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INTRODUCTION

Amyloid β peptide (Aβ) containing senile plaques are 
one of the neuropathological hallmarks of Alzheimer’s 
disease (AD). Much of this work has focused on 
the biosynthesis of Aβ and factors that influence its 
deposition.[1] The Aβ peptides are generated via internal 

proteolysis of its precursor, the amyloid precursor 
protein (APP).[2,3] In addition, a variety of neuronal 
cytoskeletal alterations is prominent features of AD 
neuropathology.[4,5] Whether these abnormal features are 
the result or cause of neuronal loss is still controversial.
[6-10] Early onset autosomal dominant AD is directly 
linked to mutations in one of the several genes: APP, 
presenilin 1 (PS1), or presenilin 2 (PS2).[11-13] In 
addition, several genes, most notably the apolipoprotein 
E (APOE) 4 allele, alter risk for later onset AD, and it is 
clear that mutation or polymorphism in several other 
genes can lead to similar AD phenotypes.[14]

Recent studies have suggested that early exposure of 
individuals to environmental toxins, drugs, and other 
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agents appear to contribute to diseases that occur later 
in life.[15-18] Osmond and Barker have suggested (and 
this has been supported by others) that there are critical 
periods during fetal development where programming 
by a stimulus or insult has a lasting or lifelong effect.[19] 
We know that various tissues, including the brain, go 
through developmental programming to determine 
the number of cells (programmed cell death), types 
of cells, that participate to the final development 
of the brain.[20] It has been suggested that exposure 
of tissues to insults at critical times could result in 
reprogramming to give rise to diseases later in life.[18] It 
has been suggested that exposure of the brain to toxic 
agents triggers a process that will elicit the onset of 
AD, reprogram the brain to have AD start at an earlier 
age, or to exacerbate the process of AD.[21] This can be 
achieved by a number of ways. Metabolic, blood flow, 
endocrine, nutritional changes can affect blood lipids, 
plasma insulin, obesity, atherosclerosis, behavior and 
learning in small mammals and primates.[21-23] The 
application of this process to AD has been recently 
suggested and demonstrated in the latent early-life 
associated regulation model.[24,25]

This study evaluated the effects of the pesticide 
chlorpyrifos oxon (CPO) on the development of AD 
later in life. To test this hypothesis, we determined the 
influence of CPO on AD by treating APP transgenic 
mice during gestation, during lactation and after 
weaning. Our data showed that CPO exacerbated the 
pathogenesis of AD in the mouse model and that this 
process may be partially mediated by inflammation and 
by the effects of CPO on acetylcholinesterase (AChE) 
inhibition. These findings validate the influence 
of environmental toxins on the development and 
progression of AD.

METHODS

Transgenic Alzheimer’s disease mice
The mice used for these studies expressed the mutant 
form of human presenilin-1 (DeltaE9) and the mutant 
form of the chimeric mouse/human APP695.[26] The 
mouse prion protein promoter directed the expression 
of both transgenes. The DeltaE9 mutation of the human 
presenilin-1 gene is a deletion of exon nine and 
corresponds to a form associated with early-onset AD. 
The APP695 gene harbors the K595N/M596L (Swedish) 
AD-causing mutations. The coding sequence of mouse 
Aβ peptide domain was humanized by replacing the 
three amino acids that differ between the two species 
with the human residues. These APP/ΔPS1-Tg (referred 
to as APP) mice start developing amyloid plaques 
at about 3-4 months of age. These mice were on a 
C57BL/6J background.

Polymerase chain reaction analysis was utilized to 
determine the genotype of the animals as previously 
described.[27] All experimental mice were male. Mice 
were given free access to food and water before and 
during the experiment.

Treatment of mice
Amyloid precursor protein transgenic mice were 
treated with CPO administered orally, dissolved in 
corn oil. During a preexperimental phase, all females 
were trained to drink corn oil from a syringe, to ensure 
proper administration of the vehicle and also to reduce 
stress associated with handling and exposure to a new 
stimulus. Following this training period, the females 
were paired with APP males in segregated cages, for up 
to a week, in order for mating to occur. The appearance 
of vaginal plugs was taken as evidence of successful 
insemination, at which time the females were separated 
from the males and placed in single housing in cages. 
Each female was randomly assigned to one of six 
CPO (Chem Service, West Chester, PA; 99.1% pure) 
dose groups: oil vehicle (at each time), 1 mg/kg bw/
day for 3-week during gestation, 1 mg/kg bw/day 
for 3-week during lactation, and 1 mg/kg bw/day 
starting at 2 months of age. For the gestation and 
lactation groups there were 6 females in each group; 
this was done to ensure that potential dose effects 
could not be confounded with individual variation 
associated with a single dam and to provide sufficient 
numbers of offspring for statistical analysis. There 
were no differences in weight or reduced locomotor 
activity following treatment (data not shown). Animal 
studies were conducted according to regulations by the 
National Institutes of Health and as approved by the 
Institutional Animal Care and Use Committee at the 
Medical University of South Carolina and Ralph H. 
Johnson VA Medical Center.

