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INTRODUCTION
Plastic are stable, recycled, and low-cost materials which are employed in many ways, from industrial 
manufacture to daily life. Plastic debris has been released into the environment due to the limited recycling 
frequency. It has been reported that the amount of plastic waste emitted into the environment has reached 
six million tons, four-fifths of which ultimately entered landfills[1]. Unfortunately, the fragmentation process 
does not break down plastics completely, but renders them into millions of smaller plastic particles 
including microplastics (MPs) with a size of < 5 mm[2,3]. Thus, studies on MP pollution have received great 
interest in recent years. The existence of MPs has been found in many environmental media, including 
atmosphere, seawater, freshwater, and even human tissues[4-7].

Soil, as an important environmental component, undertakes essential ecological functions and interacts 
with other environmental media simultaneously. The importation of large plastic waste and its fragments 
from terrestrial sources has led to the widespread presence of MPs in the aquatic environment. Therefore, 
the soil environment is an important “sink” of MPs[8]. The inherent complex characteristics of soil have a 
great impact on the environmental behavior and effects of MPs. On the one hand, MPs are prone to be 
transferred by organisms, posing a potential threat to organisms when the particle size reaches the 
nanoscale[9-11]. In addition, some inherently toxic substances, such as lubricants, pigments, and other 
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additives, which are mainly used to improve the plastic product’s performance, pose the risk of secondary 
release with the natural aging process. For example, phthalate esters (PAEs) are typical plasticizers that are 
widely detected in manufactured products and commodities[12]. Li et al. investigated the content of PAEs in 
36 vegetable fields with plastic film mulching in Shandong Peninsula, China[13]. Besides, MPs can also serve 
as carriers for various hazardous substances (e.g., heavy metals, pesticides, and polychlorinated biphenyls) 
due to the evolution of the hydrophobicity and surface functional groups, which will further increase their 
risk of environmental pollution[10,14]. On the other hand, the physicochemical properties of soil, including 
pore, pH, miners, soil animals, etc., also affect the transferring behaviors of MPs. For example, soil has 
mesopores and macropores in the millimeter range, whose size directly affects the migration process of 
MPs. Moreover, external forces such as agricultural tillage and bioturbation can also affect the migration of 
larger MPs in soil. Rillig et al. found that MPs can adhere to earthworms (Oligochaeta), which promotes the 
vertical migration of MPs in the soil; the smaller the particle size of MPs, the easier it is to migrate[15].

ANALYSIS AND DETECTION OF MPS IN SOIL
The method of MPs analysis and detection in water and sediment is suitable for the analysis and detection 
of MPs in soil to some extent, but it is more difficult to separate and identify MPs from soil. Sample 
collection mainly includes single point sampling and compound sampling. Compound sampling is suitable 
for agricultural soil with an uneven distribution of MPs. Single point sampling is suitable for soils with little 
human activity including farming[16]. Here are the analysis methods of soil MPs: (1) dry and screen soil 
samples; (2) remove organic matter from mixed MPs particles and soil substrate; (3) separate MPs from the 
soil matrix; and (4) identify and characterize the MPs in soil[17].

Among the analysis methods of MPs, the methods commonly used to characterize the physical and 
chemical properties of MPs include microscopic identification of MPs, spectroscopy or thermodynamic 
methods [Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman), 
thermogravimetric analysis-differential scanning calorimetry, pyrolysis gas chromatography-mass 
spectrometry (Py-GC-MS), thermal extraction desorption gas chromatography-mass spectrometry, and 
scanning electron microscopy (SEM), which is often used in conjunction with energy dispersive 
spectroscopy (EDS)], and X-ray diffraction. These methods have their own advantages and disadvantages. 
The visual analysis method has the advantages of simple operation, low cost, and no chemical hazard, but 
the naked eye and microscope can only vaguely identify MPs through their appearance and morphology 
and cannot obtain the composition information of the sample. FTIR has the advantages of not destroying 
the sample, simple pretreatment, and no fluorescence interference, and it is widely used in the qualitative 
detection and composition analysis of MPs[18]. However, it is currently impossible to detect smaller MPs in 
the environment, and it is also difficult to analyze opaque/black MPs. In recent years, FTIR based on a focal 
plane array (FPA) has received increasing attention in the field of MPs analysis. Compared with FTIR, 
which can only analyze MPs one by one, FPA-FTIR can analyze MPs in a large area, and the efficiency has 
been greatly improved[19]. Raman is favored by researchers due to its significant advantages in detecting MPs 
such as non-destructive, low-sample-volume testing, high-throughput screening, and environmental 
friendliness[19]. However, biological contamination or surface aging of MPs may produce fluorescence, and 
fluorescent samples cannot be detected by Raman. Among the thermal analysis methods, Py-GC-MS has 
the risk of misidentification as different polymers may produce similar pyrolysis products. It can only 
analyze one particle at a time and cannot be applied to the analysis of large-scale samples in large-scale 
sampling and routine monitoring work[20]. In addition, thermal analysis methods are destructive to samples 
and can only be used for chemical characterization; they cannot obtain physical characteristics such as the 
size and morphology of MPs. Therefore, the thermal analysis methods need to be further optimized to 
become efficient and widely used MPs analysis techniques. Finally, SEM-EDS also has certain limitations, 
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such as cumbersome sample preparation steps and time-consuming full inspection of all samples[21], 
resulting in low work efficiency. In addition, SEM-EDS cannot analyze the color of MPs samples, so this 
technique is mainly used to analyze specific MPs.

