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Abstract
As a natural material, leather has been widely used in daily life due to its high biocompatibility, wearing comfort, 
and excellent mechanical strength. However, with the increasing demand for a better life among people, the single 
function of leather has difficulty in meeting the requirements, which limits its application prospects. It is particularly 
important to develop multifunctional leather composites with diverse characteristics. Therefore, leather can be 
modified and functionally designed through physical and chemical methods towards intelligent wearable devices. 
From this perspective, we review the research progress of intelligent leather-based wearable composites, mainly 
focusing on the preparation methods and application directions in recent years. Finally, we emphasize the 
challenges that leather composites will face in practical applications and propose future research directions.
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INTRODUCTION
Leather, as an ancient natural polymer, has a simple source and preparation, abundant reserves, high 
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biocompatibility, good breathability, strong stability, wear resistance, biodegradability, etc.[1-3]. The 
preparation process for the leather preserves the flexibility and strength of animal skin; thus, it has been 
used as a popular clothing and armor material throughout history[4,5]. In the early days, people’s demand for 
leather products was practical, beautiful, sturdy, and stab-resistant. Compared to traditional weaving fabrics, 
the natural 3D weaving structure and intertwined fiber bundles of leather can better reduce acupuncture 
damage. However, with the rapid development of soft functional composites and flexible electronic devices, 
the single function and application of leather composites cannot satisfy the requirement[6,7]. In comparison 
to flexible substrates with a single structure, such as polydimethylsiloxane (PDMS), polyethylene 
terephthalate (PET), etc., the leather is more easily modified and highly breathable due to the natural porous 
structures[8]. Furthermore, the mechanical strength of leather is reliable compared to other fiber-based 
substrates, such as cotton-based textiles and polyimide (PI)[9]. Therefore, leather will be expected to have 
more potential applications in wearable electronic devices, electromagnetic interference shielding, flame 
retardant protection, and intelligent thermal management[10].

When processed into leather, the original skin of animals requires many steps, such as removing impurities, 
tanning, fat-liquoring, and drying[11,12]. After a series of treatments, the nanoscale collagen fibers, unique 3D 
porous network structure, and multilevel hierarchical structure were ultimately retained[13]. Based on this 
special microstructure and biocompatible collagen fibers, a large amount of research has emerged on 
multifunctional leather composites in recent years[14]. On the one hand, various functional materials were 
selected to combine with collagen fibers to form physical adhesion or chemical crosslinking bonds[3,15], 
which were composed of conductive materials including graphene oxides (GO)[16,17], carbon nanotubes 
(CNTs)[18,19], silver nanowires (AgNWs)[20], MXene[21], poly(3,4-ethylenedioxythiophene)-poly(styrene 
sulfonate) (PEDOT:PSS)[22], etc., and insulating materials include silicon dioxide particles[23], boron 
nitride[24], montmorillonite[25], etc. Then, the structural design was carried out on the leather at the macro- or 
micro-scale by utilizing the above functional materials to obtain leather composites with editable 
properties[26]. These methods are similar to dyeing in the leather-making process. On the other hand, the 
natural microstructure of leather fiber networks could be used for in-situ growing hydrogels or other 
composites through the induction of catalytic materials. At last, the obtained hydrogels or other composites 
could be further designed by the above functional materials, which enabled leather composites to get other 
functions[27,28].

By combining various functional materials, the smart leather with tunable functionalities, such as 
conductive leather[29,30], electromagnetic shielding leather[31], flame retardant leather[32,33], antibacterial 
leather[34-36], thermal camouflage leather[37], waterproof leather[11,38], and so on, has been developed. From this 
perspective, we mainly introduce several common and efficient preparation methods for constructing 
intelligent leather composites and then focus on their applications in flexible sensors, electromagnetic 
interference shielding, flame retardant, body safeguarding, thermoregulatory clothing, and other aspects. 
Finally, the potential difficulties and future development trends of leather composites in practical 
applications are discussed. This discussion will help intelligent leather composites enter people’s daily lives 
and promote the industrialization development stage of functional leather[39].