Age of mice for analysis of memory deficits and biomarkers
Memory function, amyloid plaque and brain biomarkers 
were evaluated after significant memory deficits 
developed in the AβPP mice.

Spatial memory deficit
The memory deficit in the animals was measured 
by the Morris water maze test as we have described 
previously.[27,28] Briefly, the spatial memory capability 
of each animal was assessed with the Morris water 
maze test (700-0718-4 W San Diego (SD) instruments) 
which evaluates memory in a swimming test. Mice were 
individually trained in a 1.2 m open field water maze in a 
pool filled with water to a depth of 30 cm and maintained 
at 25 °C. An escape platform (10 cm square) was placed 
1 cm below the surface of the water. All animals 
underwent nonspatial pretraining for 4 consecutive days, 
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which prepared the animals for the final behavioral test to 
determine the retention of memory to find the platform. 
Two days following the nonspatial pretraining, the hidden 
platform was placed in the center of one quadrant of the 
pool, the animal was released facing the pool wall in a 
random fashion, the time was recorded (latency period), 
and the distance traveled to reach the platform was 
measured using video recording (Smart Video Tracking 
System; SD Instruments).

On the day after the last training session, the platform 
was removed, and a spatial probe test conducted. 
Each mouse was allowed to search for the platform 
for 60 s (memory retention) and the percent 
time spent in quadrant where the platform was 
located (northeast (NE) quadrant) and in the outer 
annular area were determined.

Brain amyloid plaque
Amyloid plaque load was assessed in brain sections (10 
from each mouse) as we have described previously, 
achieved by immunohistochemical staining for Aβ (Aβ 
antibody 10D5, Elan pharmaceuticals).[27,28] Brain 
tissues were fixed in 4% paraformaldehyde and then 
in 4% parformaldehyde and 30% sucrose for 24 h and 
each at 4 °C. Tissues were washed in buffered saline 
and transferred to an optimum cutting temperature 
medium. Cryosections were cut and blocked with 
normal serum, incubated with anti-Aβ and stained 
with diaminobenzoic acid (vector ABC Elite kit, vector 
laboratories). Bright field light microscopy imaged 
brain areas from which stained amyloid areas were 
quantitated using image analysis (NIH Image software, 
NIH, Washington, DC).

Brain amyloid β analysis
Brain Aβ analysis was conducted as previously 
described for transgenic AD mice.[27,28] Briefly, 
animals were sacrificed and brain extracts were 
homogenized (1:3 weight/volume of buffer) in 
buffer of 5 mol/L guanidine HCl in 50 mmol/L 
Tris-HCl, pH 7.6, 150 mmol/L NaCl, plus protease 
inhibitors (Sigma). Homogenates were diluted to 
0.5 mol/L guanidine and centrifuged (200,000 g 
for 20 min), and supernatant and pellet fractions 
were collected. The pellet from the brain extract 
procedure was sonicated in 6 mol/L guanidine and 
centrifuged at 200,000 g for 20 min at 4 °C, and 
the supernatant was diluted to 0.5 mol/L guanidine. 
The two supernatants were combined, and Aβ (40) 
and Aβ (42) (Aβ1-40 and Aβ1-42, respectively) were 
determined using enzyme-linked immunosorbent 
assays (ELISAs) kits specific for each peptide (IBL, 
JP27718 and JP27711). ELISAs measured Aβ peptides 
by methods previously described.[29-33] Protein content 
was determined by the Bradford method.

