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Abstract
This paper investigates a fuzzy reduced-order filter design for a class of nonlinear partial differential equation (PDE)
systems. First, a Takagi-Sugeno (T-S) fuzzy model is considered to reconstruct the nonlinear PDE system. Then, the
employment of an event-triggered mechanism (ETM) can effectively avoid signal redundancy and improve
network resource utilization. Furthermore, based on the advantages of the fuzzy model and ETM, several Lyapunov
functions are designed and the proposed filter parameters are obtained by adopting linear matrix inequality meth-
ods to satisfy the asymptotic stability condition with 𝐻∞ performance. Finally, a simulation example is presented to
demonstrate the practicality and effectiveness of the proposed filter design method.
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1. INTRODUCTION
Numerous processes in industry are related not only to time but also to spatial location [1–3], such as nuclear
reaction processes, fluid heat exchange processes and biological systems [4–6]. These systems are called dis-
tributed parameter systems, usually described by partial differential equations (PDE) [7–9]. According to the
different characteristics of the spatial differential operators, the PDE systems can be further divided into three
categories, namely, hyperbolic [7], parabolic [8] and elliptic [9]. In particular, parabolic PDEs can be applied
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to express the dynamic of industrial processes involve diffusion-convection-reaction processes, such as crys-
tal growth processes, semiconductor thermal processes and wavy behavior in chemistry [10,11]. Therefore,
control/filtering studies for parabolic PDE systems have attracted extensive attention [12–17]. For example,
Wang et al. [12] introducted the estimator-based 𝐻∞ sampled-data fuzzy control for nonlinear parabolic PDE
systems; Zhang et al. [16] addressed the controller design under mobile collocated actuators and sensors;
Song et al. [17] discussed the reliable 𝐻∞ filter design for PDE system with Markovian jumping sensor faults,
which stimulated the author’s interest in PDE systems.

In another research field, numerous feasible methods have been developed to solve the analysis and synthesis
problemof nonlinear systems. Among them, Takagi-Sugeno (T-S) fuzzymodel is widely adopted as an effective
method for stability analysis of nonlinear systems [18], which can express any smooth nonlinear function with
arbitrary accuracy in any convex compact region [19,20]. In addition, the stability analysis problem of fuzzy
control/filtering can be solved by employing the linear matrix inequality (LMI) methods [21]. Based on these
advantages of the fuzzy model, many studies have been conducted to apply fuzzy models in controller/filter
design for parabolic PDE systems [22,23]. Kerschbaum et al. [22] addressed the backstepping control for parabolic
PDE systems; Qiu et al. [23] addressed the distributed adaptive output feedback consensus problem for parabolic
PDE systems.

Meanwhile, the above study mainly used the traditional time-triggered (periodical sampling) network trans-
mission method. The periodic sampling will lead to waste of the network resources and redundancy of
transmission signals [24]. Therefore, to better save communication resources, Tabuada [25] proposed an event-
triggered mechanism (ETM) that can effectively save network transmission resources, which can determine
whether to transmit data according to different trigger conditions [26–32]. For example, Wang et al. [26]
developed an output-feedback backstepping control method for PDE systems with ETM; based on ETM,
Ji et al. [27] considered the filtering control for PDE systems. These results prove that, compared to the tradi-
tional periodic sampling, ETM can effectively reduce the burden of network bandwidth and improve resource
utilization.

Many nonlinear systems are multi-input and multi-output systems [33–37], which the system models are of-
ten complex and diverse, how to design simple controllers/filters to meet the corresponding needs. Recently,
Su et al. [38] proposed a reduced-order filter (ROF) design method, namely, the order of the ROF is lower than
the original plant, which will be more favorable for the real-time filtering procedure because some redundancy
and extra calculation can be effectively avoided by this filter [39,40]. However, as far as the author knows, there
is little work on the design of fuzzy ROF for PDE systems, which arouses the author’s interest.

Based on the above discussion, this article intends to design a fuzzy ROF with 𝐻∞ performance for the PDE
systems, which its main contributions are as follows:

(1) Different from the fuzzy ROF design [38], the influence of space position is fully considered in the system
model and filter design process, the considerations are more comprehensive. Meanwhile, the ROF is designed
on the basis of the early work [17], which makes the complex engineering mathematical model more simplified
and flexible.

(2) Compared with time-triggered fuzzy filter design [41], the ETM is applied to determine whether to send a
sampled signal, which can effectively solve the problem of signal resource transmission in the network.

Organization: Section 2 provides a problem statement and gives relevant definitions and lemmas, which
include fuzzy system models, ROF structures and ETM. Section 3 is the main result of this paper, which
include stability analysis and ROF design. A numerical example to prove the practicability of the obtained

http://dx.doi.org/10.20517/ces.2021.10


Zhang et al. Complex Eng Syst 2021;1:9 I http://dx.doi.org/10.20517/ces.2021.10  Page 3 of 13

results in Section 4. Section 5 gives conclusions and future research directions.

