity and selectivity in CO₂ reduction^[26], hydrogen production^[27], and hydrodeoxygenation reactions^[28]. Therefore, the research and development of preparation technology plays an important role in the application of high-performance Mo carbide catalysts. At present, the main preparation methods of Mo carbides include solid-solid and solid-gas (temperature-programmed reduction) reaction methods^[29]. The solid-gas approach, which employs the reaction of the Mo oxides and the carbon-containing gases (e.g., CO, CH₄, C₂H₆, and aromatic compounds), was developed rapidly^[30-36]. It is crucial to investigate the structural transformation process of Mo oxides into Mo carbides during temperature-programmed reduction carbonization.

Along with the development of preparation technologies for Mo carbides, the carbonization mechanism of Mo oxides to Mo carbides has also been studied intensively^[37-39]. The carburization of MoO₃ with hydrocarbon and hydrogen was studied by the photoelectron spectroscopy^[40]. The carbon deposition on the sample surface decreased with increasing carbon content. It indicated the diffusion of surface carbon on the sample into a bulk phase in the carburization process of Mo oxides. The MoO₂ was the intermediate phase determined by thermodynamic analysis in the process of MoO_3 transformed into $Mo_2C^{[41]}$. Based on this, the structural evolution processes of MoO₂ in different carbon-containing gas atmospheres were investigated systematically. For example, the reduction of MoO₂ powders with CO to produce Mo₂C was studied, and the reduction mechanisms were significantly distinct at different temperatures^[42]. The MoO₂ followed a onestep reaction translated to Mo₂C at lower temperatures. However, the transition process was different at high temperatures; the MoO, was reduced to Mo first, and then the Mo was carburized to Mo₂C. The transformation of MoO, to Mo,C in a hydrocarbon atmosphere was also focused. The MoO_xC_y as the intermediate phases were observed during the carburization of MoO₂ in CH₄/H₂ or C₂H₆/H₂^[43]. In addition, the mechanism of MoO₂ to Mo₂C under methane pulse conditions was also studied^[44]. The researchers proposed the "plum-pudding" model in the solid-phase transformation from MoO, to Mo,C. However, due to the limitation of characterization techniques, there are no relevant reports on the study of direct observation regarding Mo₂C formation processes in the preparation by temperature-programmed reduction methods. It seriously affects the perception and regulation of Mo₂C preparation. Usually, the direct reaction of Mo oxides with a carbon source at elevated temperatures generates β -Mo₂C. The investigation of their structural formation mechanism could provide guidance for the controllable preparation and also benefit the synthesis of Mo₂C with other phase structures.

In-situ transmission electron microscopy (TEM) has been used to directly visualize the structural evolution of nano-catalysts^[45-47]. In recent years, the deoxidation process of MoO₃ was studied by environmental TEM, accompanied by the nanoparticles (NPs) crushing and regrowth in H₂ and thermal field, and the MoO₃ has a good directional deoxidation process^[48]. Meanwhile, the different solid carbon sources were used, and the controllable growth of Mo carbides was monitored by *in-situ* TEM^[49]. The face centered cubic (FCC) MoC with full occupation of interstitial sites by carbon sites was formed because the sucrose was decomposed into high reactivity sp³ carbon atoms. The three-stage mechanism during nucleation and growth of Mo₂C NPs was also revealed by *in-situ* TEM^[50]. Furthermore, if an atmosphere is introduced into TEM, the formation process of Mo carbides in the carbonation atmosphere can be directly observed. This helps to understand the mechanism of synthesizing Mo carbides by the solid-gas reaction method.

Herein, to get a better understanding of the formation mechanism of Mo oxides to Mo carbides in a temperature-programmed reduction method, we studied the microstructural evolutions of MoO_2 NPs to porous Mo_2C in a mixed atmosphere of methane and hydrogen by using *in-situ* TEM. And the mechanism of gas-solid reaction in the formation of Mo_2C was analyzed in detail.