C-terminal fragment-β and soluble amyloid precursor 
protein α analysis
C-terminal fragment-β (CTF-β) is generated from 
APP by β-secretase in the amyloidogenic pathway, 
and soluble APP (soluble amyloid precursor 
protein) is generated from APP by α-secretase in the 
nonamyloidogenic pathway. Western blots measured 
CTF-β and sAPPα brains of transgenic mice, using the 
same amount of protein per gel lane, performed as 
previously described.[27,28] CTF-β was determined in the 
pellet fraction from the brain extract (antibody 8717, 
sigma) and sAPPα was assessed in the supernatant 
fraction from the brain extract (antibody 6E10, 
signet laboratories). Relative amounts of CTF-β and 
sAPPα were measured by densitometry and results 
were expressed as a percentage of the mean levels 
of CTF-β and sAPPα of the control groups (without 
protease gene knockouts). Control β-actin western 
blots (antiβ-actin from Cell Signaling Technology) 
was conducted to monitor equal loading of the same 
amounts of samples (20 μg protein) in each gel lane.

Immunohistochemistry staining
Cryosections of the right brain hemispheres were 
washed 3 times (5 min/wash) with Tris-buffered 
saline (TBS) (pH 7.4) buffer, followed by washing 
1 time with 0.1% Triton X-100-TBS buffer for 5 min. 
Sections were then incubated in 3% H2O2 and TBS 
buffer for 30 min at room temperature to eliminate 
endogenous peroxidase activity. After 1 h of blocking 
with 5.0% serum (horse or goat), the sections were 
incubated overnight with primary antibodies. Primary 
antibody and dilutions were: glial fibrillary acidic 
protein (GFAP)-positive astrocytes (1:200 dilution, 
2E1; BD Biosciences, San Jose, CA). The next day, 
sections were washed 3 times (5 min/wash) with 0.1% 
Triton X-100 and TBS buffer to remove excess primary 
antibody. Thereafter, primary antibodies were detected 
using horseradish peroxidase (HRP)-conjugated 
mouse immunoglobulin G Vectastain ABC kit 
and DAB/substrate reagents (vector laboratories, 
Burlingame, CA) according to the manufacturer’s 
instructions.

Enzyme-linked immunosorbent assays for inflammatory 
markers
Brain hemispheres were weighted and homogenized 
with 4 volumes of phosphate buffered saline 
buffer (125 mg/mL) containing complete protease 
inhibitor cocktail (Sigma-Aldrich, Saint Louis, MO, 
USA). The supernatant was then collected, and total 
protein was determined by the BCA method (Pierce 
Biotechnology, Rockford, IL, USA). Tumor necrosis 
factor (TNF)-α, interleukin (IL)-1β and IL-6 levels 
were measured with a mouse TNF-α, IL-1β and IL-6 
ELISA kits (R and D Systems, Minneapolis, MN, USA).
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Protein carbonyl content
Protein carbonyl content was determined by the 
OxiSelect Protein Carbonyl Kit (Cell Biolabs, Inc.) 
and ELISA. Briefly, bovine serum albumin (BSA) 
standards or protein samples (10 μg/mL) were 
adsorbed onto a 96-well plate for 2 h at 37 °C. The 
protein carbonyls present in the sample or standard 
were derivatized to dinitrophenyl (DNP) hydrazone 
and probed with an anti-DNP antibody, followed 
by an HRP conjugated secondary antibody. The 
protein carbonyl content in an unknown sample 
was determined by comparing with a standard curve 
that was prepared from predetermined reduced and 
oxidized BSA standards.

Statistical evaluation
Experiments consisted of 10 mice in each group. 
Each biochemical analysis consisted of two or three 
replicates. Statistical analyzes and data display were 
conducted utilizing computer software designed for 
scientific data analysis (Prism 4 GraphPad, Prism, La 
Jolla, CA). Quantitative data are displayed as the mean 
and standard error of the mean. Differences between 
groups were determined by ANOVA analysis and 
Dunnett’s multiple comparison tests used to determine 
differences between transgenic control mice and treated 
animals.

RESULTS

Experimental protocol
To investigate the influence of environmental toxins 
on AD, we used the APP transgenic mice expressing 
the mutant form of human presenilin-1 (DeltaE9) and 
the mutant chimeric mouse/human APP695 residue 
form (51). The mouse prion protein promoter directs 
the expression of both transgenes. APP mice start 
developing amyloid plaques around 3-4 months of age. 
This will allowed us to study the process in a relatively 
short period and to allow for the generation of sufficient 
animals for the studies. APP mice were exposed to 
either 1 mg/kg CPO via ingestion by suspending 

the toxin in corn oil (CPO) or corn oil alone. For 
these studies, three experimental paradigms were 
employed [Figure 1]. (1) Pregnant APP female mice 
were fed CPO daily for 3-week from the beginning of 
gestation; (2) female APP mice were fed CPO daily for 
3-week from the beginning of lactation; and (3) weaned 
APP offspring were fed CPO daily for up to 6 months 
of age. CPO has been shown to cross the placental 
and is secreted into the milk following treatment of 
rodents.[34,35]