Notations: R𝑛 represents 𝑛-dimensional Euclidean space; H𝑛 indicates Hilbert space; The notation 𝑁𝑇 and
𝑁−1 stand for the transpose and inverse matrix of the matrix 𝑁 , respectively; 𝑋 > 0 (≥ 0) means the matrix
𝑋 is positive-definite (semi-definite); for ease of expression, define 𝜓 = 𝜓(𝑥, 𝑡), 𝜑 = 𝜑(𝑥, 𝑡), 𝜔 = 𝜔(𝑥, 𝑡),
𝜑𝑜 = 𝜑𝑜 (𝑥, 𝑡), 𝜑𝑚 = 𝜑𝑚 (𝑥, 𝑡), 𝜓𝑡 =

𝜕𝜓(𝑥,𝑡)
𝜕𝑡 , 𝜓𝑥𝑥 =

𝜕𝜓(𝑥,𝑡)
𝜕𝑥2 , 𝜃 = 𝜃 (𝑥, 𝑡), ℎ𝑖 = ℎ𝑖 (𝜃 (𝑥, 𝑡)), �̂� = �̂�(𝑥, 𝑡), �̂�𝑚 = �̂�𝑚 (𝑥, 𝑡),

�̂�𝑜 = �̂�𝑜 (𝑥, 𝑡), �̂�𝑡 =
𝜕�̂�(𝑥,𝑡)

𝜕𝑡 , �̂�𝑥𝑥 =
𝜕�̂�(𝑥,𝑡)
𝜕𝑥2 , 𝜑𝑚 (𝑡𝑘𝑛𝑇 ) = 𝜑𝑚 (𝑥, 𝑡𝑘𝑇+𝑛𝑇), 𝜑𝑚 (𝑡𝑘𝑇 ) = 𝜑𝑚 (𝑥, 𝑡𝑘𝑇), 𝑒(𝑖𝑘𝑇 ) = 𝑒𝑘 (𝑥, 𝑖𝑘𝑇),

𝜑𝑚ℎ = 𝜑𝑚 (𝑥, 𝑡 − ℎ(𝑡)), 𝑒ℎ = 𝑒𝑘 (𝑥, 𝑡 − ℎ(𝑡)), 𝜂ℎ = 𝜂(𝑥, 𝑡 − ℎ(𝑡)), 𝜂𝑡ℎ = 𝜂(𝑥, 𝑡 − ℎ), 𝜂𝜃 = 𝜂(𝑥, 𝜃), 𝜂(𝑠) = 𝜂(𝑥, 𝑠),
𝜂𝑠 (𝑠) = 𝜕𝜂(𝑥,𝑠)

𝜕𝑠 , 𝜉 = 𝜉 (𝑥, 𝑡); Matrices not explicitly stated in the text are assumed to have the appropriate
dimensionality.

2. PROBLEM STATEMENT
2.1. Fuzzy system model
Consider nonlinear distributed parameter systems which are described by PDE as follows:


𝜓𝑡 = Θ𝜓𝑥𝑥 + 𝑓 (𝜓) + 𝑐1(𝜓)𝜔,
𝜑𝑜 = 𝑑 (𝜓) + 𝑐2(𝜓)𝜔,
𝜑𝑚 = 𝑒(𝜓),

(1)

where 𝜓 ∈ H𝑛 denotes the state; 𝑥 ∈ [0, 𝑙] ⊂ R and 𝑡 > 0 stand for the space and time, respectively; 𝜑𝑜

represents estimated output signal; 𝜑𝑚 is the measured output; 𝜔 ∈ R𝑛 is the considered external disturbance.
Θ is a constant matrix. 𝑓 (𝜓), 𝑐1(𝜓), 𝑑 (𝜓), 𝑐2(𝜓) and 𝑒(𝜓) are sufficiently smooth nonlinear functions, which
satisfy 𝑓 (0) = 0, 𝑐1(0) = 0, 𝑑 (0) = 0, 𝑐2(0) = 0 and 𝑒(0) = 0. In this paper, system (1) satisfies the following
boundary conditions:

𝜓𝑥 (0, 𝑡) = 𝜓𝑥 (𝑙, 𝑡) = 0 and 𝜓(0, 𝑡) = 𝜓(𝑙, 𝑡) = 0. (2)

To deal with the nonlinear functions in the systems, the following fuzzy rule is adopted:
Plant Rule<𝑖 : IF 𝜃1 is 𝐹𝑖

1 ... and 𝜃𝑧 is 𝐹𝑖
𝑧 , THEN

𝜓𝑡 = Θ𝜓𝑥𝑥 + 𝐴𝑖𝜓 + 𝐶1𝑖𝜔,

𝜑𝑜 = 𝐷𝑖𝜓 + 𝐶2𝑖𝜔,

𝜑𝑚 = 𝐸𝑖𝜓,

(3)

where 𝜃 = [𝜃1, 𝜃2, · · · , 𝜃𝑧] represents the premise variable vector, 𝐹𝑖
𝑞 is the fuzzy sets, 𝑖 ∈ {1, 2, · · · , 𝑟}, 𝑞 ∈

{1, 2, · · · , 𝑧}. 𝐴𝑖 , 𝐶1𝑖 , 𝐷𝑖 , 𝐶2𝑖 and 𝐸𝑖 are known matrices. Thus, the overall fuzzy system (3) can be expressed
as follows: 

𝜓𝑡 = Θ𝜓𝑥𝑥 +
𝑟∑
𝑖=1

ℎ𝑖 [𝐴𝑖𝜓 + 𝐶1𝑖𝜔],

𝜑𝑜 =
𝑟∑
𝑖=1

ℎ𝑖 [𝐷𝑖𝜓 + 𝐶2𝑖𝜔],

𝜑𝑚 =
𝑟∑
𝑖=1

ℎ𝑖𝐸𝑖𝜓,

(4)

where ℎ𝑖 =

𝑧∏
𝑞=1

𝐹𝑖
𝑞 (𝜃𝑞)

𝑟∑
𝑖=1

𝑧∏
𝑞=1

𝐹𝑖
𝑞 (𝜃𝑞)

with ℎ𝑖 ≥ 0 and
𝑟∑
𝑖=1

ℎ𝑖= 1.
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2.2. Structure of reduced-order fuzzy filter
Consider the T-S fuzzy model, the following fuzzy ROF is obtained:
Filter Rule<𝑖 : IF 𝜃1 is 𝐹𝑖