EXPERIMENTAL

Synthesis of MoO₃ nanobelts

The typical solvothermal method applied to synthesize the MoO₃ nanobelts has been reported previously^[51]. In brief, the 4,839 mg (0.02 mol) sodium molybdate dihydrate was dissolved in 60 mL deionized water after the 4 mL nitric acid was diluted by 16 mL deionized water and added to the stirred solution dropwise. Then, the solution was transferred into a 100 mL autoclave, sealed, and maintained at 130 °C for 12 h in an oven. Finally, the obtained deposition was filtered and washed with deionized water and then calcinated at 300 °C in air for 2 h. The MoO₂ was prepared by reducing MoO₃ nanobelts in H₂ or CH₄/H₂ atmosphere at 500 °C for 2 h with a heating rate of 10 °C/min. Mo₂C was synthesized under a CH₄/H₂ atmosphere at 700 °C for 2 h.

Samples characterization

TEM and high-angle annular dark field scanning TEM (HAADF-STEM) images were obtained using FEI Tecnai G² F20 operated at 200 kV. Scanning electron microscopy (SEM) images were obtained using Regulus 8100 operated at 3 kV. X-ray diffraction (XRD) measurements were performed on a Rigaku D/max 2400 diffractometer (Cu K α radiation, $\lambda = 0.15418$ nm) operating at 40 kV and 40 mA. X-ray photoelectron spectroscopy (XPS) characterization was carried out with an ESCALAB 250 instrument with Al K α X-rays (1,489.6 eV, 150 W, 50.0 eV pass energy). N₂ adsorption-desorption isotherms were measured on an ASAP 2020 micromeritics apparatus, and the specific surface areas of the samples were calculated following the multi-point BET (Brunauer-Emmett-Teller) procedure. The pore-size distributions were determined from the adsorption branch of the isotherms using the BJH (Barett-Joyner-Halenda) model.

CH₄/H₂ temperature programmed surface reaction (TPSR)

The 40 mg MoO₃ nanobelts were loaded in a quartz tube reactor that was connected to a mass spectrometer. Following, the samples were elevated to 700 °C with a heating rate of 5 °C/min under 20 vol.% CH_4/H_2 flow (5 mL/min). The mass signals of H_2 (Mz = 2) and H_2O (Mz = 18) were monitored during the process.

In-situ TEM investigation

The commercial gas-heating holder (produced by DENSsolutions), a home-made gas controlling system, and the Titan Themis G3 ETEM were adopted during the *in-situ* TEM experiments. The MoO₃ sample was encapsulated in a nanoreactor of a gas-heating holder. The nanoreactor has two amorphous SiN_x windows in order to observe the structural evolution of MoO₃ catalysts. The sample was calcinated at 300 °C in 20 vol.% O₂/He atmosphere for 30 min to remove any potential contamination before *in-situ* TEM experiments. Then, the temperature was lowered to room temperature, and the gas was switched to a 20 vol.% CH₄/H₂ atmosphere. The pressure in the nanoreactor was 1 bar during the test. Following, the temperature was sequentially elevated and kept at 500 °C, 600 °C, 700 °C, and 750 °C for *in situ* structural characterization.

RESULTS AND DISCUSSION

Characterization of the Mo oxides (carbides)

The typical XRD patterns and TEM images of MoO_3 nanobelts after calcination are shown in Supplementary Figure 1. The XRD pattern [Supplementary Figure 1A] confirmed the MoO_3 phase structure (JCPDS 65-2421) for MoO_3 nanobelts calcinated at 300 °C, and the sharp diffraction peaks verified the high

crystallinity. High-resolution TEM (HRTEM) with local fast Fourier transform (FFT) observation also identified the crystallographic property of MoO₃. The interplanar distances of 0.380 nm and 0.369 nm with an intersection angle of 90° were assigned to the (101) and (010) planes [Supplementary Figure 1C]. The sharp, bright diffraction spots are displayed in FFT [Supplementary Figure 1D], illustrating the high crystallinity of MoO₃ nanobelts, too. The temperature programmed surface reaction (TPSR) experiments show that the content change curves of H₂ and H₂O when MoO₃ nanobelts were reduced and carbonized [Supplementary Figure 2]. The reduction peaks at 500 °C and 600 °C indicate MoO₃ reduced to MoO₂ and MoO₂ transformed to Mo₂C, respectively. The second peak area of H₂O was larger than the first peak of H₂O, suggesting that there was a lot of water generated during the transformation from MoO₂ to MoO₂ to MoO₃ nanobelts in the CH₄/H₂ atmosphere at 500 °C exhibited a plate-like shape. As the treatment temperature increased, the MoO₂ was carbonized to MoO₂ and Mo₂C phases were confirmed by XRD [Supplementary Figure 3C and F] according to JCPDS 65-5787 and JCPDS 35-0787, respectively.