Administration of chlorpyrifos oxon exacerbates memory 
deficits in the amyloid precursor protein mice
The effect of the CPO (1 mg/kg) on the various 
paradigms was assessed for nonspatial pretraining for 
four consecutive days to learn the location of the hidden 
platform. Analyzes by the Morris water maze test on 
each day of the training period showed that the mice 
do learn, indicated by the reduced latency time for the 
mice to reach the hidden platform during the training 
period [Figure 2]. By the 4th day of training, the 
control APP in all groups showed the shortest latency 
period, representing enhanced learning, compared 
to the CPO APP mice. Mice administered CPO under 
each paradigm showed a worsening of the latency time 
suggesting that the treatment with CPO perturbs the 
learning process.

Two days following training, mice were subjected 
to the final behavioral Morris water maze test to 
determine the memory deficits. CPO-treated mice 
exhibited substantial worsening of memory deficits, 
assessed by the latency period and distance traveled, 
which is the time and distance, respectively, 
that it took the animal to swim to the submerged 
platform [Figure 3]. The shorter time and distance 
traveled indicates better memory. The CPO treatment 

Figure 1: Experimental protocol for treatment of mice with chlorpyrifos oxon. 
This figure illustrates the protocol for the treatment of transgenic Alzheimer’s 
disease mouse model utilized in this study. (a) Treatment of pregnant female 
amyloid precursor protein (APP) mice for 3‑week during gestation; (b) treatment 
of female APP mice after birth and for 3‑week during lactation; (c) treatment 
of APP mice following weaning until termination of the study at 6 months. All 
animals were assessed behaviorally prior to sacrifice. -3w, indicates time of plug 
following when male and female APP mice were placed together; 0, indicates 
time at birth; +3w, indicates time of weaning of APP mice

Figure 2: Treatment of amyloid precursor protein (APP) mice with chlorpyrifos 
oxon (CPO) results in diminished memory acquisition. APP mice (control, corn 
oil alone) and APP mice treated with CPO (CPO) from the different groups at 6 
months of age were trained in the Morris water maze test on each of 4 consecutive 
days to learn the location of a submerged, invisible platform in a pool of water. 
The time that it took the mice to swim to the platform was recorded each day, 
measured as the latency period (in seconds, s), with shorter latency times 
indicating better memory acquisition. Latency (s) is shown as mean ± standard 
error of the mean (statistical significance, *P < 0.05, **P < 0.01, compared to 
APP control group; n = 12 per group)
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resulted in a 160% and 167% (gestation), 141% and 
152% (lactation) and 140% and 142% (weanling) 
increase in the latency period and distance traveled, 
respectively [Figure 3a and b]. The 16 s latency 
period, and the 72 cm distance are the time and 
distance for wild-type mice (nontransgenic, same 
strain as APP mice) [Figure 3a and b, dotted lines].

Administration of CPO resulted in substantial memory 
loss in the APP mice as illustrated by the reduced 
percent time spent in the NE quadrant (from which the 
submerged platform was removed), and the increased 
percent time spent in the outer annulus, compared 
to control APP mice [Figure 4]. The CPO treatment 
resulted in a 48% (gestation), 46% (lactation) 
and 35% (weanling) decrease in the percent time 
spent in the NE quadrant and a 215% (gestation), 
213% (lactation) and 233% (weanling) increase 
in the percent time spent in the annulus. The APP 
mice (control) and APP CPO mice did not have a 
different swimming speed (data not shown). Thus, 
by the four parameters measured in the Morris water 
maze test, the CPO administration exacerbated the 

memory deficits that develop in the transgenic APP 
mice.

Administration of chlorpyrifos oxon to amyloid precursor 
protein mice exacerbates brain amyloid plaque load
Aβ immunohistochemistry of brain sections showed 
that the treatment with CPO increased brain 
amyloid plaques in the APP mice [Figure 5a and b]. 
Administration of CPO under all paradigms resulted 
in an increase in amyloid plaque load in the APP 
mice [Figure 5c]. Quantitative image analysis of the Aβ 
immunohistochemistry showed that the CPO resulted 
in a significant 214% (gestation), 234% (lactation) and 
215% (weanling) increase in brain amyloid plaque 
load relative to control APP animals [Figure 5c].

