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INTRODUCTION

Wound healing without complications is critical to the 
survival, as it restores the integrity of the skin and protects 
the individual from infection and dehydration. Adult wound 
healing involves a well‑orchestrated series of events leading 
to the repair of injured tissues, resulting in scar formation. 
Healing of acute wounds, triggered by tissue injury, 
consists of overlapping and highly coordinated phases of 
hemostasis, inflammation, proliferation and remodeling. 
When a breach of the skin’s integrity occurs, hemostasis 
is initiated by platelets through fibrin clot formation. 
Platelets also release various mediators of wound healing 
to attract macrophages and fibroblasts to the site of 
tissue injury.[1] The inflammatory phase begins with the 
arrival of neutrophils followed later by macrophages and 
lymphocytes at the wound site. The proliferative phase is 
characterized by new blood vessel formation (angiogenesis), 
synthesis of extracellular matrix (ECM) components and 
re‑epithelialization.[2] Following the proliferative phase, 

collagen remodeling begins, along with vascular maturity 
and regression; this process typically lasts 6‑24 months 
from the time of injury[1] [Figure 1].

The wound healing cascade may be arrested in 
any of these phases, leading to the formation of a 
chronic nonhealing wound. Many mediators including 
inflammatory cells, growth factors, proteases such as 
matrix metalloproteinases (MMPs) and cellular and 
extracellular elements play important roles in the process 
of wound healing. Alterations in one or more of these 
components may lead to the impaired healing.[2] Wound 
healing can also be negatively influenced by many 
exogenous factors, including concurrent diseases, such as 
diabetes, renal failure, malnutrition, smoking, radiation 
exposure, infection and an immunocompromised state. 
In the presence of these factors, wounds can fail to heal 
adequately, resulting in chronic wound formation.[3] The 
wound healing process can occasionally go into overdrive, 
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resulting in excessive healing and the formation of 
fibroproliferative scar‑like keloids and hypertrophic scars.[4] 
This review provides a general overview of the physiology 
of adult wound healing, focusing specifically on how 
recent advances could translate into improved clinical 
outcomes.

HEMOSTASIS

Acute wounds cause vascular injury and bleeding from 
the wound, and the immediate priority is to prevent 
blood loss by vasoconstriction and formation of a blood 
clot to seal the vessel. Hemostasis is initiated by the 
exposure of blood components to the subendothelial 
layers of the vessel wall. Platelets adhere, aggregate 
and form the initial hemostatic plug. The coagulation 
and complement cascades are then initiated. Within the 
tissue, prothrombin is activated to form thrombin, which 
then cleaves fibrinogen to generate fibrin. Along with 
platelets and the plasma fibronectin, fibrin forms the clot.

The blood clot is made up primarily of cross‑linked 
fibrin, cells such as erythrocytes and platelets, as well 
as other ECM proteins such as fibronectin, vitronectin 
and thrombospondin.[5] In addition to containment 
of blood loss, the blood clot serves as a first defense 
against microbial invasion and a provisional matrix for 
the homing of inflammatory cells.[5] The adhesiveness 
of platelets is mediated by activated integrin receptors 
on their surface.[6,7] The platelets in the clot undergo 
degranulation, releasing potent chemoattractants for 
inflammatory cells, activation factors for local fibroblasts and 
endothelial cells and vasoconstrictors, such as chemokine 
(C‑C motif) ligand 5 (CCL5), thrombin, transforming growth 
factor‑b (TGF‑b), platelet‑derived growth factor (PDGF) 
and vascular endothelial growth factor (VEGF).[5] CCL5 
is one of the most potent monocyte chemoattractants 

released by platelets after injury. Thrombin, released by 
platelets at the wound site, is an early mediator of clot 
development.[8] Thrombin also induces the release of 
pro‑inflammatory cytokines like CCL2, interleukin‑6 (IL‑6) 
and IL‑8 by endothelial cells. These cytokines induce 
monocyte chemotaxis.[9] Of the injury response chemokines, 
chemokine (C‑X‑C motif) ligand 4 (CXCL4) participates 
in the coagulation process and prevents the premature 
development of blood vessels.[10] The degradation of fibrin 
and subsequent activation of the complement system play 
a crucial role in mounting the inflammatory process, as 
well as in facilitating wound angiogenesis and stromal 
cell proliferation. Fibrin binds to integrin CD11b/CD18 
on infiltrating monocytes and neutrophils. It also binds 
to fibroblast growth factor‑2 (FGF‑2) and VEGF that help 
the wound tissue vascularize. In addition, fibrin binds to 
insulin‑like growth factor‑1 (IGF‑1) and promotes stromal 
cell proliferation.[5,11,12] Under thrombocytopenic conditions, 
macrophages and T cells at the wound site compensate 
for the lack of PDGFs and initiation of the inflammatory 
phase.[13]

