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Abstract
With the over-consumption of non-renewable energy, green and clean renewable energy is inevitably the choice in 
modern society. In particular, lithium-ion batteries (LIBs) have been widely used in automobiles, aviation and other 
fields due to their high energy density and other advantages. However, lithium reserves are limited, and LIBs have 
safety hazards, so the development of alternative rechargeable batteries cannot be delayed. Aqueous zinc ion 
batteries (AZIBs) have a high theoretical specific capacity while ensuring safety, and have been intensively 
investigated in recent years. The advancement of cathode materials is essential for AZIBs. In this article, the recent 
development of non-oxide manganese and vanadium cathode materials such as MnS, MnHCF, VN, VSe2 and VS2 
for AZIBs is critically reviewed. The emerging strategies for modifying these cathode materials for enhanced 
electrochemical performance are critically analyzed. Finally, some important achievements of this research field are 
summarized, and the challenges and future research directions are presented. We hope that this article can shed 
light on the development of AZIBs.
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INTRODUCTION
With the progress of global industrialization, the worldwide demand for energy is increasing, which is 
accompanied by the excessive consumption of fossil fuels and a series of problems such as environmental 
pollution[1-3]. Therefore, the development of green, efficient and large-area energy storage systems to fully 
utilize renewable energy sources has become an inevitable trend for the sustainable development of the 
global economy and society[4,5]. Among them, large-scale electrochemical energy storage systems have 
attracted much attention due to their green features, high efficiency, and long lifetime[6]. Currently, there are 
four main categories in the secondary battery market: lead-acid batteries, alkaline nickel/cadmium batteries, 
nickel/metal hydride batteries, and lithium-ion batteries (LIBs). Among them, lead-acid batteries and 
nickel/cadmium batteries are cheap and durable but have low energy density and are associated with 
environmental pollution and harmful effects[7]. LIBs have been widely used in portable electronic devices, 
automobiles, aerospace, and other fields since the 1990s because of their high energy density, light weight, 
durability, and other advantages[8,9]. However, the success of LIBs is not sustainable. Firstly, the low reserves 
of lithium and the difficulty in extracting it have resulted in an increase in cost; secondly, the organic 
electrolyte used in LIBs poses serious safety hazards in practice, with numerous reports of fires in new 
energy vehicles emerging in recent years[10-16]. Unlike organic electrolytes, aqueous electrolytes are safer, 
cheaper, and have advantages such as high ionic conductivity and easy preparation, which are expected to 
be applied in the next generation of green secondary batteries[17-19]. Therefore, in order to cope with the 
long-term development needs, the development of a new type of non-lithium rechargeable aqueous 
batteries for large-scale energy storage systems is of great strategic significance.

Aqueous rechargeable batteries have flourished in recent years by virtue of their advantages such as easy 
assembly, environmental friendliness, and low cost[20]. At present, based on the comprehensive 
consideration of the storage capacity and cost, a variety of aqueous batteries including Na+, K+, Zn2+, Ca2+, 
Mg2+, and A13+ have been developed[21-26]. Among them, Na+, K+ and Li+ batteries are similar in nature and 
are developing rapidly, which have a tendency to replace LIBs, but their active chemical properties are 
destined to be accompanied by safety hazards[27]. Although multivalent ions have a high specific capacity 
and energy density, some issues should be properly addressed. For example, Ca2+ batteries exist with anode 
deposition and dissolution; Mg2+ diffusion is slow and magnesium is easy to passivate; A13+ surface is prone 
to the formation of alumina film leading to a decline in battery performance[28-35]. In contrast, aqueous zinc 
ion batteries (AZIBs) are able to operate stably in neutral and weakly acidic electrolytes; in addition[36], (1) 
the positive and negative materials and electrolytes for AZIBs are inexpensive, easy to obtain, and 
environmentally friendly; (2) zinc, as the negative electrode of the batteries, has a volumetric energy density 
of 5,855 mAh cm-3 and a theoretical specific capacity of 820 mAh g-1; and (3) low redox potential of Zn/Zn2+ 
[-0.76 V vs. standard hydrogen electrode (SHE)][37-43]. Therefore, AZIBs will certainly have a place in the 
energy storage field in the future.

AZIBs, as shown in Figure 1[44], have been developed for a long time[45-49]. In 1799, the Italian scientist 
Alessandro Volta invented the first battery - voltaic pile using zinc. Then, in 1868, the French engineer 
Georges Leclain invented the zinc-manganese battery. In 1886, dry cell zinc-carbon batteries appeared. 
Subsequently, Zn-Ag and Zn-Ni batteries have also been studied one after another. However, the early 
AZIBs used alkaline solutions as the electrolyte, and the positive and negative electrodes of the batteries 
were prone to irreversible reactions, resulting in the decline of battery life[50]. It was not until 1986 that 
Japanese scientists Yamamoto et al. first used a weakly acidic zinc sulfate (ZnSO4) electrolyte instead of an 
alkaline electrolyte to prepare and validate the cycling stability of Zn|ZnSO4|MnO2 batteries, which opened 
the door to the development of rechargeable AZIBs[51]. Since then, research on rechargeable AZIBs has 
focused on neutral or weakly acidic electrolytes, from which a variety of cathode materials have been 
developed, and the development process is shown in Figure 2A [52-55].
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Figure 1. The development history of representative Zn-based EES devices[44]. Copyright 2021, Elsevier.

As the host material of Zn2+, the nature and structure of the cathode material largely determine the 
performance of the battery. To improve the specific capacity of AZIBs, the development of cathode 
materials with excellent performance is inevitable[56]. Therefore, the cathode material requires: (1) a suitable 
structure, including the embedding and detachment of ions, while ensuring the stability of the structure in 
the process of embedding and detachment; and (2) a suitable zinc storage potential, which is conducive to 
the occurrence of redox reactions at the positive and negative electrodes. To enhance the electrochemical 
performance of AZIBs, as shown in Figure 2B, the currently considered ideal cathode materials for AZIBs 
include manganese compounds, vanadium compounds, and Prussian blue analogs[57-62]. Figure 2C visualizes 
the advantages and disadvantages of several materials based on different parameters. Compared to 
manganese-based compounds, as well as Prussian blue and its analogs, vanadium-based compounds offer 
the benefits of a higher specific capacity and a more stable cycle life. Moreover, they possess a range of 
crystal structures, such as layered, tunnel, and NASICON types, which promote multi-electron transfer, aid 
in achieving local electrical neutrality, and mitigate polarization issues arising from Zn2+ insertion[54]. 
However, the development of vanadium oxides has been greatly hindered by the low working voltage of 
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Figure 2. (A) Main progress and brief development history of cathode materials[53]. Copyright 2021, American Chemical Society. (B) 
Percentage of current ZIB studies on various cathode materials[54]. Copyright 2019, John Wiley and Sons. (C) Characteristics of various 
ZIB cathode materials[55]. Copyright 2021, Elsevier.

vanadium-based compounds (about 0.8 V compared to Zn2+/Zn), slow reaction kinetics and few reactive 
active sites[63]. Manganese oxides are abundant, safe and non-toxic, and inexpensive, and exhibit good 
electrochemical properties. Among them, MnO2 is favored by researchers for its rich crystalline form. 
However, the unclear storage mechanisms of manganese-based compounds, coupled with severe electrode 
dissolution during the charging and discharging process and the ensuing structural damage, reduce the 
battery life[64-68]. To address these problems, researchers have improved cathode materials through 
modifications such as capping, ionic pre-embedding, anion/cation vacancies, and morphology modification, 
which, in turn, improve the battery performance. For example, MnO-carbon nanotube (CNT)@C3N4 
nanocomposites were developed recently, and the capacity retention rate of the assembled Zn//MnO-
CNT@C3N4 batteries was 87.5% after 1,000 cycles at 3A g-1[69].