The STEM images and energy-dispersive X-ray spectroscopy (EDX) elemental maps of MoO_2 and Mo_2C samples were displayed in Supplementary Figure 4, exhibiting the well-distributed Mo/O in MoO_2 [Supplementary Figure 4A-C] and Mo/C in Mo_2C [Supplementary Figure 4D-F]. It indicated that the Mo oxides were completely transformed into the Mo carbides. TEM images and the EEL spectra of MoO_2 and Mo_2C samples [Supplementary Figure 5] show the morphology and electron structure changes of the samples before and after carbonization. It was observed that in plate-shaped MoO_2 , there were Mo M-edges and O K-edges, while in porous MoO_2 and Mo_2C . The XPS results were demonstrated and compared in Supplementary Figure 6. The peaks at 229.2 eV and 228.0 eV were assigned to Mo^{4+} and Mo^{2+} , respectively. As the MoO_2 transformed to $Mo^{5+}(Mo^{6+})$ species is ascribed to the surface oxidation while expositing to air.

Observation regarding the formation of porous Mo₂C

In order to understand the formation mechanism of Mo₂C, we observed the micromorphological and microstructural evolution of MoO₂ to Mo₂C at the nanoscale using *in-situ* TEM. Figure 1 exhibits the carbonization process of MoO_2 to Mo_2C under the 20 vol.% CH_4/H_2 atmosphere at ambient pressure. Figure 1A shows that the samples were MoO_2 NPs under the CH_4/H_2 atmosphere at 600 °C. The average particle size of MoO₂ NPs was 62.8 nm [Supplementary Figure 7]. When the temperature increased to 700 °C, the porous nanocrystals (pointed out with arrows) were observed, as shown in Figure 1B, suggesting the formation of Mo₂C at this temperature. Subsequently, the porous Mo₂C grew radially [Figure 1C]. As displayed in Figure 1D, most of MoO₂ NPs had been transformed into porous Mo₂C. Figure 1E shows the corresponding selected area electron diffraction (SAED) patterns of MoO₂ NPs [Figure 1A] and porous Mo₂C [Figure 1D] in the CH₄/H₂ atmosphere. The d-spacings of 3.42 Å, 2.43 Å, and 1.71 Å are close to the d₍₀₁₁₎, d₍₀₂₀₎, and d₍₀₂₂₎ referring to monoclinic MoO₂ (JCPDS 65-5787). Alternately, the d-spacings of 2.37 Å, 1.75 Å, and 1.30 Å are close to the $d_{(102)}$, $d_{(102)}$, and $d_{(200)}$ of hexagonal Mo₂C (JCPDS 35-0787). The diffraction spots transform into diffraction rings when MoO₂ is transformed into Mo₂C, indicating that the porous Mo₂C is polycrystalline. Figure 1F exhibits the intensity profiles from the integration of SAED patterns in Figure 1E, and it also confirmed the monoclinic MoO₂ and hexagonal Mo₂C pure phase structures for the samples in the CH_4/H_2 atmosphere at 600 and 700 °C, respectively. The unit cells [Figure 1G] and the histogram of cell volume and volume per Mo [Figure 1H] of MoO, and Mo₂C indicate that the formation of pores may be attributed to the volume reduction due to phase transformation, as there will be about 58.06% volume reduction when the same amount of Mo in the form of MoO, is converted to Mo₂C.

Figure 1. *In-situ* transformation from MoO_2 to Mo_2C . (A-D) *In-situ* TEM images of the Mo_2C formation from MoO_2 in 20 vol.% CH_4/H_2 atmosphere; (E) The corresponding SAED patterns of MoO_2 (A) and Mo_2C (D); (F) Intensity profiles from the integration of diffraction rings of SAED patterns in E (a.u., arbitrary units); (G) Unit cells of MoO_2 and Mo_2C ; (H) The histogram of cell volume and volume per Mo of MoO_2 and Mo_2C . (A): Molybdenum; SAED: selected area electron diffraction; TEM: transmission electron microscopy.