INFLAMMATION

The inflammatory process involves the recruitment 
of neutrophils, macrophages, and lymphocytes. After 
hemostasis, local vessels dilate secondarily to the effects 
of the coagulation and complement cascades. Bradykinin 
(generated by the coagulation cascade) and C3a and C5a 
anaphylatoxins (generated by the complement cascade) 
increase blood vessel permeability and attract neutrophils 
and monocytes to the wound.[14] The C3a and C5a 
anaphylatoxins also stimulate the release of histamine and 
leukotrienes from mast cells. The local endothelial cells 
then break cell‑to‑cell contact and increase permeability, 
enhancing the margination of inflammatory cells at the 

Figure 1: Distinct and overlapping phases of wound healing
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wound site.[15] The initial population of white blood cells 
in the wound is composed of neutrophils. Thrombin 
and IL‑8 stimulate endothelial permeability through 
the modulations of adherens‑junction endothelial cell 
adhesion and cell contraction, thereby facilitating 
leukocyte exit from the circulation.[16,17] Within the 
wound, neutrophils employ various strategies to kill 
bacteria and decontaminate the wound, including the 
secretion of proteases and antimicrobial peptides, as well 
as the generation of reactive oxygen intermediates via 
the respiratory burst.[18] In the absence of inflammatory 
mediators, neutrophils will undergo spontaneous 
apoptosis. The apoptosis is mediated by cathepsin D 
release from neutrophil granules, which then facilitates 
the cleavage and activation of caspase 8, ultimately 
resulting in caspase 3 activation, DNA fragmentation and 
apoptosis.[19] In the absence of neutrophils, wound site 
macrophages lack guidance in conducting the healing 
process.[20] Although neutrophils play a role in decreasing 
infection during wound healing, their absence does not 
prevent the overall progress of wound healing.[21] However, 
their prolonged presence in the wound may be a factor in 
the conversion of acute wounds into nonhealing chronic 
wounds.

Within two to three days, monocytes become the 
predominant inflammatory cell population in the wound. 
Monocyte chemotaxis to the wound occurs via CC 
chemokines like CCL2. The chemokines can be released 
by neutrophils, by the monocytes themselves and by 
keratinocytes at different stages of healing.[22‑24] Circulating 
monocytes and mast cells are attracted to and infiltrate the 
wound site.[1,25] Within the wound, monocytes differentiate 
into macrophages. Macrophages in turn remove 
apoptotic neutrophils and other dead cells, function as 
antigen‑presenting cells, and secrete cytokines and multiple 
peptide growth factors.[10] Phagocytosis of the apoptotic 
neutrophils by macrophages then leads to removal of 
chemokines from the area of inflammation, preventing 
further leukocyte influx.[10] Several cytokines and growth 
factors are known to be secreted by macrophages.[26] Such 
growth factors include TGF‑b, TGF‑α, basic FGF (bFGF), 
VEGF and PDGF. These growth factors activate and attract 
local endothelial cells, fibroblasts and keratinocytes, and 
enable wound healing by causing cell proliferation and 
synthesis of ECM and inducing angiogenesis VEGF,[27‑30] 
which stimulates angiogenesis, also stimulates the 
macrophages to express LIGHT, a member of the tumor 
necrosis factor alpha (TNF‑α) family of cytokines, which 
binds to lymphotoxin‑b receptor and induces macrophage 
death.[31]

Macrophages play a crucial role in enabling wound healing. 
Macrophage depletion is known to markedly impair wound 
closure.[27,32] In a landmark study, Leibovich and Ross[33] 
demonstrated that the antimacrophage serum combined 
with hydrocortisone diminished the accumulation of 
macrophages in healing skin wounds of adult guinea pigs. 
Such depletion resulted in impaired disposal of damaged 
tissue and provisional matrix, compromised fibroblast 
count, and delayed healing. Inflammatory responses 