Despite a large number of research methods and measures developed to modify and study oxide cathode 
materials, prolonged charging and discharging inevitably lead to electrode degradation, undermining the 
effectiveness of these modifications and greatly hindering the commercialization of AZIBs. Therefore, the 
development of cathode materials with suitable structures to obtain commercially viable AZIBs is of 
particular importance. So far, the research on cathode materials for AZIBs has focused more on oxides and 
less on non-oxide materials. However, some non-oxide materials exhibit superior electrochemical 
properties compared to oxide materials; e.g., metal sulfides exhibit better electrochemical activity and 
greater thermodynamic stability; metal selenides have better electrical conductivity and substantial 
theoretical stacking capacity densities. These properties determine that non-oxide materials will definitely 
have a place in energy storage, which is well-proven in the remaining metal-ion batteries. For example, 
Qian et al. applied MnSe2 to sodium-ion batteries and prepared MnSe2NCs cathode materials that realized 
multi-electron pair reactions and showed excellent cycling stability[70]. Therefore, in order to promote the 
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footsteps of the commercialization process of AZIBs and make up for the application of non-oxide materials 
in the field of AZIBs, this paper summarizes six existing non-oxide materials to facilitate later researchers to 
review and summarize [Figure 3].

There is a large amount of literature available on the modification and summarization of manganese oxides 
and vanadium oxides, so this review article will not go into detail for oxide materials here. After a brief 
introduction, the recent progress of non-oxide manganese and vanadium compounds is discussed, with a 
critical analysis on the structure and merits when used as positive electrode materials for AZIBs. In 
addition, the recent development of emerging strategies for further enhancing the specific capacity and 
cycling performance of these materials is also reviewed. This review will conclude with a summary of the 
recent development of this research field. The key challenges and perspectives are also presented. We hope 
that this article will provide useful information for researchers working in relevant fields.

MN-BASED MATERIALS
Manganese-based compounds are popular for their high theoretical specific capacity (308 mAh g-1) and 
abundant valence states (+2, +3, +4, +7) in a variety of positive grade materials. Among them, MnO2 alone 
has seven crystal types (β-, α-, γ-, R-, t-, δ-, and λ-), and it has been demonstrated that diverse crystal types 
have varying electrochemical properties. In addition, MnO, Mn2O3, Mn3O4, and some manganates derived 
from divalent and trivalent Mn elements are also used as electrode materials[71,72]. Although numerous 
manganese oxides are widely used as cathode materials, manganese-based cathodes exhibit poor cycling 
stability during charging and discharging, while the energy storage mechanism for manganese oxides is still 
not unified. Therefore, there is a need to develop non-oxide manganese-based materials to side-by-side 
validate their energy storage mechanism and fully exploit the non-oxide materials themselves with excellent 
electrochemical properties.

MnS
In recent years, transition metal sulfides have been gradually researched and developed as positive electrode 
materials due to their excellent electrochemical properties and abundant reserves in the earth. These sulfides 
have better thermal stability, electrical conductivity, and reversibility than metal oxides. The interlayer van 
der Waals force of metal sulfides is weaker. Moreover, the chemical bonding of M-S is weaker than that of 
M-O, which greatly facilitates the embedding and detachment of ions during charging and discharging. 
Among various metal sulfides, MnS is of great interest to researchers because of its low cost, stable 
mechanical properties, and excellent theoretical specific capacity[73-76].

MnS is the main form of manganese sulfide, which is a p-type semiconductor with three different crystalline 
forms. The X-ray diffraction (XRD) patterns and spatial models of MnS are shown in Figure 4: including 
the presence of α-MnS (space group Fm3m, a = b = c = 5.224 Å), β-MnS (space group F-43m, 
a = b = c = 5.615 Å) and γ-MnS (space group P63mc, a = b = 3.97 Å and c = 6.446 Å)[77]. Among them, α-MnS 
is a thermodynamically stable cubic rock salt type with a green color; β-MnS and γ-MnS are both substable 
with a pink color; when the temperature is higher than 100 °C or in a high-pressure condition, both 
substable β-MnS and γ-MnS will be transformed into stable α-MnS[78]. Although α-MnS has an octahedral 
stable structure, the substable γ-MnS has the best electrochemical performance among the three crystalline 
forms[79]. γ-MnS has a layered structure that is more conducive to ionic embedding and electrolyte 
penetration behavior, and has a higher Gibbs free energy that makes the conversion reaction easier during 
charging and discharging.
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Figure 3. Classification of non-oxide materials.

Figure 4. XRD patterns of different crystalline forms of MnS and corresponding crystal structure insets[78]. Copyright 2017, Elsevier.

As an electrode material, MnS has a theoretical specific capacity of 616 mAh g-1, a low redox potential of 
1.049 V, and is safe, abundant, and environmentally friendly, and thus has been investigated and applied in 
capacitors, batteries (e.g., sodium, lithium, and zinc batteries), etc. The use of MnS in AZIBs has been 
verified to have excellent electrochemical performance, and the reaction mechanism shows that MnS is 
converted to manganese oxide after the first charge/discharge. Compared with the direct application of 
manganese oxide as the cathode material, MnS, as the cathode material, shows more excellent 
electrochemical performance. For example, Liu et al. used MnS as the cathode material of AZIBs[80], and 
pointed out that the cyclic voltammetry (CV) curve has no reduction peaks but three oxidation peaks in the 
first cycle, while two reduction peaks and two oxidation peaks appear respectively in the fifth cycle, which 
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proves that the conversion reaction of MnS occurs during the charging and discharging process, as shown 
in Figure 5A. It is also pointed out that the first charging capacity at 0.1 A g-1 is 663.5 mAh g-1, and the 
capacity retention rate after 100 cycles at 0.5 A g-1 is 63.6%. The possible mechanism of high stability of MnS 
in the long term is verified by the non-in situ XRD characterization [Figure 5B].

Nevertheless, MnS, as an electrode material, undergoes severe volume changes during charging and 
discharging, leading to the destruction of the structure and the rapid decay of the capacity. Moreover, the 
low conductivity of sulfide makes the energy storage device less reversible and the theoretical specific 
capacity cannot be fully released. Therefore, there is still a need to study the modification of MnS to obtain 
the desired electrochemical performance. Chen et al. prepared MnS [MnS-electrochemically derived oxide 
(EDO)] by a one-step hot-vapor-solid-sulfurization method using α-MnO2 as a precursor, exhibiting a 
specific capacity of 335.7 mAh g-1 at a 0.3 A g-1, and almost no capacity fading is observed after 100 cycles 
[Figure 6A][81]. This work points out that the inactive MnS is desulfurized and converted to high-
performance MnS-EDO during the charging and discharging process. This conversion leads to a large 
number of defects in the material, which exposes more active sites and promotes the penetration of the 
electrolyte. At the same time, the defects reduce the electrostatic interactions between the host and guest, 
which improves the ionic diffusion kinetics and facilitates the charge transfer, as shown in Figure 6B and C. 
The synergistic effect between the defects positively affects the electrochemical performance of the battery.