Administration of chlorpyrifos oxon alters brain biomarkers 
in a manner characteristic of inflammation and increase in 
amyloid precursor protein processing by β-secretase
Amyloid precursor protein-derived Aβ peptides 
and APP-derived cleavage products resulting from 
amyloidogenic and nonamyloidogenic processing of 
APP were evaluated in the control and CPO treated 

Figure 3: Treatment of amyloid precursor protein (APP) mice with chlorpyrifos oxon CPO results in exacerbated memory deficits. Memory deficits of APP mice 
were assessed 2 days after completion of the training in the Morris water maze test by measuring the latency period (a) and distance traveled (b) for animals to 
swim to the submerged, invisible platform. The shorter latency periods and shorter distances traveled indicate improved memory. APP mice (control, corn oil alone) 
compared to APP mice treated with CPO had shorter mean latency periods. Memory function of wild‑type mice of the same strain and age is shown by the dotted 
line, as reported previously.[7] Values are expressed as mean ± standard error of the mean, and n = 12 per group. *Statistically significant (P < 0.05)

ba

Figure 4: Treatment of amyloid precursor protein (APP) mice with chlorpyrifos oxon (CPO) results in diminished memory retention. The day after the last training 
session, the submerged platform was removed and the mice were allowed to swim in the pool for 60 s. The percent time each animal swam in the quadrant from 
which the platform had been removed (northeast [NE] quadrant) (a) and the percent time an animal swam in the annulus of the pool were recorded (b). Greater 
memory retention is reflected in a higher percent time in the northeast quadrant and lower percent time in the annulus. APP mice (control, corn oil alone) compared 
to APP mice treated with CPO had percent times in the quadrant of shorter duration. Values are expressed as the mean ± standard error of the mean, and n = 12 
per group. *Statistically significant with P < 0.05

ba
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mice. Amyloidogenic processing of APP by β-secretase 
produces the CTF-β fragment and Aβ peptides, and 

nonamyloidogenic processing of APP by α-secretase 
results in the sAPPα fragment.[27,31]

Figure 5: Treatment of amyloid precursor protein (APP) mice with chlorpyrifos oxon (CPO) results in increased brain amyloid plaque load. Amyloid plaque load 
was determined by immunohistochemistry and image analysis of brain sections from APP mice (control, corn oil alone) and CPO treated APP mice as shown in 
(a‑c and d‑f), respectively (representative images). Arrows indicate amyloid plaque deposits. (g) Quantitation showed that control APP mice had mean percent 
amyloid plaque loads lower than that of the CPO treated mice (n = 12 per group, values are expressed as mean ± standard error of the mean, *Statistically 
significant with P < 0.05)
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Figure 6: Treatment of amyloid precursor protein (APP) mice with chlorpyrifos oxon (CPO) results in changes in amyloid β (Aβ)‑related biomarkers. Brain Aβ (40) 
and Aβ (42) (A‑β1-40 and Aβ1‑42, respectively) levels were determined by enzyme‑linked immunosorbent assay. The APP mice (control, corn oil alone) compared 
to CPO‑treated APP mice (CPO) had lower mean brain Aβ (40) levels (a) and mean Aβ (42) levels (b). Brain APP‑derived CTF‑β, generated by β‑secretase, was 
assessed by western blot analysis (c). Relative quantitation by densitometry showed that the APP mice (control, corn oil alone [CON]) compared with CPO treated 
APP mice (CPO) had lower mean brain CTF‑β levels (d). APP‑derived sAPPβ was evaluated by western blot analysis (e). Quantitation by densitometry showed 
that the APP mice (control, CON) compared to CPO‑treated APP mice (CPO) had higher mean brain sAPPβ levels (f) (n = 12 per group, values are expressed as 
mean ± standard error of the mean, *Statistically significant with P < 0.05)
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Chlorpyrifos oxon administration to the transgenic APP 
mice at all-time points increased both brain Aβ1-40 and 
Aβ1-42 compared with control APP mice [Figure 6a and b]. 
The CPO treatment caused an increase in brain CTF-β 
levels relative to controls [Figure 6c and d]. The 
CPO treatment reduced sAPPα levels relative to 
controls [Figure 6e and f].