Overall, there are still many problems to be solved with the current MP analytical detection methods. Since 
there is no standardized detection method for MP analysis, the abundance of MPs detected in different 
studies varies widely. Variability occurs not only at the upper limit of MP size but also at the lower limit. 
There are various reasons for this to happen. Firstly, in some cases, the soil needs to be sieved to 2 mm. 
However, if applied to MP analysis, this procedure will lose some MPs, resulting in a decrease in their 
abundance. Secondly, the use of different salts has advantages and disadvantages when extracting MPs by 
density separation. In addition, after pretreatment, the MPs need to be filtered onto the membrane. 
However, different studies use different membrane apertures, which also leads to changes in the abundance 
of MPs[22].

In summary, in recent years, MP analysis methods have developed rapidly, but they still cannot fully solve 
the problems faced when studying MPs in soil and other complex environmental substrates. To 
comprehensively compare the occurrence of MPs in soil from different research regions, it is necessary to 
establish standard and uniform MP analysis and testing methods. In addition, MP concentration reporting 
data must be representative, scientific, and reproducible.

ABUNDANCE OF MPS IN SOIL
Although the occurrence and distribution of soil MPs are still not the focus of current research, existing 
studies indicate that MP pollution exists in soils around the world[23]. Researchers examined MPs in soils 
from coastal Shandong province, China, and recorded the abundance of MPs as ranging from 1.3 to 
14,712.5 items/kg[24]. Agricultural soils are mainly studied in inland areas, where MPs are mainly derived 
from improper disposal of agricultural plastic film. A study on farmland soil in the suburbs of Harbin, 
Heilongjiang province, found a low-density abundance of 107 items/kg[25]. MPs have also been detected in 
agricultural areas in northern China, such as soil in Tianjin (95 items/kg), the Loess Plateau Region (40-320 
items/kg), and Shaanxi province (1430-3410 items/kg)[26-28]. MPs have even been detected in farmland on the 
Tibetan Plateau without direct anthropogenic plastic pollution, with an abundance between 20 and 110 
items/kg[29].

Extensive research on MPs has been conducted in soils around the world. The mean abundance of MPs was 
306 and 184 items/kg in farmland and pasture soils collected from the Chilean metropolitan area[30]. A 
similar abundance of MPs (593 items/kg) has been reported in a Swiss floodplain wetland soil[31]. The 
problem of MP pollution caused by the long-term application of sludge is attracting attention. The 
abundance of MPs reaches 600-10,400 items/kg in Mellipilla, Chile, where sludge has been continuously 
applied[32].