Wang et al. prepared a core-shell structure of MoS2@MnS, which possessed a high specific capacity of 
discharge (185.6 mAh g-1) and excellent cycling stability (capacity retention of 90.8% after 300 cycles) when 
applied to AZIBs[82]. Xu et al. prepared MnS/C nanosheets via a manganese sulfide-based organometallic 
precursor, pointing out that MnS transforms into MnOx after the first charging[83]. It can be seen from 
Figure 6D that after the initial cycling, the MnS phase disappears rapidly, and elemental S evolves into a 
high-valent sulfate. At the same time, the MnOx phase begins to appear, and the subsequent battery 
behavior is actually a result of the H+ and Zn2+ of MnOx and Zn2+ of MnOx. Tang et al. prepared MnS/
MnO@N-CF by electrostatic spinning, which used N-doped carbon fibers as the nitrogen (N) and carbon 
sources[84]. In addition, dual ionic defects of Mn and S were generated [Figure 6E and F], which made the 
composite material simultaneously have abundant reactive sites, excellent ion diffusion rate, and exhibited a 
reversible capacity of 128.7 mAh g-1 at a high current density of 2 A g-1. Tang et al. used a combination of 
various modifications to enhance the battery performance dramatically[84]. The synergistic effect between 
different modification strategies will produce unexpected chemical reactions, which provides new ideas for 
us to study new electrode materials in depth. Ma et al. prepared manganese sulfide/reduced graphene oxide 
(MnS/RGO) composites by one-step hydrothermal reaction with the help of graphene's good electrical 
conductivity, which can effectively alleviate the volumetric change after multiple charging and 
discharging[85]. In addition, this MnS/RGO composite has excellent structure and conductivity, thus 
exhibiting a discharge specific capacity of 289 mAh g-1 at 0.1 A g-1.

In addition, MnS has also been applied to other zinc batteries. For example, Li et al. proposed a two-
dimensional (2D) ultrathin Co9S8/MnS decorated on sulfur/nitrogen co-doped carbon nanosheets (Co9S8/
MnS-USNC) for the aqueous/all-solid-state zinc-air batteries [Figure 7A][86], which possessed excellent 
activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and greatly improved 
the battery life [Figure 7B]. Wang et al. prepared N-doped carbon nanofibers wrapped with metallic 
manganese and cobalt sulfides (CMS/NCNF). In the application of solid-state zinc-air batteries, excellent 
battery performance was obtained at different bending angles [Figure 7C-E][87].
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Figure 5. (A) CV images of MnS. (B) ex situ XRD of MnS in the zinc ion battery[80]. Copyright 2017, American Chemical Society.

Figure 6. (A) Cyclic stability of MnS-EDO in 1C[81]; (B) Linear fitting results of the difference between anode and cathode current 
densities vs. scanning rate for ECSA estimation of fully charged MnS-EDO and MnO2 electrodes after cycling for the 1st and 15th turn, 
respectively[81]; (C) Nyquist plots of MnS-EDO and MnO2 cathodes at a discharge voltage of 1.40 V (the inset shows Nyquist plots at a 
discharge voltage of 1.25 V)[81]. Copyright 2020, Elsevier; (D) XRD patterns of MnS/C at different cycling stages in the 1st and 2nd 
cycles[83]. Copyright 2022, American Chemical Society; (E and F) MnO and Mn defects, MnS and S defects[84]. Copyright 2022, Elsevier.

MnHCF
Prussian blue analogs, also known as metal-ferricyanide compounds (MHCFs), are a class of substances 
made from Prussian blue through substitution and interstitial modification. The general formula can be 
expressed as AxB1[B2(CN)6]y-nH2O, in which A is an alkali metal ion (e.g., Li, Na, K, Mg, etc.) and B is a 
transition metal (e.g., Mn, Fe, Co, Zn, Ni, etc.). The structure of the corresponding Prussian blue analog of 
Zn2+ is shown in Figure 8. Prussian blue was first discovered as a synthetic pigment, and then its analogs 
were widely used in various types of batteries (e.g., Li, Na, K, Mg, Zn, Al, etc.) by virtue of their unique 
three-dimensional (3D) porous skeleton structure (which facilitates the embedding and dislodging of 
ions)[88-97].
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Figure 7. (A) Synthesis route of Co9S8/MnS- USNC[86], (B) Cycling stability testing of all-solid-state zinc-air batteries with Co9S8/MnS-
USNC[86]. Copyright 2021, American Chemical Society. (C-E) Charge-discharge polarization curves, mixed-angle photographs, and 
electrostatic flow discharge and charge cycling curves at 5 mA cm-2 of solid-state zinc-air batteries under CMS/NCNF bifunctional 
catalysts at different bending angles[87]. Copyright 2017, American Chemical Society.

Figure 8. Process of crystal structure change of Prussian blue analogs after Zn2+ embedding/de- embedding[97]. Copyright 2018, John 
Wiley and Sons.

As an electrode material, Prussian blue analogs have the advantages of diverse valence states, sufficient 
reaction sites, easy synthesis, and unique and stable structure[98]. MnHCF has a higher specific capacity and 
operating voltage than other Prussian blue analogs, due to the redox reaction of two transition metals (Fe 
and Mn) in MnHCF and the high spin state of MnHS exhibiting a high redox potential[99,100]. However, 
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MnHCF has common disadvantages of manganese-based materials: lattice distortion, manganese 
dissolution, and poor conductivity of MnHCF, which reacts with electrolytes and seriously hinders the 
development of MnHCF[101-104]. Li et al. assembled a coin cell battery and performed a series of tests using a 
Zn thin film as the negative electrode, MnHCF and ZnHCF particles as the positive electrode, and 3M 
ZnSO4 as the electrolyte[105]. The results show that during the charging and discharging process, the capacity 
contribution of the Fe site gradually increases from 36% to 86%, and the capacity contribution of the Mn site 
decreases significantly. From Figure 9A, it can be seen that the charging and discharging platform does not 
change much in the range of 1.0-1.5 v of the Fe reaction voltage. Correspondingly, the charging and 
discharging platform decreases significantly in the range of 1.5-1.9 voltages. Meanwhile, the structural 
framework of Zn-C-N-Fe can be detected in the MnHCF samples, which is well characterized in Figure 9B. 
This is also evidenced by the fact that the oxidation state curve of Fe in Figure 9C almost coincides with the 
original sample. It indicates that the dissolution of Mn occurs, resulting in the replacement of the Mn sites 
by Zn, which leads to a decrease in the capacity of the battery during cycling. As a result, the capacity 
retention rate is only 32.2% at 100 cycles [Figure 9D].