Unraveling the nucleation and growth of porous Mo₂C

Figure 2 displays the Mo₂C nucleation process of MoO₂ NPs under the drive of CH_4 and H_2 at 700 °C. Previous studies have illustrated that the methane was cracked into carbon with high reactivity at high temperatures, and the carbon species adsorbed on the surface of metal oxides^[52,53]. In this experiment, the MoO, and highly reactive carbon further reacted and formed the Mo carbides. It is noteworthy that the defects in MoO₂ NPs were more likely to be carbonized preferentially. The preferential nucleation of Mo₂C was located at the defects of MoO₂ NPs. Figure 2F showed many small nanocrystals gradually appearing and the generation of pores at the defects of MoO₂ NPs, suggesting that the Mo₂C sites were formed here. Following, Mo₂C grew radially from the nucleation site in all directions at MoO₂ NPs [Figure 2H-J]. It proved that the defects in MoO₂ NPs induced the nucleation of Mo₂C. In addition, the carbonization process of two adjacent MoO₂ NPs was observed at 700 °C in the CH₄/H₂ atmosphere [Supplementary Figures 8 and 9]. Under the co-drive of CH₄ and H₂, the defects in MoO₂ NPs were carbonized first, and the NP transformed into porous Mo₂C. Subsequently, the carbonized MoO₂ NP induced the carbonization of adjacent MoO₂ NPs at the interface between two NPs. The carbonization reaction crossed the interface between two NPs and continued in the next MoO, NP. Lastly, the two MoO, NPs were turned to porous Mo₂C, and the grain boundary of the two NPs disappeared. It further reveals that the carbonization of MoO₂ NPs was also promoted by the adjacent already carbonized porous Mo₂C as the nucleating agents.

Generally, the MoO_2 NPs obtained by the reduction of MoO_3 nanobelts were usually stacked^[54]. Herein, the growth rate of Mo_2C within and between MoO_2 NPs was studied [Figure 3]. There are approximately nine MoO_2 NPs stacked together in the observed two-dimensional (2D) region in Figure 3A. Figure 3K shows the growth rate of 2D area of porous Mo_2C in Supplementary Figure 10. The carbonization rate of MoO_2 NPs was represented by the growth rate of 2D area of porous Mo_2C . When Mo_2C grows across the interface between two MoO_2 NPs, it is considered to be carbonized between MoO_2 NPs. Alternately, when Mo_2C only grows inside MoO_2 NPs, it is carbonized within MoO_2 NPs. Judging from TEM images at 5 s, 10 s, and 15 s [Figure 3B-D], the carbonization reaction process between MoO_2 NPs was hindered and slowed down. This is mainly due to the presence of a high energy barrier at the grain boundary^[55,56]. Compared with Figure 3D (15 s) and E (20 s), the Mo_2C growth rate within MoO_2 NPs

Figure 2. Defect-induced nucleation of Mo₂C. (A-E) *In-situ* TEM images of the nucleation process of Mo₂C under 20 vol.% CH_4/H_2 atmosphere at 700 °C; (F-J) Enlarged TEM images acquired from the dashed boxes in (A) to (E). TEM: Transmission electron microscopy.

Figure 3. Growth rate of Mo_2C within and between MoO_2 NPs. (A-J) *In-situ* TEM images of structural evolution from stacked MoO_2 NPs to Mo_2C under 20 vol.% CH_4/H_2 atmosphere at 700 °C; (K) The carbonization rates within and between MoO_2 NPs. The boxes represent the growth rate of two-dimensional area of porous Mo_2C . Blue numbers represent the number of interfaces with Mo_2C growth crossing between MoO_2 NPs, and the capital letters represent the corresponding TEM images in (B-J). NPs: Nanoparticles; TEM: transmission electron microscopy.

increased after the carbonization reaction of MOO_2 crossed the interfaces between MOO_2 NPs. Especially from the 30 s [Figure 3F] to 35 s [Figure 3G], the growth of Mo_2C was quick, and the growth rate of 2D area of porous Mo_2C is over 3,000 nm²/s. It was because of only the growth of Mo_2C within MoO_2 NPs during this period. After 35 s [Figure 3H-J], the growth of Mo_2C slowed down since Mo_2C growth crossed the interfaces between MoO_2 NPs and the reduction of Mo sources in a late stage of MoO_2 carbonization. Supplementary Figure 11 also exhibits that the growth rate of Mo_2C within MoO_2 NP was slower than that between MoO_2 NPs. The above results indicated that the presence of an interface between MoO_2 NPs could only slow down the carbonization process but not prevent it. After the carbonization reaction within and between MoO_2 NPs, the MoO_2 NPs were transformed into porous Mo_2C , and the interfaces between the original MoO_2 NPs disappeared.