1 ... and 𝜃𝑧 is 𝐹𝑖
𝑧 , THEN{

�̂�𝑡 = Θ𝑘 �̂�𝑥𝑥 + 𝐴𝑘𝑖�̂� + 𝐵𝑘𝑖 �̂�𝑚 ,

�̂�𝑜 = 𝐶𝑘𝑖�̂�,
(5)

where �̂� ∈ R𝑙 stands for the filter state with 𝑙 < 𝑛; the practical filter input signal is �̂�𝑚 ; �̂�𝑜 expresses the
estimate signal of 𝜑𝑜 ; 𝐴𝑘𝑖 , 𝐵𝑘𝑖 and 𝐶𝑘𝑖 are the coefficient matrix of the filter with suitable dimensions. Thus,
the overall T-S fuzzy filter can be expressed as follows:

�̂�𝑡 = Θ𝑘 �̂�𝑥𝑥 +
𝑟∑
𝑖=1

ℎ𝑖 [𝐴𝑘𝑖�̂� + 𝐵𝑘𝑖 �̂�𝑚],

�̂�𝑜 =
𝑟∑
𝑖=1

ℎ𝑖𝐶𝑘𝑖�̂�.
(6)

2.3. Event-triggered mechanism
To improve the utilization of communication resources in the network, this paper introduces samplers and
zero-order holder (ZOH) in the network. Consider an ETM, which meets the threshold condition as follows:∫ 𝑙

0 [𝜑𝑚 (𝑡𝑘𝑛𝑇 ) − 𝜑𝑚 (𝑡𝑘𝑇 )]𝑇Ω [𝜑𝑚 (𝑡𝑘𝑛𝑇 ) − 𝜑𝑚 (𝑡𝑘𝑇 )] ≤ 𝜀
∫ 𝑙

0 𝜑𝑇𝑚 (𝑡𝑘𝑇 )Ω𝜑𝑚 (𝑡𝑘𝑇 ), (7)

where 𝜀 ∈ [0, 1),Ω is a symmetric positive definite matrix, 𝜑𝑚 (𝑡𝑘𝑛𝑇 ) and 𝜑𝑚 (𝑡𝑘𝑇 ) denote the current sampling
signal (CSS) and latest transmitted signal (LTS), respectively.

Definition 1. The transmission error 𝑒(𝑖𝑘𝑇 ) between the CSS and the LTS as:

𝑒(𝑖𝑘𝑇 ) = 𝜑𝑚 (𝑡𝑘𝑛𝑇 ) − 𝜑𝑚 (𝑡𝑘𝑇 ), (8)

where 𝑖𝑘𝑇 = 𝑡𝑘𝑇 +𝑛𝑇 , which implies that the sampling time. Therefore, the transmission error can be expressed
as:

𝑒(𝑖𝑘𝑇 ) = 𝜑𝑚 (𝑖𝑘𝑇 ) − 𝜑𝑚 (𝑡𝑘𝑇 ). (9)

Based on the ETM, the system (4) can be transformed into a new system with time-delay. This network delay
defined as ℎ(𝑡) = 𝑡 − 𝑖𝑘𝑇, 0 ≤ ℎ(𝑡) ≤ ℎ, where 𝑡 ∈ [𝑡𝑘𝑇 + 𝜏𝑡𝑘 , 𝑡𝑘+1𝑇 + 𝜏𝑡𝑘+1). Therefore, the ETM inferred as:∫ 𝑙

0
𝑒𝑇 (𝑖𝑘𝑇 )Ω𝑒(𝑖𝑘𝑇 )𝑑𝑥 ≤ 𝜀

∫ 𝑙

0
𝜑𝑇𝑚 (𝑡𝑘𝑇 )Ω𝜑𝑚 (𝑡𝑘𝑇 ). (10)

By taking into account the influence of the ZOH, the filter input expressed as:

�̂�𝑚 = 𝜑𝑚 (𝑡𝑘𝑇 ) = 𝜑𝑚 (𝑖𝑘𝑇 ) − 𝑒(𝑖𝑘𝑇 ) = 𝜑𝑚ℎ − 𝑒ℎ . (11)

Substituting (11) into (6)
�̂�𝑡 = Θ𝑘 �̂�𝑥𝑥 +

𝑟∑
𝑖=1

ℎ𝑖 [𝐴𝑘𝑖�̂� + 𝐵𝑘𝑖H𝑇 (𝜑𝑚ℎ − 𝑒ℎ)],

�̂�𝑜 =
𝑟∑
𝑖=1

ℎ𝑖𝐶𝑘𝑖�̂�.
(12)

Therefore, the above-mentioned ETM is used to convert the fuzzy filter in (6) into a time-delay system.
Remark 1. It is worth noting that the ETM will be reduced to time-triggered communication Mechanism
(TTCM) when 𝜀 ≡ 0, which means that ETM is more practical in engineering applications.

http://dx.doi.org/10.20517/ces.2021.10
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2.4. Problem formulation
Combining (4) and (12), the corresponding error system is as follows:

𝜂𝑡 =
𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ 𝑗 [Θ̄𝜂 + �̄�𝑖 𝑗 𝜂 + �̄�𝑖𝜔 + �̄�(1)
𝑗 𝜂ℎ − �̄�(2)

𝑗 𝑒ℎ],

�̃�𝑜 =
𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ 𝑗 [�̄�𝑖 𝑗𝜂 + 𝐶2𝑖𝜔],
(13)

where 𝜂 Δ
= 𝑐𝑜𝑙

[
𝜓 �̂�

]
, �̃�𝑜 = 𝜑𝑜 − �̂�𝑜 .