Therefore, some necessary research tools are needed to solve these problems, such as (1) addition of 
surfactants: Liu et al. prepared ultrafine MnHCF with few vacancies and low water content by adding 
surfactant PAA-K, which can control the size of MnHCF during synthesis and regulate the crystallization 
process (the synthesis process is shown in Figure 10A)[106]. The assembled battery was tested to possess a 
high capacity of 139.2 mAh g-1 at 0.05 A g-1, while the capacity retention rate was as high as 84.5% after 1,000 
cycles at 0.5 A g-1; (2) Impurity element doping: Xue et al. introduced zero-dimensional N-doped carbon 
dots (NCDs) into MnHCF [Figure 10B][107], which significantly improved the conductivity and alleviated the 
volume change of MnHCF during charging and discharging. The introduction of NCDs provided abundant 
active sites, which led to the composites exhibiting excellent structural stability. The capacity of MnHCF/
NCDs composites as cathodes was as high as 131.2 mAh g-1 at 0.05 A g-1 and the capacity retention rate was 
91% after 1,000 cycles at 1 A g-1. The capacity retention rate was 91% after 1,000 cycles at 1A g-1; (3) 
Improved electrolyte: the electrolyte is an integral part of the battery, and its properties will also determine 
the overall performance of the battery. Chen et al. constructed a solvated structure of propylene carbonate 
(PC)-Otfluoromethane sulfonate (Otf)-H2O[108]. Figure 10C vividly represents this structure in a cartoon 
diagram, and the results showed that the incorporation of PC suppressed the phase transition from MnHCF 
to ZnHCF, and improved the battery’s cycling stability. In addition, Tan et al. proposed a hydroxylation 
strategy to increase the battery capacity by activating the inactive redox pairs in MnHCF [Figure 10D][109], 
and the results showed that the hydroxylated MnHCF could continuously activate the multiple redox 
centers during charging and discharging, which ensured the capacity and stability of the battery.

Similarly, MnHCF has been used in applications with non-aqueous zinc ion batteries (ZIBs); for example, 
Li et al. assembled a battery using MnHCF as the cathode and zinc as the anode in combination with a zinc-
containing non-aqueous electrolyte, which exhibited a long operating time of up to 5,460 h with almost no 
capacity degradation[110].

MnSe2

As another branch of transition metal compounds, excessive metal selenides (TMSs) have gradually entered 
the field of energy storage in recent years for their high theoretical specific capacity as electrode materials 
[The theoretical specific capacity of MnSe2 is 503 mAh g-1, much higher than that of MnO2 (308 mAh g-1)]. 
In addition to this, TMSs exhibit good electrical conductivity and electrochemical activity and strong 
thermodynamic stability[111-113]. Various transition metal selenide electrode materials (MoSe2, FeSe2, CoSe2, 
and MnSe2)[114-117] are applied in sodium-ion batteries, LIBs, and supercapacitors. However, very few ARE 
applied in AZIBs. Selenium is in the same group as oxygen and sulfur, and metal selenides exhibit similar 
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Figure 9. (A) Galvanostatic charge and discharge curves of MnHCF in the initial 10 cycles at C/20; (B) corresponding Fourier transforms 
(FTs); (C) ex-situ XANES of MnHCF powder and the prepared electrodes at the Fe K-edge; (D) cycling performance of ZnHCF at C/5 
rate[105]. Copyright 2021, Elsevier.

chemical properties to metal oxides and sulfides, but have better bulk energy density and energy storage 
advantages. This is because the electrical conductivity and density of metal selenides are better than the 
remaining two[118-121].

In contrast to MnSe2, MnS, and MnO, Se possesses a larger atomic radius, which gives MnSe2 a larger 
interlayer spacing and band gap and weaker bonding energy. This structure greatly reduces the difficulty of 
ion embedding and dislodging during charging and discharging, improves the conversion reaction 
efficiency, and exhibits better structural stability. Therefore, it is of practical value to develop MnSe2 as a 
cathode material for AZIBs. However, MnSe2 exhibits severe volume expansion and slow reaction kinetics 
during charging and discharging, which seriously affects the overall lifetime of the battery for further 
applications[114]. Therefore, MnSe2 also needs to be modified accordingly to improve its electrochemical 
stability.

As mentioned above, MnSe2 is not abundantly used in the field of AZIBs, while it has applications in 
capacitors and sodium-ion and lithium-ion batteries[122]. For example, Ma et al. prepared cubic-structured 
MnSe2 by a disposable hydrothermal method and applied it to supercapacitors, which showed good 
electrochemical performance; Mukesh et al. investigated the effect of Cu-ion doping on the MnSe2 electrode 
as a material for LIBs, and the results showed that the introduction of Cu ions reduced the bandgap of the 
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Figure 10. (A) Scheme of the synthetic process of MnHCF/PAA- K[106], Copyright 2023, Elsevier. (B) Scheme for preparing 
MnHCF/NCDs[107], Copyright 2023, Elsevier. (C) Schematic structure of Zn-MnHCF cell equipped with a novel hybrid electrolyte 
PC-H2O co- solvent[108], Copyright 2023, John Wiley and Sons. (D) OH - rich MnHCF synthesis schematic and corresponding structure 
schematic[109]. Copyright 2023, Elsevier.

material and increased its electrical conductivity; CoS/CoP/NC prepared by Chen et al. also showed good 
electrochemical performance in sodium-ion batteries[123-125].

There are only a few studies on the application of MnSe2 in the field of AZIBs. Xie et al. prepared CNTs 
composite MnSe2/CNTs (MSCN) by a simple one-step room-temperature liquid-phase co-precipitation 
technique in order to improve the stability of the material and to develop a method suitable for large-scale 
production [Figure 11A][126]. The article notes that the method enables large-scale production and that the 
assembled cells maintain high cycling stability at high current densities (87.24% capacity retention after 
2,000 cycles at 2A g-1). Li et al. prepared MnSe2 with a unique pore structure, and the synthesis method was 
simple and scaleable, and the Coulombic efficiency remained above 98% after 2,000 cycles [Figure 11B][127]. 
Premkumar et al. prepared MnSe2/PPy electrode materials and applied them to AZIBs by utilizing the 
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Figure 11. (A) Fabrication process of MnSe2/CNTs (MSCN)[126], Copyright 2023, Elsevier. (B) MnSe2 with special void structure[127], 
Copyright 2023, Elsevier. (C) MnSe2/PPy cell composition, (D) Long cycle stability of MnSe2/PPy cells[128]. Copyright 2024, Elsevier.

ability of polypyrrole (PPy) to broaden the distribution of active sites in the materials and improve the 
stability of the composites[128]. The material has sufficient ductility to accommodate volume changes during 
charging and discharging, thus ensuring good electrochemical performance. The assembled cell exhibited a 
high specific capacity of up to 283.4 mAh g-1 at a current density of 2 A g-1, a capacity retention of 86.3% 
after 2,000 cycles, and a Coulombic efficiency of close to 100% (99.4% in practice, Figure 11C and D).

To summarize the existing studies, MnSe2 does exhibit good electrochemical properties as an electrode 
material; however, the volume expansion during charging and discharging seriously hinders the 
development of this material. Therefore, further consideration is required on how to modify MnSe2 and 
how to apply the research methods of existing systems to MnSe2 to obtain electrode materials with good 
stability.