DESIGN AND PREPARATION OF LEATHER COMPOSITES
Currently, there have been many studies on the preparation of leather composites. In this section, five 
common and effective methods are introduced in detail, including vacuum-assisted filtration, spraying, laser 
direct writing (LDW), in-situ growth, and multilayer assembly.
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Vacuum-assisted filtration
The method of vacuum-assisted filtration utilizes a vacuum environment to provide a pressure difference 
between the upper and lower sides of leather, which drives functional materials to enter the interior of the 
leather and combine with collagen fibers. Then, the samples were dried to obtain leather composites. Due to 
its unique layered structure, there are significant differences between the two sides of leather. The grain side 
is composed of collagen fibers and elastic fibers, and the fiber bundles are finer and more tightly woven, 
presenting an uneven shape[40]. The fiber side is composed of interwoven bundles of collagen fibers of 
different thicknesses, forming a three-dimensional network, and its tightness is positively correlated with 
the mechanical properties of leather. Ma et al. utilized this characteristic to put the fiber side of the leather 
upwards, and AgNWs were dissolved and infiltrated into the porous structure of the leather through 
vacuum-assisted filtration [Figure 1A][41]. Strong interactions between AgNWs and collagen fiber bundles 
could be generated through hydrogen bonding, forming an efficient three-dimensional conductive network 
in leather. The pores of leather range from tens to hundreds of nanometers, so nanoscale functional 
materials, such as MXene, CNTs, GO, poly(3,4-ethylenedioxythiophene) nanofibers (PEDOT NFs), and 
ionic liquids, within this scale can be used to prepare leather composites by vacuum-assisted filtration[42].

Spraying and soaking
The methods of spraying and soaking are attaching functional materials to leather through physical 
processes, relying solely on the binding ability of functional materials and leather collagen fibers, which is 
relatively simple and convenient in terms of process. In general, some polymer solutions, non-metal, and 
metal particles are used to spray onto the leather substrate to form functional coatings, which can 
strengthen the interfacial bonding between the material and leather due to soaking during the spraying 
process[24,43]. Wilson et al. used bimetallic copper-iron oxide nanoparticles to spray on the surface of the 
leather as an electromagnetic coating[15]. The formed electrically conductive and magnetically active 
bifunctional leather demonstrated the application possibilities in operating intelligent screens and magnetic 
switches. Li et al. soaked La2O3 and Bi2O3 nanoparticles in sheep leather and sprayed them on the upper and 
lower surfaces of leather as coatings, greatly increasing the particle load and enhancing its X-ray protection 
performance[44]. Mo et al. also combined spraying and vacuum-assisted filtration to filter acidified CNTs on 
the fiber side and sprayed porous cellulose acetate on the corium side to obtain multifunctional double-layer 
leather composites, greatly utilizing the layered structure of leather [Figure 1Ba][45]. It is obvious that one 
side of the leather becomes black after filling acidified multiwalled carbon nanotubes (a-MWCNTs), and the 
other side turns white after spraying porous cellulose acetate. The resulting double-layer leather composites 
maintain good mechanical performance and breathability [Figure 1Bb-f].