Θ̄ =

[
Θ 0
0 Θ𝑘

]
, �̄�𝑖 𝑗 =

[
𝐴𝑖 0
0 𝐴𝑘 𝑗

]
, �̄�(1)

𝑗 =

[
0 0

𝐵𝑘 𝑗H𝑇𝐸𝑖 0

]
,

�̄�(2)
𝑗 =

[
0

𝐵𝑘 𝑗H𝑇

]
, �̄�𝑖 =

[
𝐶1𝑖
0

]
, �̄�𝑖 𝑗 =

[
𝐷𝑖 −H𝐶𝑘 𝑗

]
.

Remark 2. Because the order of the ROF is lower than the order of the plant. H =
[
𝐼𝑙×𝑙 0𝑟×(𝑛−𝑙)

]𝑇 is intro-
duced to expand the order of the filter, which will be explained in detail in Theorem 2.

Definition 2. The error system (13) with 𝜔 ≡ 0 is considered to be asymptotically stable with boundary
conditions (2), if satisfies lim

𝑡→∞

{∫ 𝑡

0 ‖𝜂𝜃 ‖2
2 𝑑𝜃

}
< ∞ with ‖𝜂‖2 = (

∫ 𝑙

0 𝜂𝑇𝜂𝑑𝑥) 1
2 .

Definition 3. System (13) is considered to be asymptotically stable with 𝐻∞ disturbance attention perfor-
mance, if there exists a scalar 𝛾 > 0 such that following inequality holds:∫ 𝑙

0

∫ ∞

0
𝛾−1�̃�𝑇𝑜 �̃�𝑜𝑑𝑡𝑑𝑥 <

∫ 𝑙

0

∫ ∞

0
𝛾𝜔𝑇𝜔𝑑𝑡𝑑𝑥.

Lemma 1. [42] (Jensens inequality) Let 𝑦 ∈ H𝑛
𝑙 be a vector function. Then, for any matrix 𝑀 > 0, the following

inequality holds: ∫ 𝑏

𝑎
𝑦𝑇 (𝑥)𝑀𝑦(𝑥)𝑑𝑥 ≥ 1

𝑏 − 𝑎

(∫ 𝑏

𝑎
𝑦𝑇 (𝑥)𝑑𝑥

)
𝑀

(∫ 𝑏

𝑎
𝑦(𝑥)𝑑𝑥

)
.

Lemma 2. [40] Let 𝜇1, 𝜇2, · · · , 𝜇𝑁 : R𝑚 ↦→ R have positive values in the open subset C of R. Then, the mutually
convex combination of 𝜇𝑖 over C satisfies

min{
𝛽𝑖 |𝛽𝑖>0.

∑
𝑖
𝛽𝑖=1

}∑
𝑖

1
𝛽𝑖
𝜇𝑖 (𝑡) =

∑
𝑖

𝜇𝑖 (𝑡) + max
𝜍𝑖. 𝑗 (𝑡)

∑
𝑖≠ 𝑗

𝜍𝑖. 𝑗 (𝑡),

Subject to {
𝜍𝑖. 𝑗 (𝑡) : R𝑚 ↦→ R, 𝜍 𝑗 .𝑖 (𝑡)

Δ
= 𝜍𝑖. 𝑗 (𝑡),

[
𝜇𝑖 (𝑡) 𝜍𝑖. 𝑗 (𝑡)
𝜍𝑖. 𝑗 (𝑡) 𝜇 𝑗 (𝑡)

]
≥ 0

}
.

Consider the following main problem: for the known systems (1), design a fuzzy ROF such that the error
system (13) satisfies the asymptotically stable condition with 𝐻∞ performance.

3. RESULTS
In this section, the asymptotically stable condition of the error system (13) is obtained inTheorem 1. The ROF
parameters will be obtained by the LMI method in Theorem 2.

http://dx.doi.org/10.20517/ces.2021.10
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Theorem 1. For given scalars 𝛾 > 0, 𝜀 > 0 and ℎ > 0, error system (13) is asymptotically stable with 𝐻∞
performance, if there exist matrices Ω > 0, S satisfying 𝑆Θ̄ ≥ 0, 𝑃 > 0, 𝑄 > 0, 𝑇1 > 0 and 𝐺 satisfy the
following inequality for all 𝑖 ∈ {1, 2, · · · , 𝑟}, 𝑗 ∈ {1, 2, · · · , 𝑟}:

[
𝑇1 𝐺

𝐺 𝑇1

]
≥ 0, (14)

2
𝑟 − 1

Ψ𝑖𝑖 +Ψ𝑖 𝑗 +Ψ 𝑗𝑖 < 0, (15)

Ψ𝑖𝑖 < 0, (16)

where

Ψ𝑖 𝑗 =

[
Ψ(11)

𝑖 𝑗 Ψ(12)
𝑖 𝑗

∗ Ψ(22)
𝑖

]
,

Ψ(11)
𝑖 𝑗 =



Ψ11 Ψ12
𝑖 𝑗 0 Ψ14 0

∗ Ψ22 0 Ψ24 𝐺𝑇

∗ ∗ Ψ33 0 0
∗ ∗ ∗ Ψ44 Ψ45

∗ ∗ ∗ ∗ Ψ55


,Ψ(22)

𝑖 =


−(1 − 𝜀)Ω 0 0

∗ −𝛾𝐼 𝐶𝑇
2𝑖

∗ ∗ −𝛾𝐼

 ,

Ψ(12)
𝑖 𝑗 =

[
Ψ16

𝑖 𝑗 Ψ17
𝑖 𝑗

Ψ26
𝑖 0

]
,Ψ16

𝑖 𝑗 =

[
−𝑆�̄�(2)