By comparing the three materials mentioned above, it is easy to see that not all non-oxide materials have 
better electrochemical properties than oxide materials. This is reasonable. First of all, for oxide materials, 
there has been a great deal of research and modification, which dictates that the best synthesis and testing 
methods for their materials have been explored. In addition, a large number of investigated modifications 
have largely improved the electrochemical properties of manganese oxide materials, compensating, to some 
extent, for the deficiencies of the oxides. However, it can be found that MnOx formed during charging and 
discharging processes will show better basic performance than direct synthesis of manganese oxides; for 
MnHCF, its structure determines the principle of multi-electron pair charging and discharging; the 
electrochemical properties of MnSe2 approach and even surpass those of manganese oxide materials. All of 
the above suggests a huge potential for energy storage for non-oxide materials. Meanwhile, for the various 
studies mentioned in the paper, it can be found that the modification methods are interoperable between 
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different materials; however, due to the difference in microscopic particles, which determines the difference 
in properties, further research is still needed on how to apply the modification strategies of oxide materials 
to non-oxides. Table 1 summarizes the properties of the above-mentioned materials, while a more recent 
manganese oxide study is introduced to facilitate a visual comparison[65,80-85,105-108,126-129].

VANADIUM-BASED MATERIALS
Owing to the abundance of vanadium resources and its various oxidation states, a diverse array of 
vanadium-based compounds have been developed. Vanadium compounds exhibit structures such as 
tetrahedral, pyramidal, trigonal, and octahedral, which typically change based on the oxidation state of 
vanadium (e.g., V5+, V4+, V3+). In comparison to manganese-based materials and Prussian blue analogs, most 
vanadium-based cathodes exhibit higher capacity[130,131].

Vanadium nitrides
In the process of cycling, zinc ions encounter issues such as decreased capacity and slow transport 
kinetics[132,133]. In recent years, vanadium nitride (VN) cathode materials with a cubic structure have emerged 
as a potential breakthrough to solve these challenges[134,135]. In the initial charging cycle, VN-based materials 
undergo a high potential inverse reaction, subsequently demonstrating high capacity performance in the 
second cycle. VN has a face-centered cubic (fcc) structure and exhibits good electrical conductivity and 
spatial structure[136]. Rong et al. synthesized very stable VN particles by reducing and nitrating V2O5 through 
simple solvothermal, calcination and nitration methods in NH3 atmosphere[137]. A large number of pores 
exist between the VN particles formed on the typical V2O5 core-shell structure. This loose and porous 
structure enables the VN electrode material to have excellent electrochemical performance. The specific 
capacity of VN particles is 496 mAh g-1 at 0.1 A g-1. Even at a very high current density of 20 A g-1, a specific 
capacity of 153 mAh g-1 can be achieved and a specific capacity of 82 mAh g-1 can be maintained after 8,000 
cycles. In addition, the prepared VN particles exhibit excellent rate performance when tested at different 
current densities. The cycling performance of the obtained VN is even better than that of its commercial 
counterpart. Atomic doping was able to significantly improve the conductivity of vanadium-based 
compounds and increase the transport rate of Zn2+.

Park et al. generated reduced graphene oxide composite (VN-rGO) microspheres with 3D porous structure 
by spray pyrolysis method of synthesized VN after heat treatment in NH3 atmosphere[135]. The 
electrochemical performance of VN-rGO was systematically studied, as shown in Figure 12. After the VN 
phase transition during the initial charging process, the VN-rGO microspheres exhibited unrivaled high 
capacity (809 mAh g-1) and excellent rate capability (467 mAh g-1 at 2.0 A g-1) at 0.1 A g-1 [Figure 12A-E]. 
The 3D porous matrix, in turn, refines structural stability, which is mainly reflected in the cathode's ability 
to maintain a specific capacity of 445 mAh g-1 even after 400 cycles at 1.0 A g-1, along with a high energy 
density (613 Wh kg-1) [Figure 12F and G]. The VN-rGO microspheres have a high electrical conductivity 
that can accelerate the storage of Zn2+ ions to obtain high capacity and enhance the structural stability of the 
material.

Zhang et al. synthesized composites with a 3D self-supporting skeleton and VN as a nitrogen source-doped 
carbon nanofibers (VN/N-CNFs) by electrostatic spinning and a two-step thermal treatment with pre-
oxidation and carbonization[138]. The electrochemical characterization of this material and the analysis of the 
study lead to the conclusion that the presence of a vanadium-based metal-organic framework (v-MOF) 
facilitates the in situ hierarchical growth of the whisker-like secondary structure, which allows the material 
to maintain a good structure under thermal stresses. In addition, the 0D-activated VN nanoparticles are 
homogeneously distributed in both the backbone nanofibers and the branched nanowhiskers. The v-MOF 
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Table 1. Summary of manganese-based materials in this paper

Products Potential window (V) Electrolyte Initial capacity 
(mAh g-1; A g-1) Cycles numbers Capacity retention Ref.

MnO-CNT@C3N4 0.8-1.8 2M ZnSO4 + 0.2M MnSO4 209 (0.8) 200 96% [65]

MnS 1.0-1.8 ZnSO4 110 (0.5) 100 63.6% [80]

MnS-EDO 0.8-2.0 2M ZnSO4 + 0.1M MnSO4 335.7 (0.3) 100 100% [81]

MoS2@MnS 0.0-3.0 185.6 (1.0) 300 90.8% [82]

MnS/C 0.8-1.8 2M ZnSO4 + 0.1M MnSO4 51.9 (3.0) 1,000 70% [83]

MnS/MnO@NCF 1.0-1.8 151.0 (0.5) 400 100% [84]

MnS/RGO 0.8-1.9 2M ZnSO4 + 0.1M MnSO4 62 (3.0) 1,000 70.8% [85]

MnHCF 1.0-2.0 3M ZnSO4 50 70% [105]

MnHCF-15 1.0-2.0 3M Zn(CF3SO3)2 115.6 (0.1) 1,000 92.5% [106]

MnHCF/NCDs 0.5-2.0 2M ZnSO4 22.1 (1.0) 1,000 91% [107]

OH-rich MnHCF 0.9-1.95 2M Zn(CF3SO3)2 135.9 (0.05) [108]

MnSe2/CNTs 0.8-2.0 2M ZnSO4 + 0.1M MnSO4 259.2 (2.0) 2,000 87.24% [126]

MnSe2 0.8-2.0 2M ZnSO4 + 0.1M MnSO4 231.5 (2.0) 2,000 86.3% [127]

MnSe2/PPy 0.8-2.0 0.1M ZnSO4 + 2M MnSO4 283.4 (2.0) 2,000 86.3% [128]

NCMO 0.8-1.9 200 (2.0) 1,000 100% [129]

obtained in situ can both prevent the self-aggregation of highly active 0D nanoparticles, and act as a kind of 
shell that reduces the dissolution of vanadium during the reaction by controlling the contact with the water-
based electrolyte, producing protective and conductive effects. At the same time, this flexible and self-
contained electrospun nanofiber woven carbon frame can largely maintain the integrity of the battery 
structure, and the cell exhibits an ultra-long cycle life with a stable capacity of 482 mAh g-1 even after 30,000 
cycles at 50 A g-1 since pre-activation of the ZIB by cycling it for five revolutions at low current densities. 
The cathode of the VN/N-CNFs possesses a very good multiplicity performance at 100 A g-1 with a high 
multiplicity discharge capacity of 297 mAh g-1.