Since CTF-β is a β-secretase cleavage product, an 
increase in CTF-β resulting from CPO treatment in the 
APP mice suggests that β-secretase activity is increased 
following administration of CPO. Increased production 
of CTF-β from APP in CPO-treated mice is likely to result 
in decreased APP available for α-secretase leading to a 
decrease in sAPPα [Table 1].

Administration of chlorpyrifos oxon enhances inflammation 
and oxidative stress in the brain of amyloid precursor 
protein mice
In order to help determine the role of CPO on AD, 
we determined its impact on inflammatory markers 
in the brain following treatment. Brain samples from 
the control APP and CPO treated mice were examined 
for the cytokines tumor necrosis factor-α (TNF-α), 
interleukin 1β (IL-1β) and IL-6 levels at the termination 
of the study [Figure 7a-c]. All the treatment groups 
showed a significant elevation in the cytokine levels 
compared to the control APP mice [Table 2]. In addition, 
weaned APP mice were fed CPO (1 mg/kg) and then 
examined at various times up to 12 months for TNF-α 
levels [Figure 7d]. As seen in the figure, animals treated 

Figure 7: Treatment of amyloid precursor protein (APP) mice with chlorpyrifos oxon (CPO) results in exaggerated inflammation. Control APP mice and mice treated 
with CPO were evaluated for inflammatory markers. (a) Treatment of APP mice (3-week-old) with CPO showed constitutively elevated levels of tumor necrosis 
factor‑α (TNF‑α) in the brain compared to liver and serum levels. (b) Comparison of CPO treated APP mice to control APP mice showed a significant difference in 
the levels of TNF‑α at all‑time points. (c) Comparison of TNF‑α (1), interleukin‑1α (IL‑1α) (2) and IL‑6 (3) in the various treated groups. (d) APP mice were fed CPO 
(1 mg/kg) and then livers, blood and brains were examined at the indicated time points for TNF‑α levels. Values are expressed as mean ± standard error of the 
mean, n = 12 per group. *Statistically significant (P < 0.05). (e) Immunostaining for glial fibrillary acidic protein (GFAP) in control (1) and CPO treated (2) animals 
(neonates). Brain sections were stained with anti‑GFAP antibody
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with CPO showed a significant increase in TNF-α 
levels early following treatment. However, while the 
TNF-α levels in the liver and blood returned to baseline 
within several days, the levels in the brain remained 
elevated for up to 12 months. Finally, brain sections 
from the APP mice treated with and without CPO 
during lactation were subject to immunohistochemistry 
for GFAP [Figure 7e]. As shown in figure, GFAP was 
significantly elevated in the CPO treated mice compared 
with the control animals.

Furthermore, we analyzed the protein carbonyl content (a 
biomarker of reactive oxygen species) in the brain of the 
APP mice, and found that the level of oxidized proteins 
was significantly increased (> 50%) in mice treated with 
CPO than in the control APP mice [Figure 8].

Administration of chlorpyrifos oxon decreases brain 
neurotrophic factors
To further characterize the changes in brain following 
treatment with CPO, APP mice were evaluated for 
neurotrophic factor levels [Figure 9]. Following 
treatment with CPO, mice were examined for nerve 
growth factor, brain-derived neurotrophic factor, and 
neurotrophin-3 levels in the brain [Table 3]. As shown 
in figure, all treatments significantly reduced the 
neurotrophic factor levels in the brain.

Administration of galantamine partially attenuates the 
effects of chlorpyrifos oxon on Aβ peptide levels and amyloid 
plaque load
As a potential therapeutic approach, we determined 
the impact of galantamine (a competitive and 
reversible cholinesterase inhibitor) that can protect 
against organophosphorus insecticides [Figure 10]. 

Figure 8: Protein carbonyl content in the brains of amyloid precursor protein 
(APP) transgenic mice treated with and without chlorpyrifos oxon. Extracts 
from the brains of APP transgenic mice were analyzed for the level of oxidized 
proteins by OxiSelect and enzyme‑linked immunosorbent assay. Values are 
expressed as mean ± standard error of the mean, n = 12 per group. *Statistically 
significant (P < 0.05)

Figure 9: Treatment of amyloid precursor protein (APP) mice with chlorpyrifos oxon (CPO) results in a decrease in neurotrophic factors. Brain nerve growth factor, 
brain‑derived neurotrophic factor and neurotrophin‑3  levels (panels a, b and c, respectively) were determined by enzyme‑linked immunosorbent assay in APP 
mice (control) and APP mice treated with CPO (CPO). Values are shown as the mean ± standard error of the mean, and n = 12. *Statistically significant (P < 0.05)
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Treatment of weaned APP mice with CPO or CPO plus 
galantamine (2 mg/kg/day) showed a significant reduction 
in Aβ peptide levels (Aβ1-40-148.2 ± 15.87 nmol/L vs. 
85.30 ± 10.43 nmol/L; Aβ1-42-51.6 ± 7.37 nmol/L vs. 
24.7 ± 4.37 nmol/L, respectively) and plaque load 
(5.46 ± 0.81% area vs. 2.57 ± 0.56% area, respectively).