elicited by injury are only helpful to the healing process if 
they are timely and transient. However, the inflammation 
is not essential for skin wound healing. Martin et al.[34] has 
shown that the PU.1 null mouse, which is devoid of both 
macrophages and neutrophils, healed both incisional and 
excisional wounds at statistically similar rates to wild‑type 
littermates, but without scar formation. The cytokine and 
growth‑factor profiles at the wound site in the PU.1 null 
mouse differed from those of the wild‑type. As a result, cell 
death was reduced, and scar formation did not occur.[34] 
Studies have focused on platelets and mast cells as targets, 
and have shown that neither of these mediators is essential 
to effective wound repair. This further suggests that a 
dampened or modified inflammatory response could reduce 
scar formation.[13,35] Impairment of macrophage function 
at the wound site derails the resolution of inflammation. 
A persistent inflammatory state of diabetic wound 
macrophages is caused by impairment in the ability of these 
cells to phagocytose apoptotic cells at the wound site, in 
turn preventing the switch from M1 to M2 phenotype.[36] 
Prolonged inflammation may not only compromise wound 
closure but may also worsen scar outcomes.[37,38] Lipid 
mediators, such as the lipoxins, resolvins, protectins and 
maresins, have emerged as a novel genus of potent and 
stereoselective players that counter regulate excessive 
acute inflammation and stimulate molecular and cellular 
events that define resolution.[39] The production and 
activity of several proteases including metalloproteinase, 
serine proteases and neutrophil elastases which are tightly 
regulated in acute wound healing may be altered in 
chronic wounds.[1] For example, non‑healing human wound 
fluid and tissue have increased protease activity, which 
rapidly degrades exogenously applied peptide growth 
factors.[40,41] Products targeting excessive protease activity 
such as protease‑scavenging matrices (e.g. Promogran), 
selective inhibitors or specific antibodies may be useful in 
the treatment of chronic wounds refractory to conventional 
treatments.[42,43]

The lymphocytes are the last type of leukocytes to arrive 
at the wound site. The lymphocytes exert a specific 
response against microbes and other foreign material 
in the wound: B‑lymphocytes via antibodies and the 
T‑lymphocytes through production of cytokines and 
stimulation of cytolytic activity. Lymphocyte‑induced 
inflammation is then resolved by apoptosis when 
interferon (IFN)‑c and TNF‑α are produced at the wound 
site.[10] Mast cells also appear during the later part of the 
inflammatory phase, but their function remains unclear. 
Impaired wound healing has been reported in mast 
cell‑deficient mice.[44] Mast cells have also been implicated 
in skin wound fibrosis.[45,46] Recently, the role of mast cells 
in wound healing has become an area of intense research 
because of a correlation between mast cells and both 
keloids and hypertrophic scars.[45,46]

PROLIFERATION PHASE

The proliferative phase of wound healing is accepted to 
start around two days after injury and typically lasts up 
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to three weeks in a healing cutaneous wound. This phase 
overlaps with the inflammatory phase, beginning with 
the degradation of the initial fibrin‑platelet matrix and 
invasion of fibroblasts and endothelial cells. Proteases 
of the serine, cysteine and MMP families are secreted 
to facilitate cellular migration through the fibrin clot 
and provisional matrix.[47‑50] The major events of this 
phase include the influx of fibroblasts, ECM deposition, 
formation of new blood vessels and re‑epithelialization.

Fibroblasts are the key type of cells in this phase of 
healing and become the predominant cell type by three to 
five days after injury. Macrophages and mast cells release 
growth factors, including PDGF and TGF‑b, that stimulate 
fibroblast activation.[25] The fibroblasts proliferate and 
produce the matrix proteins fibronectin, hyaluronic 
acid, collagen and proteoglycans, all of which help to 
construct the new ECM and a platform for keratinocyte 
migration.[1,14] The provisional fibrin matrix is gradually 
replaced by granulation tissue.

Granulation tissue is a dense conglomeration of blood 
vessels, macrophages and fibroblasts embedded within a 
loose matrix of fibronectin, hyaluronic acid and collagen. 
Granulation tissue begins to appear in human wounds 
by about four days after injury. During granulation 
tissue formation, new blood vessels develop from 
preexisting vessels (angiogenesis). Angiogenic factors are 
secreted by fibroblasts and macrophages (e.g. VEGF, basic 
FGF, angiopoietin1 and thrombospondin), keratinocytes 
(e.g. CXCL8 and VEGF) and endothelial cells themselves 
(e.g. CXCL8 and VEGF).[51‑54] Integrin avb3 at the leading 
capillary tipis a prerequisite for endothelial growth, and 
is a promising therapeutic target for angiogenesis.[55] 
Blocking these processes with angiogenesis inhibitors 
impairs wound healing and can be corrected with growth 
factors such as VEGF.[51] Over time, the fibrin provisional 
matrix is replaced with type III collagen, which in turn 
is replaced by the type I collagen during the remodeling 
phase. At least twenty‑eight different types of collagen 
are currently known.[56] Most collagen types in the ECM 
are synthesized by fibroblasts, however, some types are 
synthesized by keratinocytes.[57]