Yuan et al. modulated the morphology of VN by changing the molar amounts of cetyltrimethylammonium 
bromide (CTAB), and the anodic phase of the CTAB-modified VN was changed to vanadium oxide 
(VOx)[139]. The composite was characterized by the dual energy storage through the “conversion and 
intercalation reactions” in a wide range of climatic conditions (-15-50 °C), exhibiting excellent rate capacity 
and cycling stability. During the reaction process, the VN structure can provide a better skeleton for VOx. 
Since the N atom has a smaller molar mass compared to the O atom, it can provide a large amount of 
reaction material for the reaction after the phase transition to increase the capacity. In addition, the porous 
structure and excellent electrical conductivity of VN can alleviate the volume change and achieve rapid ion 
transport during the reaction process. The electrochemical performance of this VN-2 cathode was tested 
and it maintained 393 mAh g-1 after 200 cycles at 1 A g-1 [Figure 13A]. The VN-2 electrode possesses 
excellent multiplicative performance at an ultra-high current density of 10 A g-1 with a capacity of 
427 mAh g-1 [Figure 13B]. It also exhibits excellent electrochemical performance of 272 mAh g-1 and high 
cycling stability up to 7,000 cycles at 5 A g-1 [Figure 13C], which provides a possibility for further 
development of AZIBs. Table 2 summarizes the latest vanadium oxide studies with VN performance 
comparison for review[135,140-145].

VSe2

Vanadium diselenide (VSe2) is a typical transition metal disulfide compound metal component with flower-
like VSe2 spheres with an interlayer distance of 6.11 Å. The high electrical conductivity of this material is 
promising for Zn2+ de-embedding[146]; this material has the advantage of high conductivity, but its 
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Table 2. Comparison of some vanadium-based compounds

Products Electrolyte Initial capacity (mAh g-1; A g-1) Cycles numbers Capacity retention Ref.

VN-rGO 1M Zn(CF3SO3)2 809 (0.1) 400 78% [135]

V2O5 3M Zn(CF3SO3)2 319 (0.02) 500 81% [140]

V2O5 1M Zn(CF3SO3)2 + 2 M LiTFSI 238 (0.05) 2,000 80% [141]

δ-Ni0.25V2O5·nH2O 3M Zn(CF3SO3)2 218 (5.0) 1,200 98% [142]

V6O13 1M Zn(CF3SO3)2 230 (4.0) 3,000 92% [143]

VO2(B) 1M ZnSO4 365 (0.05) 200 80% [144]

VN 3M Zn(CF3SO3)2 705 (0.2) 200 60.5% [145]

Figure 12. (A) Charge and discharge curves of VN-rGO in the initial two cycles at 0.1 A g-1, (B) in-situ EIS plots during the first charging 
process, (C) CV curve of VN-rGO material for the first three cycles at 0.1 mV s-1, (D) the cycling performance of VN-rGO at 0.1 A g-1, (E) 
comparison of the rate performance of VN-rGO microspheres and VN microspheres/rods and (F) long cycle performance. (G) 
comparison of energy density of VN-rGO microspheres with Ragone diagrams of other materials[135]. Copyright 2022, Elsevier.

development still has problems such as low specific capacity (< 200 mAh g-1) and poor rate performance, far 
lower than vanadium and manganese oxide cathode materials. To solve this problem, defect engineering, 
thickness reduction and composite formation can improve the Zn2+ storage performance of VSe2. Studies 
have shown that the creation of selenium defects can well weaken the interfacial adsorption energy barrier, 
thereby increasing the storage of zinc ions. In addition, the construction of composite materials at the 
mesoscale can also strengthen the host structure and increase the ion transport rate, thereby improving the 
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Figure 13. (A and B) Comparison of cyclic properties and magnification properties of different materials at 1 A g-1, (C) long-term cycling 
properties of various samples at 5 A g-1 [139]. Copyright 2023, Elsevier.

cycle stability[147,148]. Moreover, the construction of composites at the mesoscopic scale can also strengthen 
the host structure and improve the transport kinetics, thus enhancing the cycling stability[149,150].

Bai et al. proposed the synthesis of stainless steel (SS) supports with defects (VSe2-x-SS) by hydrothermal 
reduction to develop VSe2-x-SS nanosheets, an AZIB cathode material with good electrochemical properties, 
and the creation of Se defects can largely improve the VSe2-x-SS conductivity and activity[147]. Density 
functional theory (DFT) calculations can demonstrate that the adsorption energy of Zn2+ can be modulated 
by this approach through an effective combination of SS and defect engineering strategies. This suggests 
that the insertion and extraction of Zn2+ ions on VSe2-x is more reversible than pure VSe2 decorated SS. After 
1,800 cycles at 4 A g-1, the specific capacity of VSe2-x-SS was 175.8 mAh g-1, with a capacity reduction of only 
12.2%. However, the capacity of VSe2-SS was only 75.8 mAh g-1, with a capacity reduction to 65.8% under 
the same conditions. In addition, the specific capacity of VSe2-x-SS electrodes was 265.2 mAh g-1 after 150 
cycles at a low current density of 0.2 A g-1, which possesses excellent rate performance and outstanding 
cycling stability.

Cai et al. synthesized VSe2/Mxene by a facile hydrothermal and calcination process, and the electrochemical 
performance of VSe2/Mxene as the cathode material for AZIBs was studied[151]. It was found that oxidation 
reactions occurred in VSe2 due to the repeated interaction and extraction of Zn2+ and H+ during the 2,000 
cycles. During the reaction, Zn0.25V2O5H2O formed a continuous accumulation on the VSe2/Mxene surface 
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[Figure 14A-C], and the accumulation of these nanosheets was responsible for the continuous increase in
capacity. The experimental results show that VSe2/Mxene can provide higher initial specific capacity and
faster rate of increase for the cell compared to VSe2 due to its tiny size.

Yang et al. developed a multiscale interfacial structure integrated modulation strategy to tune the interfacial
structure of VSe2 at multiple scales by a one-step hydrothermal stripping method[152]. Theoretical studies
show that the combined effect of H2O embedding and selenium vacancies can largely improve the trapping
ability of interfacial zinc ions and reduce the diffusion barrier of zinc ions during the embedding process.
The experimental results show that under 0.05 A g-1 of 300 cycles, the discharge specific capacity reaches
425 mAh g-1  [Figure 15A], and after 5,000 cycles of the VSe2-x nH2O electrode at 10 A g-1, it still maintains a
high performance of 173 mAh g-1 [Figure 15B], with an energy density of 258 Whkg-1 and a power density of
10.8 kW kg-1 [Figure 15C]. Additionally, at 60 °C, it achieves energy and power densities of 465 Wh kg-1 and
21.26 kW kg-1, respectively [Figure 15D]. This cathode can be used in a wide range of temperatures (-40 to
-60 °C), and exhibits excellent storage performance in both aqueous and solid electrolytes. It also boasts
impressive performance in extreme temperature environments, exhibiting a capacity of 122 mAh g-1 at
-20 °C with a current density of 20 A g-1. The low temperature performance of this experiment is compared
with the published articles, as shown in Figure 15E.