𝑗 𝑆�̄�𝑖

−𝑆�̄�(2)
𝑗 𝑆�̄�𝑖

]
,Ψ17

𝑖 𝑗 =

[
0
�̄�𝑇

𝑖 𝑗

]
,Ψ26

𝑖 =


0 0

−�̄�𝑇
𝑖 Ω 0
0 0

 ,
Ψ11 = ℎ2𝑇1 − 𝑆 − 𝑆𝑇 ,Ψ12

𝑖 𝑗 = 𝑃𝑇 + 𝑆�̄�𝑖 𝑗 − 𝑆𝑇 ,Ψ14 = 𝑆�̄�(1)
𝑗 , �̄�𝑖 = [𝐸𝑖 0]𝑇 ,

Ψ22 = 𝑄 − 𝑇1 + 𝑆�̄�𝑖 𝑗 + �̄�𝑇
𝑖 𝑗𝑆

𝑇 ,Ψ24 = 𝑇1 − 𝐺𝑇 + 𝑆�̄�(1)
𝑗 ,Ψ33 = −𝑆Θ̄ − Θ̄𝑆𝑇 ,

Ψ44 = −2𝑇1 + 𝐺𝑇 + 𝐺 + 𝜀�̄�𝑇
𝑖 Ω�̄�𝑖 ,Ψ

45 = 𝑇1 − 𝐺𝑇 ,Ψ55 = −𝑄 − 𝑇1.

Proof. The Lyapunov function is selected as follows

𝑉 (𝑡) =
4∑

𝑚=1
𝑉𝑚 (𝑡), (17)

where

𝑉1(𝑡) =
∫ 𝑙

0 𝜂𝑇𝑃𝜂𝑑𝑥,𝑉2(𝑡) =
∫ 𝑙

0 𝜂𝑇𝑥 𝑆Θ̄𝜂𝑥𝑑𝑥,

𝑉3(𝑡) =
∫ 𝑙

0

∫ 𝑡

𝑡−ℎ 𝜂
𝑇 (𝑠)𝑄𝜂(𝑠)𝑑𝑠𝑑𝑥,𝑉4(𝑡) = ℎ

∫ 𝑙

0

∫ 0
−ℎ

∫ 𝑡

𝑡+𝜃 𝜂
𝑇
𝑠 (𝑠)𝑇1𝜂𝑠 (𝑠)𝑑𝑠𝑑𝜃𝑑𝑥,

The derivative of 𝑉 (𝑡) is as follows:

¤𝑉1(𝑡) =
∫ 𝑙

0 2𝜂𝑇𝑃𝜂𝑡𝑑𝑥, ¤𝑉2(𝑡) = −
∫ 𝑙

0 2𝜂𝑇𝑡 𝑆Θ̄𝜂𝑥𝑥𝑑𝑥,

¤𝑉3(𝑡) =
∫ 𝑙

0 [𝜂𝑇𝑄𝜂 − 𝜂𝑇ℎ𝑄𝜂ℎ]𝑑𝑥, ¤𝑉4(𝑡) =
∫ 𝑙

0 [ℎ2𝜂𝑇𝑡 𝑇1𝜂𝑡 − ℎ
∫ 𝑡

𝑡−ℎ 𝜂
𝑇
𝑠 (𝑠)𝑇1𝜂𝑠 (𝑠)𝑑𝑠]𝑑𝑥.

(18)
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According to Lemmas 1 and 2, the following inequality can be obtained

−ℎ
∫ 𝑙

0

∫ 𝑡

𝑡−ℎ 𝜂
𝑇
𝑠 (𝑠)𝑇1𝜂𝑠 (𝑠)𝑑𝑠𝑑𝑥

= −ℎ
∫ 𝑙

0 {
∫ 𝑡−ℎ(𝑡)
𝑡−ℎ 𝜂𝑇𝑠 (𝑠)𝑇1𝜂𝑠 (𝑠)𝑑𝑠 +

∫ 𝑡

𝑡−ℎ(𝑡) 𝜂
𝑇
𝑠 (𝑠)𝑇1𝜂𝑠 (𝑠)𝑑𝑠}𝑑𝑥

≤ −
∫ 𝑙

0 {[
∫ 𝑡−ℎ(𝑡)
𝑡−ℎ 𝜂𝑇𝑠 (𝑠)𝑑𝑠]𝑇1 [

∫ 𝑡−ℎ(𝑡)
𝑡−ℎ 𝜂𝑠 (𝑠)𝑑𝑠]

+[
∫ 𝑡

𝑡−ℎ(𝑡) 𝜂
𝑇
𝑠 (𝑠)𝑑𝑠]𝑇1 [

∫ 𝑡

𝑡−ℎ(𝑡) 𝜂𝑠 (𝑠)𝑑𝑠]

+2[
∫ 𝑡−ℎ(𝑡)
𝑡−ℎ 𝜂𝑇𝑠 (𝑠)𝑑𝑠]𝐺 [

∫ 𝑡

𝑡−ℎ(𝑡) 𝜂𝑠 (𝑠)𝑑𝑠]}𝑑𝑥.

(19)

Furthermore, from (13), we can get:

0 = 2
∫ 𝑙

0
𝜂𝑇𝑡 𝑆[−𝜂𝑡 + Θ̄𝜂𝑥𝑥 +

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ 𝑗 ( �̄�𝑖 𝑗𝜂 + �̄�(1)
𝑗 𝜂ℎ − �̄�(2)

𝑗 𝑒ℎ + �̄�𝑖𝜔)]𝑑𝑥. (20)

Under the boundary conditions (2), by partial integration we can obtain:

2
∫ 𝑙

0
𝜂𝑇𝑆Θ̄𝜂𝑥𝑥𝑑𝑥 = −

∫ 𝑙

0
𝜂𝑇𝑥 (𝑆Θ̄ + Θ̄𝑆𝑇 )𝜂𝑥𝑑𝑥. (21)

Consider the ETM (10), define:

Δ(𝑡) = 𝜀

∫ 𝑙

0
𝜑𝑇𝑚 (𝑡𝑘𝑇 )Ω𝜑𝑚 (𝑡𝑘𝑇 )𝑑𝑥 −

∫ 𝑙

0
𝑒𝑇 (𝑖𝑘𝑇 )Ω𝑒(𝑖𝑘𝑇 )𝑑𝑥 > 0, (22)

and

𝜉
Δ
= 𝑐𝑜𝑙 [𝜂𝑡 𝜂 𝜂𝑥 𝜂ℎ 𝜂𝑡ℎ 𝑒ℎ 𝜔] ,

Combining (18)-(21) and schur complement, we have:

¤𝑉 (𝑡) + Δ(𝑡) +
∫ 𝑙

0 𝛾−1�̃�𝑇𝑜 �̃�𝑜 − 𝛾𝜔𝑇𝜔𝑑𝑥 ≤
∫ 𝑙

0

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ 𝑗𝜉
𝑇Ψ𝑖 𝑗𝜉𝑑𝑥. (23)

When 𝜔(𝑥, 𝑡) ≡ 0 and according to Theorem 1 and Definition 1, with the processing method [17], we can get
the error system (13) is asymptotically stable. Under zero initial condition, one can obtain:

𝑉 (∞) +
∫ 𝑙

0

∫ ∞

0
𝛾−1�̃�𝑇𝑜 �̃�𝑜 − 𝛾𝜔𝑇𝜔𝑑𝑡𝑑𝑥 ≤ 0, (24)

which indicates that∫ 𝑙

0

∫ ∞

0
�̃�𝑇𝑜 �̃�𝑜𝑑𝑡𝑑𝑥 <

∫ 𝑙

0

∫ ∞

0
𝛾2𝜔𝑇𝜔𝑑𝑡𝑑𝑥, (25)

which completes the proof.□

Next, solving several LMIs to obtain the parameters of the designed ROF, the main results are as follows:
Theorem 2. For given scalars 𝜀 ∈ [0, 1), 𝛾 > 0, ℎ > 0, if there exist real matrices𝑊 > 0, 𝑄 > 0, 𝑅 > 0, Ω > 0,
𝑆1 > 0, 𝑇1 > 0, �̃�𝑘 𝑗 , �̃�𝑘 𝑗 , �̃�𝑘 𝑗 satisfy the following matrix inequations for 𝑖 ∈ {1, 2, · · · , 𝑟}, 𝑗 ∈ {1, 2, · · · , 𝑟}:[

𝑇1 𝐺

𝐺 𝑇1

]
≥ 0, (26)

2
𝑟 − 1

Φ𝑖𝑖 +Φ𝑖 𝑗 +Φ 𝑗𝑖 < 0, (27)

Φ𝑖𝑖 < 0, (28)
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where

Φ𝑖 𝑗 =

[
Φ1

𝑖 𝑗 Φ2
𝑖 𝑗

∗ Φ3
𝑖

]
< 0,Φ1

𝑖 𝑗 =



Φ11 Φ12
𝑖 𝑗 0 Φ14

𝑖 𝑗 0
∗ Φ22

𝑖 𝑗 0 Φ24
𝑖 𝑗 𝐺𝑇

∗ ∗ Φ33 0 0
∗ ∗ ∗ Φ44 Φ45

∗ ∗ ∗ ∗ Φ55


,Φ2

𝑖 𝑗 =


Φ16

𝑖 𝑗 0
Φ26

𝑖 𝑗 Φ27
𝑖 𝑗

Φ36
𝑖 0

 ,

Φ36
𝑖 =


0 0

−𝐸𝑖Ω 0
0 0

 ,Φ27
𝑖 𝑗 =

[
𝐷𝑇

𝑖

−�̃�𝑇
𝑘 𝑗H𝑇

]
,Φ24 =

[
𝑇11 − 𝐺𝑇

1 + H �̃�𝑘 𝑗H𝑇𝐸𝑖 𝑇12 − 𝐺𝑇
3

𝑇𝑇
12 − 𝐺𝑇

2 + �̃�𝑘 𝑗H𝑇𝐸𝑖 𝑇13 − 𝐺𝑇
4

]
,

Φ12
𝑖 𝑗 =

[
Φ121 Φ122

𝑗

Φ123
𝑖 Φ124

𝑗

]
,Φ11 =

[
Φ111 Φ112

∗ Φ113

]
,Φ16

𝑖 𝑗 = Φ26
𝑖 𝑗 =

[
−H �̃�𝑘 𝑗H𝑇 𝑆1𝐶1𝑖
−�̃�𝑘 𝑗H𝑇 𝑊𝑇H𝑇𝐶1𝑖

]
,

Φ22 =

[
𝑄1 − 𝑇11 + 𝑆1𝐴𝑖 𝑄2 − 𝑇12 + H �̃�𝑘 𝑗 + 𝐴𝑇

𝑖 H𝑊

∗ 𝑄3 − 𝑇13 + �̃�𝑘 𝑗 + 𝐴𝑇
𝑘 𝑗

]
,Φ14

𝑖 𝑗 =

[
H �̃�𝑘 𝑗H𝑇𝐸𝑖 0
�̃�𝑘 𝑗H𝑇𝐸𝑖 0

]
,

Φ55 = Ψ55 = −𝑄 − 𝑇1,Φ
45 = Ψ45 = 𝑇1 − 𝐺𝑇 ,Φ123

𝑖 = 𝑃21 +𝑊𝑇H𝑇 𝐴𝑖 −𝑊𝑇H𝑇 ,

Φ112 = ℎ2𝑇12 − 2H𝑊,Φ121 = 𝑃11 + 𝑆1𝐴𝑖 − 𝑆1,Ψ
44 = −2𝑇1 + 𝐺 + 𝐺𝑇 + �̄�𝑇

𝑖 Ω�̄�𝑖 ,

Φ122
𝑗 = 𝑃12 + H �̃�𝑘 𝑗 −H𝑊,Φ33 = −

(
𝑆Θ̄ + Θ̄𝑆𝑇

)
,Φ124

𝑗 = 𝑃22 + �̃�𝑘 𝑗 −𝑊𝑇 ,

Φ113 = ℎ2𝑇22 − 2𝑊𝑇 ,Φ111 = ℎ2𝑇11 − 𝑆1 − 𝑆𝑇1 ,Φ
3
𝑖 = Ψ(22)