Figure 4. Growth types during the formation of Mo_2C . *In-situ* TEM images of radial (A-E), competition (B-J), and dendrite (K-O) growth of Mo_2C under 20 vol.% CH_4/H_2 atmosphere at 700 °C. TEM: Transmission electron microscopy.

Revealing the pore formation and evolution of porous Mo₂C

Subsequently, the formation of pores in the growth of Mo_2C was observed in Figure 4. The three types of porous Mo_2C growth were summarized. At the early stage, the pores showed radial growth from the center to the periphery [Figure 4A-E]. The structural transition from MoO_2 to Mo_2C was accompanied by the formation of straighter pores and faster pore growth rates. The competitive growth of pores was observed when two Mo_2C nucleation sites met during the carbonization process. As shown in Figure 4F-J, the straighter pores became distorted, and the growth rate of pores was slowed down during this process. In addition, the tip splitting and side branches of pores were observed in the late stage of growth. The growth of porous Mo_2C slowed down, and the pores curved due to the reduction of Mo sources [Figure 4K-O]. The above observations revealed that the growth and evolution of pores were affected by the amount of Mo sources. The pores of the Mo_2C radial grew and formed straighter pores when the Mo sources were sufficient. On the contrary, the pores of Mo_2C became curved and branched when the Mo sources were reduced.

Analyzing the microstructure of porous Mo₂C

Lastly, the micromorphology and structure of porous Mo₂C obtained by MoO₂ carbonization were analyzed, as shown in Figure 5. Figure 5B demonstrates the porous Mo₂C with different orientations of nanocrystals; the (101) facets with a lattice spacing of 2.29 Å were observed. The measured planes with lattice spacings of 2.61 Å, 2.29 Å, and 2.29 Å and angles of 64° and 52° in Figure 5C correspond to the crystal parameters of (010) 2.61 Å, (101) 2.29 Å and (1-11) 2.29 Å in hexagonal Mo₂C structures (JCPDS 35-0787). FFT pattern [Figure 5C] shows the hexagonal Mo₂C structure from the [-101] zone axis [Figure 5D]. The micromorphology and pore size of Mo₂C nanocrystal were computed in Supplementary Figure 12. The mean pore width and length are 1.4 nm and 9.7 nm, respectively. In addition, the N₂ physisorption tests [Supplementary Figure 13] were performed on MoO₂ and Mo₂C obtained after treatment at 600 and 700 °C, respectively. The low surface area of 1.11 m²·g⁻¹ MoO₂ NPs translated to high surface area of 5.00 m²·g⁻¹ porous Mo₂C. The pore-size distribution of MoO₂ showed a weak peak at 41.27 nm, whereas a strong peak at 2.21 nm was observed over porous Mo₂C, indicating that the pore formation in Mo₂C samples. However,

Figure 5. Characterization of the porous Mo₂C. *In-situ* TEM (A) and HRTEM (B and C) images of Mo₂C under 20 vol.% CH_4/H_2 atmosphere at 700 °C; (D) The corresponding FFT patterns of (C). FFT: Fast Fourier transform; HRTEM: high-resolution TEM; TEM: transmission electron microscopy.

the carbonization temperature of Mo_2C prepared by a temperature-programmed reduction method should not be too high. For example, Mo_2C samples undergo obvious sintering and disappearance of pores when the carbonization temperatures were increased to 750 °C from 700 °C, as shown in Supplementary Figure 14.

CONCLUSIONS

The structure evolution process of MoO_2 to porous Mo_2C in a carbonizing atmosphere was systemically investigated by using *in-situ* TEM. The formation of porous structures was observed during the carbonization process, which could be attributed to the volume decrease when an equivalent of Mo in the form of MoO_2 is converted to Mo_2C . The defects in MoO_2 NPs facilitated the nucleation of Mo_2C under CH_4/H_2 atmosphere at 700 °C. The porous Mo_2C induced the carbonization of neighboring MoO_2 NPs, and the interfaces between MoO_2 NPs slowed down the carbonization process. The carbonization reaction progressed from one MoO_2 NP to another through the interface. In the early growth stage of porous Mo_2C , the pores exhibited radial growth from the nucleation sites. However, in the late stage, the tip splitting and side branch formation of pores were observed. Moreover, the pores transitioned from straight to curved when the porous Mo_2C at different sites met during growth. Compared to MoO_2 , the porous Mo_2C obtained through temperature-programmed reduction methods has a higher specific surface area. This work sheds light on the formation process of porous Mo_2C in a CH_4/H_2 atmosphere and could provide guidance for the synthesis of porous carbides.