Laser direct writing
In recent years, LDW has gradually become a high-precision and efficient processing technology[46,47]. Many 
fabric-based flexible electronics were developed by the LDW technique, and the various carbon precursors 
were converted into graphene during the laser scanning in the textile. Based on maskless, design flexibility, 
and pattern editable characteristics of LDW, Yang et al. used a femtosecond laser on Kevlar fabric to induce 
graphene for various electronic textile applications[48]. It is simple to construct wearable sensors in various 
textile structures by LDW. Leather, as an emerging biomaterial, contains a large amount of carbon elements. 
Various flexible electronic devices also can be manufactured without the need for other functional materials 
by combining computer control with micro-processing technology. Local high temperatures are generated 
by laser irradiation on the leather substrate to achieve carbonization. Wang et al. used the LDW method to 
induce the carbonization of collagen fiber on the surface of the leather for fabricating wearable sensors. The 
high control accuracy could directly characterize complex structures, such as arrays, on the surface 
[Figure 1Ca-d][49]. In this case, the collagen fibers transformed from insulation to conductive materials after 
carbonization and could directly serve as strain sensors to detect tensile and compressive strains. Zhang 
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Figure 1. The preparation methods of leather composites. (A) Schematic illustration for fabricating AgNW/leather nanocomposites by 
vacuum-assisted filtration[41]. Reprinted with permission. Copyright 2022, Wiley-VCH; (Ba) Schematic diagram of the fabrication of 
leather/a-MWCNT/CA fabric by spraying and vacuum-assisted filtration; (Bb-f) Photographs of the color, bendability, cross-sectional 
characterization, and breathability of leather/a-MWCNT/CA fabric[45]. Reprinted with permission. Copyright 2023, Wiley-VCH; (Ca) A 
schematic shows the sensor fabrication on the leather by laser direct writing and (Cb) another schematic shows the conversion of 
collagen fibers in the leather to carbon flakes by the LDW; (Cc and d) Schematic and photograph of a 3 × 3 sensor array[49]. Reprinted 
with permission. Copyright 2020, Wiley-VCH. AgNW: Silver nanowire; a-MWCNT: acidified multiwalled carbon nanotubes; LDW: 
laser direct writing.

et al. prepared the cross-sensing arrays on the leather substrate with the assistance of LDW technology[21]. 
The final product exhibits effective control for mechanical hand movements and human-machine 
interaction switches, which indicates the high convenience and application potential of the LDW method.

In-situ polymerization
Originally, in-situ polymerization was the filling of reactive monomers into the interlayer of nanolayered 
materials, allowing them to undergo polymerization reactions between the layers. The natural hierarchical 
3D network structure of leather provides an interpenetrating fiber network for the in-situ growth of 
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polymers[50]. By configuring different precursor solutions, they can easily flow in the porous structure of the 
leather and conduct gelation[28]. Fan et al. used natural goat skin as the substrate and dipped the acrylic 
monomer, Zr4+ ions, carbon quantum dots@nanosilver particles (CQDs@AgNPs), and 1,3-propanediol 
(PDO) into the fiber skeleton of leather. Then, the AA monomer was in-situ polymerized to obtain a 
multifunctional hydrogel containing the leather skeleton [Figure 2Aa][27]. The 3D network of leather in ionic 
gel became an effective flow channel for loading CQDs@AgNPs and PDO, which endowed the hydrogels 
with excellent mechanical properties, self-adhesiveness, transparency, UV shielding, antibacterial, 
biocompatibility, and conductivity. Furthermore, the Zr(SO4)2 could form a strong interfacial bonding with 
collagen fibers to enhance the network structure; therefore, the mechanical properties of leather composites 
were strengthened [Figure 2Ab]. This method provides effective design ideas for the development of 
intelligent, flexible electronic skins.

Multilayer assembly
Sandwich structures can enhance the overall mechanical properties of composites through the synergistic 
coordination of different components[51,52]. Fan et al. proposed a flexibility-toughness coupling design 
strategy to develop intelligent anti-impact leather. By assembling flexible shear stiffening gel (SSG), tough 
leather, and nonwoven fabric (NWF) into a Leather/SSG/NWF sandwich structure, the mechanical 
properties of the resulting leather composite were greatly improved [Figure 2B][53]. At the same time, the 
leather layer could also be designed with special functions. For example, the MXene nanosheets could be 
combined with leather fibers through vacuum-assisted filtration, and then the wearable Leather/MXene/
SSG/NWF safeguarding leather composite with excellent sensing, thermal management, and 
electromagnetic interference shielding was obtained. Obviously, this idea can be further expanded for the 
multifunctional design and application of intelligent leather [Figure 2C][54].