VS2

Vanadium sulfides have a larger layer spacing than oxide and theoretically have a higher diffusion
coefficient of zinc ions[153]. These sulfides include VS2

[154-162], VS4
[153,163-165], and V3S4

[166]. Table 3 gives a
summary of potential window, electrolyte and electrochemical performance of vanadium sulfides and their
composites.

Transition metal dichalcogenides (TMDs) are a new kind of energy material, structurally similar to
graphite.VS2 is a main representative of TMDs. The large layer spacing (5.76 Å) and high conductivity of
VS2 make it suitable for ZIBs as cathode material; thus, it has also received extensive attention from
researchers[167,168].

VS2 nanosheets were prepared as positive electrode materials by He et al., which had a discharge specific
capacity of 190.3 mAh g-1 at 0.05 A g-1, and still retained 98% of the initial capacity after 200 cycles at
0.5 A g-1[154]. Meanwhile, the electrochemical reaction of a cathode is divided into two steps[169,170]:

VS2 + 0.09Zn2+ + 0.18e- → Zn0.09VS2                                                                                                           (1)

Zn0.09VS2 + 0.14Zn2+ + 0.28e- → Zn0.23VS2                                                                                                   (2)

However, it has the disadvantages of poor cycle stability and rate capability. To overcome these
shortcomings, the modification of VS2 has been intensively studied. For instance, a spindle-like VS2 on a
N-doped carbon layer (VS2@N-C) was synthesized by Zhu et al.[161]. The cathode exhibits a superb specific
capacity of 203 mA h g-1 at a current density of 0.05 A g-1 due to strong interfacial interaction between VS2

and N-doped carbon[161]. Very recently, a one-step hydrothermal method was used to prepare VS2 with
micro-flower shape with appropriate layer spacing. This positive electrode material can provide a stable
structure, thus improving the cyclic stability of the reaction[171]. For example, an initial capacity of
128.3 mAh g-1 was shown at 3 A g-1, and a discharge capacity of 100.1 mAh g-1 remained after 900 cycles.
And, the optimized VS2 microflower also has excellent magnification performance as the cathode of ZIBs.
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Table 3. Potential window, electrolyte and electrochemical performance of vanadium sulfide and their composites

Products Potential window (V) Electrolyte Initial capacity 
(mAh g-1; A g-1) Cycles numbers Capacity retention Ref.

VS2·NH3 0.2-1.7 2M Zn(CF3SO3)2 392 (0.1) 2,000 84.6% [154]

VS2@SS 0.4-1.0 1M ZnSO4 149 (0.5) 2,000 80% [156]

VS2@VOOH 0.4-1.0 3M ZnSO4 124 (1.5) 350 87% [157]

rGO-VS2 0.2-1.8 3M Zn(CF3SO3)2 238 (0.1) 1,000 93.3% [158]

VS2 0.4-1.4 1M ZnSO4 262 (0.1) 100 81% [159]

VS2/VOx 0.1-1.8 25M ZnCl2 310 (0.05) 3,000 75% [160]

VS2@N-C hybrid 0.2-1.8 3M Zn(CF3SO3)2 203 (0.05) 600 97% [161]

Figure 14. (A-C) The SEM morphology changes of VSe2/Mxene cathode surface during the reaction process[151]. Copyright 2022, 
Elsevier.

Samanta et al. oxidize VS2·NH3 (hollow spheres) to V2O5·nH2O (nanosheets) through an in-situ
electrochemical oxidation strategy[163]. Because of the existence of vanadium oxide, the resulting cathode has
long cyclic stability (110% capacity retention at 3 A g-1 after 2,000 cycles)[163].

Another common vanadium sulfide is vanadium tetrasulfide (VS4), which has chain crystal structure and
the active sites are distributed between the layers of chains calculated by DFT[1][166]. Two-step
electrochemical reaction of VS4 is expressed as[172,173]:

VS4 + 0.49Zn2+ + 0.98e- → Zn0.49VS4                                                            (3)

Zn0.49VS4 + 0.54Zn2+ + 1.08e- → Zn1.03VS4                                                                                                  (4)

Zhu et al. prepared VS4@rGO by combining rGO with VS4 by one-step hydrothermal method[165].The
adding of rGO makes the cathode VS4@rGO have good cycle stability (82% capacity retention at 10 A g-1

after 3,500 cycles) and high specific capacity (450 mA h g-1 at 0.5 A g-1)[174]. According to the analysis results,
the excellent properties of the material are mainly due to the insertion/removal of zinc ions in the VS4 open
channel.

This section enumerates vanadium-based non-oxide modifications that primarily enhance structural
stability and improve conductivity during charging and discharging through various heat treatment
techniques, including annealing, calcination, heteroatom doping, and surface treatment engineering.
Additionally, defect engineering, such as the creation of selenium vacancies, facilitates electron and ion
diffusion by adsorbing Zn2+ on the material's surface, thereby significantly enhancing the Zn2+ storage
capacity of vanadium-based compounds for AZIBs. Consequently, further advancements in surface
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Figure 15. (A and B) Cyclic performance test of the original material VSe2 and VSe2-x·nH2O cathode material at 1 A g-1 and 10 A g-1, 
(C and D) rate performance of the battery tested at -20 and 60 °C, (E) comparison of the low temperature performance of this 
experiment with published articles[152]. Copyright 2023, John Wiley and Sons.

engineering, heteroatom doping, and defect engineering have the potential to significantly enhance the 
electronic conductivity of vanadium-based compounds and facilitate the migration of ions and electrons 
within the cathode.

In contrast to the six materials listed above, manganese-based non-oxides are more focused on transition 
metal compounds. Although transition metals would exhibit better theoretical specific capacities, they have 
not been well developed so far. With the exception of MnSe2, MnS and MnHCF have so far not shown a 
tendency to outperform the specific capacity of manganese oxides. However, its reaction mechanism has 
been preliminarily explored, verifying the possibility of continued development. For example, MnHCF 
exhibits a multi-electron pair reaction mechanism, and subsequent studies have focused on maintaining the 
equilibrium between the different electron pairs, rather than accompanying the disappearance of one during 
charging and discharging. For MnSe2, the structural and electrochemical properties are more favorable and 
show a tendency to approach manganese oxides, which could perhaps be developed into a commercially 
available material later with suitable modifications. Compared to the manganese-based compounds 
described in the article, vanadium-based compounds offer the advantage of rapid adaptation to the 
insertion/extraction of Zn2+, along with higher specific capacity and superior rate performance. However, as 
the reaction progresses, the material's interlayer structure is progressively disrupted, resulting in the 
dissolution of vanadium over an extended period. VN, with its fcc structure, demonstrates excellent 
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electrical conductivity and a higher discharge specific capacity than VS2, which, in turn, offers superior 
long-cycle stability.

SUMMARY AND OUTLOOK
The non-renewable nature of fossil energy dictates that we must develop new sources of energy to cope with 
the problems that may arise in the future. The distribution of renewable energy sources such as wind and 
solar is also too irregular, making it difficult to fully utilize them. Therefore, the development of a green and 
convenient large-scale energy storage system is necessary to cope with possible energy crises. AZIBs adopt 
aqueous electrolyte, providing a certain degree of environmental safety. Meanwhile, the aqueous electrolyte 
is cheaper than organic alternatives, and with abundant zinc reserves and high theoretical capacity, AZIBs 
hold broad application prospects.