Currently, there are few studies on the distribution of MPs in global soils. The range of MP abundances 
reported from various countries varies dramatically, mainly because not all MPs in soils were detected due 
to the lack of uniform research methods. In addition, a convertible method needs to be established between 
the expression methods of quantity (items/kg) and mass (mg/kg). In the future, a unified and comparable 
research method needs to be established to standardize the expression of MP abundance.
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BEHAVIOR OF MPS IN SOIL
There are many sources of MPs in soil. The main sources include agricultural plastic film residues, land use 
of sewage sludge, long-term application of organic fertilizers, surface runoff and irrigation, and atmospheric 
deposition. MPs entering the soil environment have complex migration behaviors, which could undergo 
diffusion and migration under the action of wind, soil organisms, surface runoff, gravity, etc. Some MPs 
may enter the ground under the action of soil animals[33,34], microorganisms[35], plant roots[36,37], or gravity, 
then enter the freshwater environment through underground runoff, and eventually accumulate in the 
ocean. Other MPs, which remain on the surface, may enter freshwater under the action of wind[38] or surface 
runoff[39,40], and then may migrate over a long distance to the ocean. Soil MPs may also be transported into 
the air by wind and dust[41]. Animals in soil and sea could feed on MPs and pass them on[42], and MPs could 
also be absorbed and accumulated by plants[43], which could ultimately allow MPs to enter the food chain 
and cause unpredicted risks to human health. In addition, due to the hydrophobicity and large specific 
surface area of MPs, they can adsorb various pollutants (such as heavy metals, antibiotics, pesticides, 
polycyclic aromatic hydrocarbons, etc.) and can be used as a carrier or transport medium for these 
pollutants and pathogens, which in turn affects their migration and distribution in the environment[10,14]. 
Along with these properties, MPs are inherently toxic, which is mainly due to the addition of toxic 
substances such as plasticizers, flame retardants, colorants, antioxidants, and light and heat stabilizers 
during plastic processing[44,45]. As plastics undergo mechanical wear, photodegradation, photooxidation, 
thermal oxidation, and biodegradation in soil, these substances can be released into the environment[46,47]; 
moreover, it is possible to form nanoplastics with larger specific surface area, stronger fluidity, and easier 
ingestion by organisms[40], threatening ecosystems and human health. These reasons lead MPs to be viewed 
as a combination of various pollutants, while the bioavailability of MPs and other pollutants by soil 
organisms, and their combined toxicity, may be different from individual pollutants, potentially posing 
additional or greater risks to soil ecosystems and human health.

EFFECTS OF MPS ON SOIL QUALITY
As a common solid pollutant, MPs may change the basic physical and chemical properties of soil, including 
soil structure[48], soil density[49], soil water infiltration rate[50], and soil nutrient element utilization[51]. When 
MPs enter the soil, due to the intervention of new cementing substances, the isoelectric coagulation 
Coulomb force and van der Waals force between soil particles and their biochemical environment are 
changed, which may affect the formation and process of soil aggregates. Machado studied the impact of four 
common MPs on soil structure and found that polyester reduced soil water-stable aggregates, while PE 
caused the opposite effect. The reduction of soil water-stable aggregates weakens the diversity of the soil 
microenvironment[52]. Once incorporated into the soil matrix, MPs change the size of soil porosity, soil 
water dynamics, and the formation of soil aggregates. Related studies have shown that, after adding 
polyester microfibers to cohesive soils, water-stable macro-aggregates and pore volume significantly 
increase[53]. The density of most MPs is lower than soil minerals, which may be the reason for the changes in 
soil bulk density caused by MP pollution[49]. The presence of MPs can also damage the integrity of the soil 
structure, leading to drying and cracking of the soil surface[48]. Besides, MPs have prominent effects on soil 
organic carbon or nitrogen cycling. Previous studies have shown that, under the comprehensive action of 
soil organic matter, minerals, organisms, and other complex environmental factors, MPs can have 
significantly enhanced adsorption capacity for some heavy metal ions and organic pollutants after entering 
the soil, thus affecting the soil nutrient availability and soil ecosystem health[54]. However, one study 
concluded that the addition of MPs poses no obvious harm to soil quality, based on the finding that soil 
saturated hydraulic conductivity and bulk density were not dramatically affected by ultrafine polyester 
fibers[53].
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EFFECTS OF MPS ON SOIL ORGANISMS
There are many living organisms in the soil system, including microorganisms, animals, and plants. They 
are of great significance to maintaining a certain range of soil ecological stability[55,56]. As an exogenous 
substance, MPs affect the soil properties after entering the soil, thereby causing disturbance to the balance of 
the ecosystem[36]. This may lead to greater environmental stress and the abnormal growth of the organisms 
and plants in the soil. In addition, MPs can absorb toxic pollutants in soil and cause more pollutants to 
accumulate in soil organisms, which will change the bioavailability of pollutants[57]. Thus, if MPs are 
ingested by organisms, they may be toxic to the organisms and enter the food chain, resulting in great 
environmental risks.