DECLARATIONS

Authors' contributions

Design of the study and writing of the manuscript for the whole work: Wang Y, Niu Y, Zhang B Performed the TEM characterization: Wang Y, Niu Y, Li S, Liu Y Performed the analysis of data: Wang Y, Niu Y, Pu Y Performed data acquisition and provided administrative, technical, and material support: Wang Y, Niu Y, Zhang B

Availability of data and materials

Experimental details on synthesis, characterization, and catalysis are available in the Supplementary Materials. Other raw data that support the findings of this study are available from the corresponding author upon reasonable request.

Financial support and sponsorship

This work was supported by the National Natural Science Foundation of China (Nos. 22072164, 22002173, 52161145403), the China Postdoctoral Science Foundation (2020M680999), the Natural Science Foundation of Liaoning Province (2022-MS-004), and the foundations of Shenyang National Laboratory for Materials Science.

Conflicts of interest

All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Copyright

© The Author(s) 2023.

REFERENCES

- 1. Lin Z, Denny SR, Chen JG. Transition metal carbides and nitrides as catalysts for thermochemical reactions. *J Catal* 2021;404:929-42. DOI
- 2. Li J, Chen X, Zhu X, Jiang Y, Chang X, Sun S. Two-dimensional transition metal MXene-based gas sensors: a review. *Chin Chem Lett* 2023:108286. DOI
- 3. Oyama S. Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 1992;15:179-200. DOI
- 4. Pang J, Sun J, Zheng M, Li H, Wang Y, Zhang T. Transition metal carbide catalysts for biomass conversion: a review. *Appl Catal B Environ* 2019;254:510-22. DOI
- 5. Dong S, Pu Y, Niu Y, Zhang L, Wang Y, Zhang B. Interstitial carbon in Ni enables high-efficiency hydrogenation of 1,3-butadiene. *Acta Phys Chim Sin* 2023;39:2301012. DOI
- 6. He K, Shen R, Hao L, et al. Advances in nanostructured silicon carbide photocatalysts. Acta Phys Chim Sin 2022;38:2201021. DOI
- Du X, Zhang R, Li D, Hu C, Garcia H. Molybdenum carbide as catalyst in biomass derivatives conversion. J Energy Chem 2022;73:68-87. DOI
- Yao S, Zhang X, Zhou W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017;357:389-93. DOI
- 9. Dong J, Fu Q, Jiang Z, Mei B, Bao X. Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal-support interaction effect. *J Am Chem Soc* 2018;140:13808-16. DOI PubMed
- 10. Lin L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. *Nature* 2017;544:80-3. DOI
- 11. Ma Y, Guan G, Hao X, Cao J, Abudula A. Molybdenum carbide as alternative catalyst for hydrogen production a review. *Renew Sust Energ Rev* 2017;75:1101-29. DOI
- 12. Hou R, Chang K, Chen JG, Wang T. Replacing precious metals with carbide catalysts for hydrogenation reactions. *Top Catal* 2015;58:240-6. DOI
- 13. Frühberger B, Chen JG. Reaction of ethylene with clean and carbide-modified Mo(110): converting surface reactivities of molybdenum to Pt-group metals. *J Am Chem Soc* 1996;118:11599-609. DOI
- Shi Y, Yang Y, Li Y, Jiao H. Activation mechanisms of H₂, O₂, H₂O, CO₂, CO, CH₄ and C₂H_x on metallic Mo₂C(001) as well as Mo/C terminated Mo₂C(101) from density functional theory computations. *Appl Catal A Gen* 2016;524:223-36. DOI
- Du X, Liu J, Li D, et al. Structural and electronic effects boosting Ni-doped Mo₂C catalyst toward high-efficiency C-O/C-C bonds cleavage. J Energ Chem 2022;75:109-16. DOI
- Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. *Angew Chem Int Ed Engl* 2014;53:6407-10. DOI PubMed
- 17. Lian JH, Tan HY, Guo CQ, et al. Unravelling the role of ceria in improving the stability of Mo₂C- based catalysts for the steam reforming of dimethyl ether. *Catal Sci Technol* 2021;11:5570-8. DOI
- 18. Guo X, Wang C, Wang W, et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. *Nano Res Energy* 2022;1:e9120026. DOI
- Yang Q, Qiu R, Ma X, Hou R, Sun K. Surface reconstruction and the effect of Ni-modification on the selective hydrogenation of 1,3butadiene over Mo₂C-based catalysts. *Catal Sci Technol* 2020;10:3670-80. DOI
- Yue S, Xu D, Sheng Y, et al. One-step synthesis of mesoporous alumina-supported molybdenum carbide with enhanced activity for thiophene hydrodesulfurization. *J Environ Chem Eng* 2021;9:105693. DOI
- Dongil AB, Zhang Q, Pastor-pérez L, Ramírez-reina T, Guerrero-ruiz A, Rodríguez-ramos I. Effect of Cu and Cs in the β-Mo₂C system for CO₂ hydrogenation to methanol. *Catalysts* 2020;10:1213. DOI
- Rocha AS, Souza LA, Oliveira Jr RR, Rocha AB, da Silva VT. Hydrodeoxygenation of acrylic acid using Mo₂C/Al₂O₃. Appl Catal A Gen 2017;531:69-78. DOI
- 23. Ye X, Ma J, Yu W, et al. Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective

hydrogenation of CO2 into ethanol. J Energy Chem 2022;67:184-92. DOI

- 24. Cao J, Ma Y, Guan G, et al. Reaction intermediate species during the steam reforming of methanol over metal modified molybdenum carbide catalysts. *Appl Catal B Environ* 2016;189:12-8. DOI
- 25. Wang G, Schaidle JA, Katz MB, Li Y, Pan X, Thompson LT. Alumina supported Pt-Mo₂C catalysts for the water-gas shift reaction. *J* Catal 2013;304:92-9. DOI
- 26. Zhang X, Liu Y, Zhang M, et al. Synergy between β -Mo₂C nanorods and non-thermal plasma for selective CO₂ reduction to CO. *Chem* 2020;6:3312-28. DOI
- 27. Ma FX, Wu HB, Xia BY, Xu CY, Lou XW. Hierarchical β-Mo₂C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. *Angew Chem Int Ed* 2015;54:15395-9. DOI
- Murugappan K, Anderson EM, Teschner D, Jones TE, Skorupska K, Román-leshkov Y. Operando NAP-XPS unveils differences in MoO₃ and Mo₂C during hydrodeoxygenation. *Nat Catal* 2018;1:960-7. DOI
- 29. Vitale G, Guzmán H, Frauwallner ML, Scott CE, Pereira-almao P. Synthesis of nanocrystalline molybdenum carbide materials and their characterization. *Catal Today* 2015;250:123-33. DOI
- **30.** Vitale G, Frauwallner M, Hernandez E, Scott C, Pereira-almao P. Low temperature synthesis of cubic molybdenum carbide catalysts via pressure induced crystallographic orientation of MoO₃ precursor. *Appl Catal A Gen* 2011;400:221-9. DOI
- 31. Chang H, Zhang G, Chou K. Topochemical synthesis of one-dimensional Mo₂C nanobelts. Ceram Int 2020;46:12891-6. DOI
- Wang L, Zhang G, Chou K. Preparation of Mo₂C by reducing ultrafine spherical β-MoO₃ powders with CO or CO-CO₂ gases. J Aust Ceram Soc 2018;54:97-107. DOI
- Li S, Kim WB, Lee JS. Effect of the reactive gas on the solid-state transformation of molybdenum trioxide to carbides and nitrides. *Chem Mater* 1998;10:1853-62. DOI
- 34. Xiao T, York APE, Coleman KS, et al. Effect of carburising agent on the structure of molybdenum carbides. *J Mater Chem* 2001;11:3094-8. DOI
- 35. Kugler EL, Clark CH, Wright JH, et al. Preparation, interconversion and characterization of nanometer-sized molybdenum carbide catalysts. *Top Catal* 2006;39:257-62. DOI
- Jung KT, Kim WB, Rhee CH, Lee JS. Effects of transition metal addition on the solid-state transformation of molybdenum trioxide to molybdenum carbides. *Chem Mater* 2004;16:307-14. DOI
- Alaba PA, Abbas A, Huang J, Daud WMAW. Molybdenum carbide nanoparticle: understanding the surface properties and reaction mechanism for energy production towards a sustainable future. *Renew Sust Energ Rev* 2018;91:287-300. DOI
- Wang W, Han Y, Li Z, Liu X, Xu S. Phase equilibrium diagram and phase transformation for preparation of Mo₂C: thermodynamic study and experimental verification. *Ceram Int* 2020;46:755-62. DOI