DISCUSSION

The major result of this study is that CPO 
(organophosphate pesticide) exacerbates amyloid 
pathology and enhances memory deficits in the APP 
transgenic mouse model. This is one of the first studies 
to demonstrate that pesticides result in increased 
AD pathology. Moreover, mice treated in utero, 
during neonatal development or during adulthood all 
developed AD-like pathogenesis to a greater extent than 
control animals. These significant findings suggest that 
environmental factors may influence AD development 
and progression and that developing preventatives or 

therapeutics to attenuate the effects of the pesticides 
may limit the extent of AD and improve memory 
deficits of AD.

The aging United States population is leading to a 
growing number of individuals with neurodegenerative 
disorders.[36] Since only a small proportion of the 
individuals with AD have a genetic predisposition to 
the disease and because the pathogenesis of the disease 
remains to be elucidated, we need to consider alternative 
hypotheses to determine the disease process. Over the 
years, a number of studies have focused on the role of 
environmental toxins in AD but have not been able to 
link the two.[37-42] Previous studies have examined the role 
of heavy metals in the AD.[43-46] For years, we have known 
that heavy metals affect brain development resulting in 
abnormalities that persist throughout life. Several studies 
indicated that aluminum (Al) found in antiperspirants, 
antacids and occupational exposure can contribute to the 
development of AD.[47,48] However, just as many studies 

Figure 10: Treatment of amyloid precursor protein (APP) mice with galantamine partially attenuates the effects of chlorpyrifos oxon (CPO) on amyloid β (Aβ peptide 
levels and plaque load. Weaned APP mice (3‑week of age) were treated with CPO (1 mg/kg) or CPO + galantamine (2 mg/kg/day, i.m.) and examined for Aβ peptide 
levels (a) and amyloid load (b) values are shown as the mean ± standard error of the mean, and n = 12. *Statistically significant (P < 0.05)

ba

Table 1: Aβ‑related biomarker levels in the brains of APP mice
In utero (nmol/L) Neonatal (nmol/L) Adult (nmol/L)

Aβ1‑40
81.2 ± 14.9 132 ± 16.3 85.3 ± 15.3 152 ± 30.4 68.2 ± 11.6 135 ± 26.1

Aβ1‑42
36.0 ± 6.34 65.2 ± 13.8 38.5 ± 8.38 76.6 ± 13.5 34.4 ± 8.54 69.8 ± 14.2

In utero (% of control) Neonatal (% of control) Adult (% of control)
sAPPα 98.6 ± 13.6 58.4 ± 11.4 94.3 ± 11.0 63.4 ± 17.0 108 ± 11.4 46.2 ± 9.59
CTFβ 96.6 ± 10.9 145 ± 26.0 115 ± 20.9 165 ± 28.5 102 ± 16.2 157 ± 25.3

Table 2: Inflammatory marker levels in the brains of APP mice
In utero (pg/mg) Neonatal (pg/mg) Adult (pg/mg)

TNF‑α 100 ± 8.29 254 ± 35.9 109 ± 9.43 271 ± 38.2 112 ± 15.2 358 ± 43.9
IL‑1β 99.7 ± 10.0 164 ± 16.8 97.3 ± 6.74 161 ± 19.0 105 ± 9.23 206 ± 25.4
IL‑6 95.6 ± 8.59 212 ± 41.8 91.7 ± 8.61 183 ± 26.6 107 ± 15.8 262 ± 39.4

Table 3: Neurotrophic factor levels in the brains of APP mice
In utero (pg/mg) Neonatal (pg/mg) Adult (pg/mg)