MULTIFUNCTIONAL APPLICATIONS OF LEATHER COMPOSITES
By combining various functional materials with leather, a variety of leather composites, including 
conductive leather, electromagnetic shielding leather, flame retardant leather, thermal management leather, 
etc., have been successfully developed[6,26,55]. Then, intelligent leather composites are further obtained by 
structural design and assembly based on single-function leather, which can be widely used for flexible 
sensors, electromagnetic shielding devices, safety protection, flame retardant, intelligent displays, and 
intelligent thermal management. As shown in Table 1, the preparation methods and functionalities of 
different leather composites based on various materials are summarized to understand intuitively. 
Obviously, intelligent leather composites provide an important research direction for the development of 
wearable electronic devices.

Flexible sensors
Flexible sensors have broad application prospects in human motion monitoring, human-machine 
interactions, and the intelligent wearable field[56,57]. Natural leather materials have a hierarchical structure 
and elemental composition similar to human skin; thus, they can be used as an excellent substrate material 
for flexible sensors. To date, various leather composites have been widely used in flexible sensors, which can 
be divided into different working mechanisms, including piezoresistive sensing[13,16], strain sensing[58,59], 
triboelectricity[17,21], and so on. Ma et al. prepared AgNW/leather composites and assembled them with 
interdigitated copper electrodes to form a piezoresistive sensor [Figure 3Aa][41]. The piezoresistive sensor 
showed different sensitivities in three distinct pressure stages, indicating excellent piezoresistive sensing 
ability. When the pressure is lower than 2.5 kPa (stage I), the piezoresistive sensor shows a low sensitivity 
due to the slight compression deformation of AgNW/leather composites. As the pressure increases to 
10 kPa (stage II), the collagen fiber bundles undergo densification, resulting in a more efficient conductive 
network under larger compression deformation, so the piezoresistive sensor shows a high sensitivity. If the 
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Figure 2. The preparation methods of leather composites. (Aa) Schematic fabrication route of leather composite by in-situ 
polymerization; (Ab) the crosslinking mechanism of leather composite[27]. Reprinted with permission. Copyright 2023, Wiley-VCH; (B) 
The schematic of Leather/CNT-SSG/NWF; and (C) Leather/MXene/SSG/NWF by multilayer assembly[53,54]. CNT: Carbon nanotube; 
SSG: shear stiffening gel; NWF: nonwoven fabric.

applied pressure is larger than 10 kPa (stage III), the sensitivity of the piezoresistive sensor begins to 
decrease because the efficient conductive networks have been constructed [Figure 3Ab and c]. Furthermore, 
the sensing performance of AgNW/leather composites is stable under multiple pressure cycling current 
changes and has a short response time (100 ms) [Figure 3Ad and e]. The leather pressure sensor can also 
monitor finger bending and changes in the throat during speech in real-time, demonstrating excellent 
responsiveness and stability in human motion detection [Figure 3Af-h].
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Figure 3. The application directions of leather composites. (Aa) The LED lamp lighting upon pressure; (Ab) illustration for the electric 
current response mechanism upon externally applied pressures; (Ac) relative current changes of the AgNW/leather nanocomposites 
upon various pressures, (Ad and e) the piezoresistive sensing performances of the AgNW/leather nanocomposites; (Af-h) human 
motion detection of the AgNW/leather nanocomposites[41]. Reprinted with permission. Copyright 2022, Wiley-VCH; (Ba) Structure of 
leather-based display; (Bb-g) smart display based on electroluminescence[42]. Reprinted with permission. Copyright 2019, Wiley-VCH. 
AgNW: Silver nanowire; CNT: carbon nanotube.