Approximately four days after injury, myofibroblasts 
appear in the wound.[58] TGF‑b and CXCL8 promote the 
differentiation of fibroblasts in the granulation tissue into 
myofibroblasts.[48,59,60] Myofibroblast differentiation also 
requires an interaction with cellular fibronectin containing the 
extra domain‑A domain. Inhibition of either fibronectin or the 
corresponding integrin receptors prevents TGF‑b1‑mediated 
myofibroblast differentiation.[61,62] Myofibroblasts exert their 
contractile forces by focal adhesion contacts that link the 
intracellular cytoskeleton to the ECM. In vitro experiments 
have shown higher contractile forces of keratinocytes 
compared with fibroblasts.[63]

Re‑epithelialization is an important process during wound 
healing that starts in the early phase of healing. Platelets 
in the early wound release epidermal growth factor (EGF) 
and TGF‑b stimulate the keratinocytes at the wound edge 
to proliferate and migrate to cover the wound. Cytokines 

PDGF, TNF‑α, FGF, keratinocyte growth factor and CXCL8 
produced by neutrophils, macrophages, endothelial 
cells and fibroblasts, maintain the proliferation and 
migration of keratinocytes which in turn induces wound 
re‑epithelialization.[22,64‑66] During re‑epithelialization, the 
keratinocytes migrate beneath the provisional ECM. 
MMP release keratinocytes from their substratum and 
help in the migration through the matrix and promotion 
of re‑epithelialization.[67‑69] Wound treatment with a 
broad‑spectrum metalloproteinase inhibitor significantly 
delays re‑epithelialization in vitro and in vivo.[70,71] Wound 
re‑epithelialization also requires the activity of various 
proteases, including the serine protease plasmin. 
Re‑epithelialization is delayed in plasminogen‑deficient 
mice, due to the inability of keratinocytes to degrade and 
thus migrate through the fibrin matrix and the underlying 
dermal tissue, whereas mice deficient in both plasminogen 
and fibrinogen exhibit more normal healing.[72,73] After the 
re‑establishment of the epithelial layer, keratinocytes and 
fibroblasts secrete type IV collagen to form the basement 
membrane.[74] The keratinocytes undergo division and 
become columnar to restore the epidermal layer and 
reform a barrier to infection and moisture loss.

The dysregulation of the proliferative phase is believed 
to underlie the pathophysiology of chronic wound and 
fibrotic disorders such as hypertrophic scarring and 
keloids. A randomized controlled trial in patients with 
diabetic neuropathic foot ulcers showed topical PDGF to 
be superior to placebo in promoting healing.[75] VEGF gene 
transfer was effective in increasing vascularity in ischemic 
leg ulcers.[76] Among cytokines and growth factors, the 
possible targets for promotion of wound healing include 
TNF‑α, PDGF, FGF, VEGF, IGF‑1 and EGF.[77‑80] Understanding 
the signals for halting the proliferative phase will help 
developing new therapeutics for acute wound healing.[51]

REMODELING PHASE

The remodeling of wound tissue occurs over a prolonged 
time and may last up to 1 year.[51] It involves ECM 
turnover coupled with a significant decrease in cellularity. 
The decline in cellularity results from the apoptosis of 
residual inflammatory cells and myofibroblasts as well as 
regression of the neovasculature.[59] In humans, remodeling 
is characterized by both wound contraction and collagen 
remodeling. The balance of collagen metabolism is in 
part determined by the regulation of MMP activity.[81] 
The process of wound contraction is produced by wound 
myofibroblasts. While remodeling, wounds gradually 
become stronger with time. Wound tensile strength 
increases rapidly from 1 to 8 weeks after wounding and 
correlates with collagen cross‑linking by lysyl oxidase.[82] 
The tensile strength of wounded skin reaches at best only 
approximately 80% that of unwounded skin, but can be 
increased by synthetic MMP inhibitors.[83,84] Scar formation 
is the final outcome of wound repair in children and adults.