NGF 66.7 ± 5.09 29.0 ± 4.91 67.1 ± 6.42 31.0 ± 6.12 63.0 ± 7.95 26.6 ± 6.79
BDNF 78.4 ± 6.56 37.4 ± 6.24 80.9 ± 6.80 23.9 ± 8.53 78.0 ± 7.23 35.1 ± 8.20
NT‑3 24.8 ± 1.82 10.8 ± 1.72 24.8 ± 2.23 9.96 ± 2.13 25.2 ± 3.09 12.1 ± 1.88
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have indicated the Al has no effect.[48-50] The same can be 
said for lead (Pb), mercury (Hg), methylmercury (MeHg), 
iron (Fe), zinc (Zn), etc.[51-54] The association between 
solvent exposure and AD is weak and in some cases 
contradictory.[55,56] In addition, electromagnetic fields 
have a tenuous relationship to AD.[57,58] Finally, various 
pesticides have been linked to AD as well as other 
neurological disorders especially Parkinson’s disease. 
The effects of specific pesticides (organophosphates 
and carbamates) on the brain are well known and 
contribute to a number of pathological features. Tyas 
et al.[38] and Baldi et al.[40] showed that occupational 
exposure to defoliants/fumigants or general 
pesticides as statistically limited to AD. Furthermore, 
epidemiological studies have demonstrated that specific 
organochlorides (dichlorodiphenyltrichloroethane, 
dichlorodiphenyldichloroethylene and dieldrin) 
were present in the brains of both AD and Parkinson’s 
disease patients suggesting an etiological relationship 
for these chemicals.[59]

The findings of this study address the impact of 
environmental factors on the which exacerbates 
brain biochemical processes and memory deficits 
upon exposure in a mouse model expressing the APP 
transgene that is relevant to sporadic AD patients, 
representing more than 90% of the AD population. 
Environmental factors have been viewed in the field as 
potential targets for therapeutic intervention to prevent 
or attenuate pathology and memory deficits associated 
with AD.[44] Identification of such pathways involved 
in enhanced memory deficits was accomplished in this 
study by using the APP mouse model of AD.[28]

Treatment of mice in utero, during neonatal development 
or as adults resulted in an altered biomarker pattern 
consistent with enhanced AD-like activity. Biomarker 
analyses showed that pesticide exposure of the APP 
mice increased brain Aβ and CTF-β derived from APP by 
β-secretase, and reduced sAβPPα; these changes represent 
an altered Aβ-related pattern characteristic of augmenting 
the processing of APP. These data demonstrate that 
pesticides may enhance β-secretase activity in a transgenic 
mouse model expressing APP or may reduce the clearance 
of Aβ peptides via proteases or other mechanisms.[36,60] 
The biomarker data supports the hypothesis that exposure 
of the APP mice to CPO enhances memory deficits by 
altering the presence of Aβ peptides. Moreover, the 
data suggest that the improvement in memory deficits 
occurring with administration of galantamine may be due 
to the reversible inhibition of AChE activity.[61]

Our data shows that certain environmental toxins regulate 
oxidative stress and inflammatory processes triggered by 
the Aβ peptide. The toxins enhance Aβ production and 

exacerbate oxidative stress. Thus, the aim of this study 
was to determine the impact of environmental toxins 
on the pathogenesis of AD. The overall hypothesis 
is that environmental influence occurring during 
brain development and beyond result in damage to 
mitochondria, and reprogramming of the brain resulting 
in increased oxidative stress and inflammation.[62,63] This 
process alters expression of various genes related to the 
development of AD (increased APP expression, increase 
APP processing), which further exacerbates the disease 
course.[64] This susceptibility early in life exacerbates 
the normal process of amyloidogenesis in the aging 
brain, accelerating the onset of AD.[65] Several studies 
have suggested in human studies or demonstrated in 
animal studies that environmental toxins do influence 
neurodegeneration and neurobehavioral function.[44,65-68] 
Stewart et al.[67] showed that APOE genotype and 
previous exposure to lead can alter behavioral aspects of 
aged individuals. In addition, they showed that magnetic 
resonance imaging analysis of these individuals showed 
increased neurodegeneration compared to individuals 
not exposed to lead.[66] Finally, Zawia has shown that 
exposure of rats and mice to lead early in life can 
exacerbate APP processing and amyloid formation in 
the brain.[44,65,68]

In conclusion, this study shows that exposure of APP 
transgenic mice to pesticides as different times during 
development results in enhanced memory deficits and 
altered brain APP metabolism. In addition, we show 
that the CPO exacerbates inflammation, oxidative stress 
and suppresses neurotrophic factor expression that 
may contribute to the disease process. Importantly, 
these data validate the impact of environmental toxins 
on the enhancement of AD pathology and suggest that 
this process may contribute to the development and 
progression of AD in people.
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