Actually, fabric-based flexible electronics also have good sensing performance; however, their mechanical 
strength is weaker than the leather composites[60]. Yan et al. prepared a polytetrafluoroethylene (PTFE)/
AgNW/silk fibroin fabric sensor, and it showed wonderful monitoring[61]. Obviously, its application can be 
enlarged after improving the low tensile strength. Xie et al. introduced carbon black into leather, and then 
the Kirigami structure was designed[58]. The leather-based strain sensor can accurately identify the bending 
angle and direction. More importantly, the resistance changes maintained the stability of the strain sensor 
under 12,000 bending cycles, which showed good durability and mechanical performance. Finally, the 
shapes also can be recognized by using this sensor. Due to the unique surface structure of leather, the rough 
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fiber surface provides natural advantages for frictional power generation. Moreover, Zhang et al. 
constructed rough MXene films on leather fiber surfaces to improve the performance of frictional power 
generation. The output voltage of the leather-based triboelectric nanogenerator (TENG) was stable under 
cyclic impact for 4,000 s, which showed excellent durability. Furthermore, the array sensor was fabricated to 
achieve the motion control of a mechanical hand, which demonstrated the potential in human-computer 
interaction applications[21].

With the development of intelligent leather composites, conductive leather is widely used in various 
industries[30]. By utilizing the sensing capabilities of conductive leather, “dead skin” is “revitalized”, 
providing a new electronic device design strategy for intelligent sensing, display, and interaction devices[42]. 
In the dyeing and finishing process of leather making, personalized design is carried out on leather 
composites to obtain multi-stimuli responsive chromic devices[62]. Zou et al. applied an electroluminescent 
layer on the surface of the conductive leather composite and successfully illuminated them by designing 
complex patterns such as flowers and words, demonstrating the excellent visual display ability of electronic 
devices[42]. Furthermore, the brightness of leather-based electronic devices could be varied with the amount 
of pressure applied, which further controlled the light intensity of the device through pressure and provided 
real-time visual feedback [Figure 3B]. This design strategy is simple and efficient; thus, it is expected to be 
intensively applied to develop artificial intelligence and interactive electronic devices.

Electromagnetic interference shielding
With the popularization of electronic devices, concerns about electromagnetic radiation pollution and 
electromagnetic shielding have become important[31]. Generally, the main ways to shield electromagnetic 
waves include reflection, absorption, and multiple reflections[63]. It is beneficial for enhancing the 
electromagnetic shielding effect by designing the structure and conductivity of the material. Leather has the 
natural dielectric property, which enables dipoles to relax, resulting in dielectric loss to electromagnetic 
wave energy under the action of electromagnetic waves[43]. Secondly, after functionalization by various 
conductive materials, the 3D collagen fiber network of the leather will induce electromagnetic waves to 
undergo multiple reflections in the conductive network, resulting in Ohmic loss to consume 
electromagnetic wave energy. For example, Bai et al. used polypyrrole (PPy), superconductive carbon black 
(SCB), 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDTES), and PDMS to nano-engineer the design of 
leather[64]. The resulting PPy/SCB@PP-CFs with high conductivity (6.5 S/m) show significant 
electromagnetic shielding ability [Figure 4A]. It also indicates that the thickness of leather composites is 
positively correlated with electromagnetic shielding performance. As the thickness increases, the time for 
multiple reflections of electromagnetic waves on leather increases; then, more electromagnetic wave energy 
is consumed. At the same time, leather, as a promising natural material, has excellent X-ray protection 
capabilities due to its multilayer woven structure that complements other functional materials[65-67].

Flame retardant
Leather is inherently flammable since it is composed of a large number of collagen fibers and contains 
elements such as carbon, nitrogen, hydrogen, and oxygen[68], which limits its applications. Therefore, it is 
very important to develop leather composites with flame-retardant properties[69]. Recently, many intelligent 
fire-safe fabrics have been developed by modifying the surface of textiles with flame retardants[70-72]. The 
preparation of leather requires tanning and fat-liquoring, which greatly facilitates the addition of flame 
retardants and can be directly introduced into the leather-making process[73]. Wang et al. in situ grew silica 
particles on the 3D framework of leather and sprayed silica particles on the surface to obtain a thermal 
insulation layer[37]. The leather composite did not ignite after direct contact with the flame, demonstrating 
its excellent flame retardancy [Figure 4B]. Lyu et al. added montmorillonite and layered double hydroxide 
to leather during the fat-liquoring process to form a synergistic flame retardant system that enhances the 
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Figure 4. The application directions of leather composites. (Aa) Schematic illustration of electromagnetic interference shielding and 
electronic conductivity of PPy/SCB@PP-CFs; (Ab-e) the characterization of electrical characteristics; (Af-h) the EMI effectiveness of 
PPy/SCB@PP- CFs[64]. Reprinted with permission. Copyright 2023, Royal Society of Chemistry; (B) and (C) The flame retardant 
performance of leather composites[25,37]. Reprinted with permission. Copyright 2018, Elsevier. Reprinted with permission. Copyright 
2021, Elsevier. PPy: Polypyrrole; SCB: superconductive carbon black.