- **39**. Zhu L, Zhao Y, Yang W, Hsu H, Peng P, Li F. Low-temperature selective synthesis of metastable α-MoC with electrochemical properties: electrochemical co-reduction of CO₂ and MoO₃ in molten salts. *Chinese Chem Lett* **2023**:108583. **DOI**
- Koós Á, Oszkó A, Solymosi F. A photoelectron spectroscopic study of the carburization of MoO₃. *Appl Surf Sci* 2007;253:3022-8. DOI
- 41. Cetinkaya S, Eroglu S. Thermodynamic analysis and synthesis of porous Mo₂C sponge by vapor-phase condensation and in situ carburization of MoO₃. *J Alloys Compd* 2010;489:36-41. DOI
- 42. Dang J, Zhang G, Wang L, Chou K, Pistorius PC. Study on reduction of MoO₂ powders with CO to produce Mo₂C. *J Am Ceram* Soc 2016;99:819-24. DOI
- Hanif A, Xiao T, York APE, Sloan J, Green MLH. Study on the structure and formation mechanism of molybdenum carbides. *Chem Mater* 2002;14:1009-15. DOI
- Bkour Q, Cuba-torres CM, Marin-flores OG, et al. Mechanistic study of the reduction of MoO₂ to Mo₂C under methane pulse conditions. *J Mater Sci* 2018;53:12816-27. DOI
- 45. Wang Y, Niu Y, Gao T, Liu S, Zhang B. Assessing the effect of the electron-beam irradiation on Pd/Ga₂O₃ catalyst under ambient pressure. *ChemCatChem* 2020;12:4765-9. DOI
- 46. Niu Y, Liu X, Wang Y, et al. Visualizing formation of intermetallic PdZn in a palladium/zinc oxide catalyst: interfacial fertilization by PdH_x. *Angew Chem Int Ed Engl* 2019;58:4232-7. DOI
- Li C, Liu B, Jiang N, Ding Y. Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. *Nano Res Energy* 2022;1:e9120031. DOI
- Ma P, Li A, Wang L, Zheng K. Investigation of deoxidation process of MoO₃ using environmental TEM. *Materials* 2021;15:56. DOI PubMed PMC
- 49. Lin Z, Cai L, Lu W, Chai Y. Phase and facet control of molybdenum carbide nanosheet observed by in situ TEM. *Small* 2017;13:1700051. DOI PubMed
- 50. Fei L, Ng SM, Lu W, et al. Atomic-scale mechanism on nucleation and growth of Mo₂C nanoparticles revealed by in situ transmission electron microscopy. *Nano Lett* 2016;16:7875-81. DOI
- Yang S, Wang Z, Hu Y, et al. Highly responsive room-temperature hydrogen sensing of α-MoO₃ nanoribbon membranes. ACS Appl Mater Interfaces 2015;7:9247-53. DOI
- 52. Bonnet F, Ropital F, Berthier Y, Marcus P. Filamentous carbon formation caused by catalytic metal particles from iron oxide. *Mater Corros* 2003;54:870-80. DOI
- 53. Zou Z, Fu L, Song X, Zhang Y, Liu Z. Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth

of graphene. Nano Lett 2014;14:3832-9. DOI

- 54. Hu B, Mai L, Chen W, Yang F. From MoO₃ nanobelts to MoO₂ nanorods: structure transformation and electrical transport. *ACS Nano* 2009;3:478-82. DOI
- 55. Guo X, Maier J. Grain boundary blocking effect in zirconia: a schottky barrier analysis. J Electrochem Soc 2001;148:E121. DOI
- 56. Rohrer GS. The role of grain boundary energy in grain boundary complexion transitions. Curr Opin Solid St M 2016;20:231-9. DOI