𝑖 .

then the designed ROF (6) can be obtained by the following relation:[
𝐴𝑘 𝑗 𝐵𝑘 𝑗

𝐶𝑘 𝑗 0

]
=

[
𝑊−1 0

0 𝐼

] [
�̃�𝑘 𝑗 �̃�𝑘 𝑗

�̃�𝑘 𝑗 0

]
, (29)

Proof. If the conditions (14)-(16) inTheorem 1 are satisfied, then the non-singular matrix can be divided into:

𝑆
Δ
=

[
𝑆1 H𝑆2
∗ 𝑆3

]
, (30)

where

H =
[
𝐼𝑙×𝑙 0𝑙×(𝑛−𝑙)

]𝑇
, 𝑆1 ∈ R𝑛×𝑛, 𝑆2 ∈ R𝑙×𝑙 , 𝑆3 ∈ R𝑙×𝑙 ,

For the purpose of proving that 𝑆2 is non-singular, define:

𝑀 = 𝑆 + 𝜎𝑁 (𝜎 > 0),

and

𝑁
Δ
=

[
0𝑛×𝑛 H
∗ 0𝑙×𝑙

]
, 𝑀

Δ
=

[
𝑀1 H𝑀2
∗ 𝑀3

]
, (31)

Since 𝑆 > 0, it is easily to obtain 𝑀 > 0 for 𝜎 > 0. Consequently, it is convenient to verify that 𝑀2 is non-
singular for arbitrarily 𝜎 > 0 and the above expression is feasible with 𝑆. In general, it is assumed that 𝑆2 is
non-singular subject to 𝑀2. Based on the above discussion the following definitions can be obtained:

𝑈
Δ
=

[
𝐼 0
0 𝑆−1

3 𝑆𝑇2

]
, 𝑉

Δ
= 𝑆1,𝑊

Δ
= 𝑆2𝑆

−1
3 𝑆𝑇2 , (32)

and [
�̃�𝑘 𝑗 �̃�𝑘 𝑗

�̃�𝑘 𝑗 0

]
=

[
𝑆2 0
0 𝐼

] [
𝐴𝑘 𝑗 𝐵𝑘 𝑗

𝐶𝑘 𝑗 0

] [
𝑆−1

3 𝑆𝑇2 0
0 𝐼

]
, (33)
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Then, we can get:

𝑈𝑇𝑆𝑈
Δ
=

[
𝑆1 H𝑊

𝑊𝑇H𝑇 𝑊𝑇

]
,𝑈𝑇𝑆𝑇𝑈

Δ
=

[
𝑆𝑇1 H𝑊

𝑊𝑇H𝑇 𝑊𝑇

]
,

𝑈𝑇𝑆�̄�(1)
𝑗 =

[
H �̃�𝑘 𝑗H𝑇𝐸𝑖 0
�̃�𝑘 𝑗H𝑇𝐸𝑖 0

]
,𝑈𝑇𝑆�̄�𝑖

Δ
=

[
𝑆1𝐶1𝑖

𝑊𝑇H𝑇𝐶1𝑖

]
,

𝑈𝑇𝑆�̄�(2)
𝑗

Δ
=

[
H �̃�𝑘 𝑗

�̃�𝑘 𝑗

]
,𝑈𝑇𝑆�̄�𝑖 𝑗𝑈

Δ
=

[
𝑆1𝐴𝑖 H �̃�𝑘 𝑗𝑆

−1
3 𝑆𝑇2

𝑊𝑇H𝑇 𝐴𝑖 �̃�𝑘 𝑗

]
.

(34)

Pre- and post-multiply both sides of (16) with diag{𝑈𝑇 𝑈𝑇 𝐼1×6} and its transpose, respectively. If (32)-(34) is
considered, then the inequality (26)-(28) can hold. Therefore, the error system (13) can be guaranteed to be
asymptotically stable with 𝐻∞ performance. In addition, (33) is equivalent to[

𝐴𝑘 𝑗 𝐵𝑘 𝑗

𝐶𝑘 𝑗 0

]
=

[ (
𝑆−𝑇2 𝑆3

)−1
𝑊−1 0

0 𝐼

] [
�̃�𝑘 𝑗 �̃�𝑘 𝑗

�̃�𝑘 𝑗 0

] [
𝑆−𝑇2 𝑆3 0

0 𝐼

]
. (35)

Thus, the 𝐴𝑘 𝑗 , 𝐵𝑘 𝑗 , 𝐶𝑘 𝑗 in (6) can be obtained by (35). In case of general, let 𝑆−𝑇2 𝑆3 = 𝐼 , we obtain (29), which
can be adopted to construct the ROF in (6). This completes the proof.□
Remark 3. It is noted that the matrixH presented inTheorem 2 plays a pivotal role in the filter design problem
because it is used as a reduced-order factor. When H is a unit matrix, the designed filter is a full-order filter
(FOF). The presence ofH allows for efficient conversion between ROF and FOF.