protection of leather fibers[25]. The ultimate limiting oxygen index of leather composites reaches 33.8%, and 
leather composites can quickly self-extinguish after leaving the flame, greatly improving the fire safety of 
leather [Figure 4C].

Safeguarding
Leather was used as a popular armor material in ancient times, but its protective performance had not been 
further improved as time went by[74]. Considering its wear resistance and mechanical strength, the 
development of leather composites with excellent protective properties has gradually attracted attention[24]. 
Surianarayanan et al. treated leather with silane to improve its load distribution and impact resistance, 
which enabled leather composite to absorb more impact energy[75]. The multilayer structure assembled by 
leather composites greatly improves its load-bearing and fatigue performance. Fan et al. used a rate-
dependent SSG to strengthen the natural leather, and then the cold flow effect of SSG allowed it to penetrate 
slightly into the porous structure of the leather, resulting in a flexible-tough coupled leather composite. It 
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exhibits excellent impact resistance under different impacts[53]. More recently, to enlarge its application, the 
leather layer was treated by MXene nanosheets for functional design. The treated leather composite has 
excellent conductivity and no reduced impact resistance[54], which can provide sensing feedback under 
different impacts. Finally, an intelligent impact resistance device based on the wearable Leather/MXene/
SSG/NWF safeguarding leather composite was obtained by integrating a wireless transmission system; 
therefore, the final system could monitor the impact status of the leather composite in real time 
[Figure 5A]. In short, the development of intelligent leather composites opened up new avenues in the field 
of intelligent protection.

Thermoregulatory clothing
Recently, many studies have reported the development of multifunctional textiles for intelligent 
thermoregulation, which could maintain human body temperature in a comfortable area[76]. Most animal fur 
benefits from the low thermal conductivity brought by their multilayer and porous skin structure; thus, they 
can effectively reduce heat loss and have a natural insulation effect[37]. In this case, the most common use of 
leather in daily life is in the field of clothing[5]. It is worth noting that during sudden changes in weather or 
harsh environments, a single insulation performance may not be able to meet the temperature needs of the 
human body[77]. Mo et al. developed an asymmetric double-layer leather composite. A porous cellulose 
acetate layer achieved passive radiation cooling on the corium side, and a highly connected CNT network 
exerted passive radiative heating and Joule-heating ability on the other side[45]. The two different functions 
can switch between cooling and heating modes according to environmental conditions by turning over two 
sides of the fabric, thus achieving high adaptability to weather changes [Figure 5B]. Fan et al. designed a 
conductive MXene array on a leather substrate, resulting in a leather vest that could achieve regional electric 
heating[54]. By controlling voltage, the leather vest could precisely regulate the temperature regulation, which 
could be used to cope with extreme cold environments by providing the required temperature for the 
human body [Figure 5C]. As a result, the above analysis demonstrates that the leather composites exhibit 
enormous application potential in intelligent thermoregulatory clothing.