However, there are serious interface side reactions and dendrite growth problems in zinc negative electrode, 
and the electrolyte produces irreversible by-products in the process of charging and discharging, as far as 
positive electrode materials are concerned:

(1) Dissolution of positive electrode materials: as a common problem of cathode materials, AZIBs will 
inevitably dissolve cathode materials during charging and discharging, which will lead to loss of the 
electrode active materials and destroy the structure of the battery, thus leading to the overall performance 
and cyclicity of the battery.

(2) The electrostatic interaction of divalent zinc ions is larger than that of lithium ions, which makes the 
embedding and detachment of zinc ions more slow and difficult, and leads to irreversible phase change and 
structural collapse during repeated charging and discharging, thus affecting the overall performance of the 
battery.

To date, researchers have proposed a number of modifications to improve the electrochemical performance 
of aqueous zinc ion cathode materials, including but not limited to shape modulation, ion doping, defect 
engineering, etc. Some progress has also been made in the battery reaction mechanism and other aspects. 
However, the commercialization of AZIBs still faces various challenges that need to be solved. To speed up 
this process, this paper puts forward the following immature suggestions:

(1) The unification of the energy storage mechanism of AZIBs: so far, AZIBs operate under four 
mainstream energy storage mechanisms, Zn2+ insertion/extraction, ions/molecules co-insertion/extraction, 
H+ insertion/extraction, and conversion reaction mechanisms. These complex reaction mechanisms hinder 
commercialization. Therefore, there is an urgent need for new characterization techniques to standardize 
zinc-ion storage mechanisms and analyze their effect on electrochemical performance, enabling more 
effective modifications to ZIBs.

(2) Explore new cathode materials and improve the existing cathode materials: among existing cathode 
materials, manganese oxides offer high theoretical specific capacity, but the dissolution of manganese-based 
materials poses a serious problem, accompanied by lattice distortion and disproportionation reaction, which 
leads to the destruction of the structure, thus making the performance of manganese-based ZIBs not ideal; 
vanadium-based compounds, on the other hand, exhibit fewer side reactions and deliver excellent 
electrochemical performance in the rapid charge and discharge; they can also be used in ZIBs. However, 
their low discharge voltage [0.4-1.0 V (vs. Zn2+/Zn)], and the structural uncertainty of the V-O polyhedra 
caused by vanadium’s many valence states are notable limitations; Prussian blue analogs are simple to 
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synthesize and have high charge/discharge voltages; however, the poor cycling stability of these batteries 
and their high cost have greatly hindered commercialization. Therefore, while ongoing efforts to modify 
existing cathode materials using established techniques are essential, a single modification may not suffice 
for commercial production. Research into composite modification based on existing studies could broaden 
the scope of modification strategies.

Simultaneously, it is crucial to accelerate the exploration and development of new materials. The 
electrostatic interactions of divalent zinc ions are stronger than those of one-valent lithium, sodium ions, 
which greatly impedes ion embedding in the charging and discharging process of discharging, resulting in 
lower reaction kinetics and structural collapse of the reaction process. In response to these problems, it is 
essential to explore structurally stable, electrochemically active cathode materials without delay, such as 
molybdenum-based oxides, metal phosphides, metal sulfides, etc.

(3) A battery consists of a positive electrode, negative electrode, electrolyte and diaphragm, and its 
performance is closely related to the composition of each component. Therefore, specialized modification 
research for each part is essential to improve the overall performance of the battery.

(4) At present, battery performance tests are primarily conducted in the laboratory under low-load 
conditions. However, in the commercial application, the load is inevitably several times higher than that in 
the laboratory; therefore, ensuring superior performance under high load is a critical aspect of AZIB 
commercialization that cannot be overlooked.

In addition, some suggestions for the development and research of non-oxide cathode materials are 
presented here in the hope that they can inspire future researchers and promote the advancement of AZIBs.

(1) Non-oxide materials will show excellent electrochemical properties in some aspects, but some of their 
inherent defects can seriously damage the structural stability of the material, so it is necessary to study the 
modification. Whether a large number of existing modification strategies can be directly applied to non-
oxide materials needs to be further explored. With respect to the existing research on non-oxide cathode 
materials, ion doping, surface modification, and defect control are equally practical. However, for different 
ions, the same modification will produce different effects, so this will require a great deal of future research 
and development. From the existing findings, it is valuable to conduct such experiments and attempts to 
enrich the basic research.

(2) For manganese-based non-oxide, its own low price, abundant reserves, safety and non-toxicity are 
destined to occupy a corner in the future energy storage field. The research on manganese-based non-oxides 
for AZIBs is still few, while LIBs are already commercially available. For research bottlenecks that cannot be 
broken through for the time being, it may be incredibly effective to look beyond oxides to non-oxides. A 
large number of existing studies for manganese oxides can be used as a reference for non-oxide studies. In 
addition, the study of non-oxides may be able to contribute to the unification of the manganese oxide 
energy storage mechanism in AZIBs, which, in turn, will promote the development of manganese oxides 
and realize high-performance commercially available AZIBs.

(3) Several key challenges remain in the research of vanadium-based compounds, including complex energy 
storage mechanisms and a lower average operating voltage. Inserting metal ions between layers as struts is 
an effective way to enhance the structural stability of materials. However, the type and amount of pre-
inserted metal ions can impede zinc ion insertion and potentially trigger phase transitions. Consequently, 
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researchers should more thoroughly understand the impact of pre-inserted metal ions on the host material's 
crystal structure, ensuring the reversibility of Zn2+ insertion/extraction through multiple cycles. It is 
recommended to perform in-situ characterization, including in-situ transmission electron microscopy 
(TEM), Raman spectroscopy, and XRD.

(4) The specific capacity of previously reported cathode materials is still lower than the high capacity of zinc 
anodes (820 mAh g-1). This discrepancy necessitates the discovery of more cathode materials with 
innovative zinc storage mechanisms to enhance the cycling and rate performance of ZIBs.

(5) Technology has rapidly advanced in recent years, allowing for the exploration of new methods for 
material synthesis, which may result in materials with different properties. For example, Gao et al. 
summarize several existing compounds synthesized using 3D printing technology in a table. Some 
manganese-based and vanadium-based compounds synthesized through these techniques also exhibit good 
electrochemical performance when applied to ZIBs[175]. As the technology matures, it can also be applied to 
the synthesis of non-oxide materials in future developments.

(6) Although this paper focuses on manganese- and vanadium-based non-oxides, the study of the 
remaining non-oxide metals should also be expanded. For example, Niu et al. prepared a novel MoS2-
double-layer nanotubes (DLTs) material that exhibits abundant defects and a large layer spacing, which 
provides a good structural advantage for the embedded detachment of ions and ultimately exhibits excellent 
electrochemical properties[176]. Lu et al. successfully prepared MnSe@NC@ReS2 anode material, which was 
finally applied to sodium-potassium batteries[177]. This work also provided a new synthesis idea for future 
materials. This suggests that subsequent research should not limited to existing cathode materials; exploring 
structures that may exhibit excellent electrochemical properties could prove beneficial.
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