4. SIMULATION EXAMPLE
In this section, to illustrate the effectiveness of the proposed method, the ROF design problem is studied for
the FHN equation, which is a widely adopted model of excitable medium fluctuations in chemistry and can
be described as follows:{

𝜓1𝑡 = 𝜓1𝑥𝑥 − 𝜓3
1 − 1.2𝜓1 − 𝜓2 + 1.2𝜔1,

𝜓2𝑡 = 𝜓2𝑥𝑥 − 0.1𝜓2 + 0.8𝜔1,
(36)

with boundary (2) and initial conditions{
𝜓1 (𝑠) = 0.4 cos (𝜋𝑥) ,
𝜓2 (𝑠) = 0.3 cos (𝜋𝑥) .

The following output and measurement signals are given:

𝜑𝑜 = 𝐷𝜓 + 𝐶2𝜔, 𝜑𝑚 = 𝐸𝜓,

where 𝜓 = 𝑐𝑜𝑙 [𝜓1 𝜓2], 𝜔 = 𝑐𝑜𝑙 [𝜔1 𝜔2], 𝜔1 = 0.01 sin(𝑥)𝑒−𝑡 , 𝜔2 = 0.1 sin(𝑥)𝑒−𝑡 , 𝐷 = −0.05𝐼 , 𝐶2 = −0.01𝐼 ,
𝐸 = 𝐼 .

The systems (36) can be represented by the following fuzzy rule [43]:
Plant Rule 1: IF 𝜉 (𝜓1) is “Big”, THEN

𝜓𝑡 = 𝜓𝑥𝑥 + 𝐴1𝜓 + 𝐶1𝜔,

Plant Rule 2: IF 𝜉 (𝜓1) is “Small”, THEN

𝜓𝑡 = 𝜓𝑥𝑥 + 𝐴2𝜓 + 𝐶1𝜔,
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Figure 1. The trajectory of �̃�𝑜1 (𝑥, 𝑡) .

where 𝜉 (𝜓1) = 𝜓2
1 , 𝐴1 =

[
−𝜒 − 1.2 −1

0 −0.1

]
, 𝐴2 =

[
−1.2 −1

0 −0.1

]
and 𝐶1 =

[
1.2 0
0.8 0

]
with 𝜒

Δ
= max𝜓1𝜓

2
1 ,

𝜓1 ∈ [−1.5, 1.5], we can get 𝜒 = 2.55. The fuzzy membership function can be obtained:

ℎ1(𝜉 (𝜓1)) =
𝜉 (𝜓1)
𝜒

=
𝜓2

1
2.55

, ℎ2(𝜉 (𝜓1)) = 1 − ℎ1(𝜉 (𝜓1)).

Thus, the following T-S fuzzy model is written as follows:

𝜓𝑡 = 𝜓𝑥𝑥 +
2∑
𝑖=1

ℎ1(𝜉 (𝜓1))𝐴𝑖𝜓 + 𝐶1𝜔,

where 𝐴1 =

[
−3.45 −1

0 −0.1

]
, 𝐴2 =

[
−1.2 −1

0 −0.1

]
. Assume ℎ = 1𝑚𝑠, 𝜀 = 0.05, Θ = 1, Θ𝑘 = 0.5 and by

solving several LMI in Theorem 2, the parameters of the ROF are shown as follows:

Ω =

[
1.1539 −0.9745
−0.6110 0.6060

]
, 𝐴𝑘1 = −3.1938, 𝐴𝑘2 = −1.2967,

𝐵𝑘1 = −0.9575, 𝐵𝑘2 = −1.1876, 𝐶𝑘1 = −0.0510, 𝐶𝑘2 = −0.0550.

Finally, to observe the 𝐻∞ performance more conveniently, define

𝜉 (𝑡) Δ
=
∫ 𝑡

0

∫ 1

0

{
𝛾−1�̃�𝑇𝑜 (𝑠)�̃�𝑜 (𝑠) − 𝛾𝜔𝑇 (𝑠)𝜔(𝑠)

}
𝑑𝑥𝑑𝑠, (37)

Simulation result: the trajectory of the error system (13) is shown in Figures 1 and 2. Figure 3 shows the release
moment under the ETM, the trajectory of 𝜉 (𝑡) defined in (37) is shown in Figure 4. It can be observed that
the filtering error system is asymptotically stable with 𝐻∞ performance. Moreover, the designed ETM (7) can
effectively reduce the amount of network signal transmissions and improve the efficiency of network resources
utilization.

Remark 4. Inspired by ETM [25], we introduce an ETM in the signal transmission process. Compared with
the original TTCM [41], it can effectively reduce the number of signal transmission and improve the network
resource utilization. On the other hand, Song et al. [17] considered filtering for parabolic PDE systems, but did
not consider the problem of ROF design. Compared with Example 2 [17], the method proposed in this paper
can achieve the same filtering function and the order of the filter is lower than the order of the plant, which
simplifies the filter design.
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Figure 2. The trajectory of �̃�𝑜2 (𝑥, 𝑡).
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Figure 3. Release instants and release interval.
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Figure 4. The trajectory of 𝜉 (𝑡) under zero initial condition.

5. CONCLUSIONS
This paper investigates the design method of fuzzy ROF based on ETM for nonlinear parabolic PDE systems.
First, a T-S fuzzy model has been considered to reconstruct the nonlinear parabolic PDE systems. In addi-
tion, an ETM has been employed to reduce the amount of network transmission data to improve the network
resource utilization. Then, the parameters of the designed ROF have been obtained by solving several LMIs
based on Lyapunov direct method. Finally, the effectiveness of the proposed method is illustrated by simula-
tion experiments. However, due to the time-delay phenomenon, the systems output signal is difficulty to keep
synchronized through the network transmission between the filter and the plant. Therefore, in future studies,
we will further consider asynchronous ROF for fuzzy PDE systems, which will be a more interesting topic.
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