SOFT WEARABLE ROBOTICS FOR FUTURE APPLICATIONS BASED ON LEATHER 
COMPOSITES
In recent years, soft wearable robotics has received increasing attention due to the rapid development of 
flexible sensors and human-robot interface applications[78]. Xiloyannis et al. developed a soft and textile-
based robotic exoskeleton for assisting hand opening and closing [Figure 6A][79]. Schmidt et al. introduced a 
soft and wearable device to provide gravity support to the user’s knee and hip joints [Figure 6B][80]. These 
resulting soft robotic devices based on textiles could help the wearer engage in simple daily activities. 
Leather composites have good biocompatibility and natural fiber structure, but research on the application 
of soft robots is scarce. Dong et al. prepared a smart conductive leather skin to imitate the functions of 
human skin[50]. Furthermore, a smart glove based on leather skin was designed to monitor complex hand 
movements. At the same time, a human-computer interaction function has been developed based on the 
smart glove, which can control the movement of the robotic arm in real time by using gestures [Figure 6C 
and D]. A broad research foundation of leather composites has been built in intelligent applications. 
Intelligent leather composites will expand their research gaps in the field of soft robots in the future by 
combining their biocompatibility and mechanical strength. Ultimately, it is expected to develop soft robots 
that can cope with different complex environments, such as biomimetic soft robots, radiation-resistant 
robots, safety protection robots, etc.

CONCLUSION AND OUTLOOK
Natural leather has a unique multilayer structure and collagen fiber network, which is easy to combine with 
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Figure 5. The application directions of leather composites. (A) The impact-resistant and impact-sensing performances of 
Leather/MXene/SSG/NWF[54]; (B) The cooling and heating modes of leather/a-MWCNTs/CA all-weather fabric[45]. Reprinted with 
permission. Copyright 2023, Wiley-VCH; (C) The optical image and IR camera images of intelligent thermoregulatory clothing[54]. SSG: 
Shear stiffening gel; NWF: nonwoven fabric; a-MWCNTs: acidified multiwalled carbon nanotubes.

various functional materials, taking advantage of each other to obtain soft, wear-resistant, and editable 
intelligent leather composites. This perspective reviews the recent research progress of leather composites, 
summarizing and analyzing the existing preparation methods of leather composites. Furthermore, this work 
also emphasizes various popular application directions based on the different functionalities of leather 
composites, such as flexible sensors, electromagnetic interference shielding, flame retardant protection, 
impact-resistant safety protection devices, and intelligent thermoregulatory clothing. In addition, although 
great application prospects have been achieved on leather composites, there are still significant difficulties 
and challenges in practical applications.
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Figure 6. The application of soft wearable robotics. (A) Soft robotic glove for grasping assistance[79]. Reprinted with permission. 
Copyright 2017, SAGE; (B) The Myosuit for supporting the user’s knee and hip joints. Reprinted with permission. Copyright 2017, 
Frontiers Media[80]; (C) Schematic diagrams of the smart glove and its controlling circuits and (D) various hand gestures of smart 
gloves in real- time[50]. Reprinted with permission. Copyright 2017, Elsevier.

Firstly, economical, environmentally friendly, safe, and efficient functional materials can be developed to 
reduce the production cost of leather composites and promote their faster application from the source. 
Secondly, it is necessary to strengthen the stability and durability of leather collagen fibers combined with 
functional materials, maintaining the breathability and comfort of leather to ensure the stable performance 
and advantages of leather composites during the application process. Thirdly, the preparation process of 
leather composites should be improved. The filtration, spraying, in-situ growth, and other methods of the 
leather-making process should be industrialized, mechanized, and simplified so that intelligent leather 
composites can embark on the path of industrialization. Fourthly, specific performance in the application 
direction can be further deepened. Intelligent leather, such as conductive leather, flame-retardant leather, 
and electromagnetic shielding leather, should be developed toward similar industry standards, and a 
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performance standard system for functional leather can be established to standardize production and 
performance standards. Finally, developing multifunctional sensing for leather composites can enable 
leather to perceive the world similarly to human skin by combining machine learning to carry out human-
computer interactions.

In conclusion, as an emerging flexible intelligent biomaterial, leather composites have demonstrated 
enormous potential for various applications, especially in the fields of sensing and safety protection. This 
coincides with the safety and real-time sensing of some soft robots in hazardous environments. Therefore, 
leather composites can be developed towards biomimetic, intelligent, and thermo-mechanical coupled 
safety protection in the future. It is believed that this result can open up new research directions for the 
design and safe use of soft robots.
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