New therapeutic strategies can be tried to reduce an 
esthetically unacceptable scar appearance. Treatment 
with TGF‑b3 formulations and neutralizing antibodies 
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to TGF‑b as well as solutions that decrease the activity 
of connexin 43, a mediator of TGF‑b signaling, has been 
shown to reduce the inflammatory response and scar 
formation.[85,86] Evidence of success using TGF‑b‑related 
strategies was provided by a study showing that 
the exogenous addition to wounds of fibromodulin, 
a TGF‑b modulator, reduces scar.[87] Decorin is a small 
chondroitin/dermatan sulfate proteoglycan that limits the 
duration of TGF‑b influence on inflammation and tissue 
repair, promoting regenerative repair and limiting tissue 
fibrosis.[88] Other novel strategies include the application 
of antifibrotic human recombinant growth factors 
and cytokines, anti‑inflammatory substances, protease 
inhibitors and molecules that interfere with profibrotic 
cytokine function (e.g. TGF‑b) and collagen synthesis at 
the wound site.[89]

FETAL WOUND HEALING

Fetal wound healing is an area of great interest because it 
is characterized by scar‑less, regenerative wound healing. 
This process is age‑dependent, like postnatal healing, 
wounds in third‑trimester cause scarring.[90] The exact 
mechanism responsible for scar‑less healing in the first 
and second trimesters is not yet clearly understood. The 
proposed mechanisms include decreased inflammation, 
unique properties of fetal cells, altered cytokine milieu, 
variable gene expression and ECM deposition.[91] Recent 
fields of research revolve around the role of TGF, IL‑10 and 
mast cells. King et al.[92] described a major role for IL‑10 in 
scar‑less wound healing. The authors propose a “cytokine 
hypothesis” centered on the anti‑inflammatory properties 
of IL‑10. IL‑10 protects against excess deposition of 
collagen, maintains elevated hyaluronic levels, enhances 
fibroblast function, prevents differentiation of fibroblast 
to myofibroblasts and increases survival of endothelial 
progenitor cells and angiogenesis.[92] Research in a mouse 
model demonstrated the scarring potential of mast cells in 
fetal wounds. In early fetal life (day 15), scar‑less wounds 
were associated with a lesser number of mast cells with 
reduced degranulation as compared to later scarring 
wounds.[93] Another factor implicated in fetal wound 
healing is the growth factor TGF‑b. Of the three isoforms, 
TGF‑b1 is responsible for fibrosis. TGF‑b3 isoform is the 
predominant isotype in fetal wound healing, and altered 
profiling of the isoform may be a factor responsible for 
scarless healing. Other additional mechanisms include 
mediators of TGF pathway such as connective tissue 
growth factor, proteoglycan, decorin and P311.[94]

ROLE OF STEM CELLS IN WOUND 
HEALING

Stem cells are a specialized group of cells with the potential 
for self‑renewal, as well as the ability to differentiate into 
various cell lineages. Stem cells can be classified according 
to their origin (embryonic, fetal and adult) or based on 
the differentiation potential (totipotent, pluripotent, 
multipotent and unipotent).[95] Due to the ease of 

availability and fewer ethical issues, adult stem cells are 
the most commonly used type of stem cells in medical 
practice.

Mesenchymal stem cells are derived from bone marrow, 
adipose tissue, umbilical cord, periosteum, tendons, 
muscle and skin.[96] The most commonly used source 
is adipose tissue. Stem cells affect all stages of wound 
healing. They have significant anti‑inflammatory and 
immunomodulatory effects in the inflammation phase of 
healing.[97] In the proliferative phase, they also stimulate 
fibroblasts, keratinocytes and endothelial cells, thereby 
accelerating wound closure. Uysal et al.[98] demonstrated 
that wound healing time was reduced in rats treated 
by patchy skin grafts and mesenchymal stem cells. In 
addition, wound contraction was reduced, angiogenesis 
was increased, epithelialization progressed rapidly.[99]

Stem cell therapy can be administered either topically 
or systemically. Falanga et al.[100] demonstrated a topical 
application of mesenchymal stem cells with either 
fibrinogen or thrombin applied to chronic wounds in the 
form of a spray. This spray is converted into a gel form 
over the wound and helps in retaining the stem cells 
over the wound.[100] To improve the retention of stem 
cells in the wound, cells are now applied on an adequate 
support/scaffold‑like collagen, skin substitutes. This helps 
in maintaining the viability of the cells and facilitates 
migration in the wound bed.[101]

CONCLUSION

Cutaneous wound healing is a complex and dynamic 
biological process requiring the interaction and 
coordination of many different cell types and molecules, 
including growth factors and cytokines. Tremendous 
strides have been made in delineating the myriad of 
factors involved in normal and delayed/excessive healing. 
However, this increased understanding has not led to 
significant advances in patient care. Administration of 
exogenous growth factors and cytokines has shown 
promise in improving healing results in wounds. As wound 
healing involves multiple molecular mechanisms, no single 
agent therapy is likely to be successful in accelerating or 
modulating wound healing.
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