Effect of MPs on microorganisms
MPs, as exogenous materials, provide a new ecological habitat for microorganisms after entering the soil, 
and the microbial community that grows on MPs is also called a “plastic circle”[58]. The microbial 
communities growing on MPs are significantly different from the plastic and the surrounding environment. 
For example, the agricultural PE microfilm surface is enriched in some taxa, such as Actinobacteria, 
Bacteroidetes, and Proteobacteria in farmland soil, as a “special microbial accumulator”[59]. The microbial 
community in soil with PEMPs was significantly different from those in the soil without PEMPs[60]. Soil 
porosity and moisture can also be changed by MPs, thereby affecting the distribution of different 
microorganisms and even resulting in the destruction of microhabitats and the extinction of some 
microorganisms[61,62]. MPs in the soil environment may accumulate a lot of organic matter or heavy metal 
pollutants, such as pesticides and metals, e.g., copper, which might inhibit microbial growth[63]. Antibiotic 
resistance genes (ARGs) in soil environments have also attracted extensive public attention in recent 
years[64-66]. Existing studies have shown that MPs in the soil can enrich ARGs in soil. Song et al. found that 
the presence of MPs not only increased the content of ARGs in soil but also increased the content of ARG-
containing hosts in Pseudomonas[67]. This increases the risk of horizontal transfer of ARGs in microbial 
communities formed on MPs. Although MPs can adversely affect soil microorganisms, some 
microorganisms in soil can also promote the degradation of specific types of MPs; for example, 
Cladosporium cladosporioides, Xepiculopsis graminea, Penicillium griseofulvum, and leptophaeria sp could all 
promote the degradation of polyurethane (PU)[68].

Effect of MPs on animals
Besides microorganisms, previous studies have demonstrated that the presence of MPs has a great impact 
on soil animals. MPs may be ingested by soil animals to enter the soil food chain and continuously 
accumulate, thus affecting the total nutrients level of the soil[42]. When exposed to MPs, the feeding behavior 
of soil animals is altered[69], which affects the metabolism of carbon and nitrogen uptake, leading to 
decreased development and even death[69,70]. Many studies have shown that earthworms might ingest MPs, 
causing intestinal damage, which affects their survival, growth, and reproduction[10,71-72]. In addition, the 
negative effects of MPs on several soil invertebrates (e.g., springtails, nematodes, collembola, and snails) 
have been demonstrated in previous work[73]. The adverse effects of MPs on soil animals were related to the 
particle size and concentration of MPs. For example, Selonen et al. found that long fiber MPs 
concentrations of 0.17% and 0.5% decreased the reproduction of E. crypticus by 20%; when the 
concentration increased to 1.5%, the reproduction decreased by 30%[72]. Lei et al. found that the excitability 
and toxicity of C. elegans behavior were related to the size of MPs, and they deteriorated as the size of the 
MPs decreased[74]. In addition to the MPs themselves, the additives in plastics also significantly affect and 
poison the growth and survival rate of the host as well as the intestinal flora[75]. Behaviors of soil animals, 
such as crawling, scraping, chewing, and excretion, can lead to vertical and horizontal migration of MPs in 
soil[56].



Page 6 of Guo et al. Water Emerg Contam Nanoplastics 2022;1:9 https://dx.doi.org/10.20517/wecn.2022.0610

Effect of MPs on plants
The effect and damage of MPs to plants are also multifaceted, because of the diversity of MPs and the 
mechanisms of MPs and plants. It can be summarized in two ways: (1) directly changing the physiological 
and biochemical properties of plants through the roots; and (2) changing the physicochemical properties or 
biological conditions of the soil to indirectly affect the growth of plants[62,76-77]. The toxicity of MPs to plants 
after being absorbed by plants is related to other pollutants bound to MPs, such as organic or heavy metal 
pollutants[78]. In addition, MPs are further aged in the soil and their additives are directly toxic to plants[46]. 
Numerous studies have demonstrated the adverse effects of exposure to soil MPs on plants, especially crops, 
including inhibition of seed germination and plant growth, reduction in biomass, interference with 
metabolism, and genotoxicity[76,79-81]. However, in recent years, some MPs have also been found to promote 
plant growth. For example, Shi et al. found that PEMPs significantly improved the biomass growth rates of 
sweet potatoes by adsorbing more available P and K in the soil[77]. Rillig et al. indicated that the potential 
positive and negative mechanisms of MPs to plants were related to the plant species. In summary, the 
interaction between MPs in soil and plants is very complex and needs to be further studied in the future[82].

CONCLUSIONS AND PROSPECTS
As a global problem, soil MP pollution has become the focus of research by scholars around the world. 
Their environmental behavior not only affects soil properties, crop growth, microbial activity, animals, etc. 
but also may pose serious threats to human health. At present, the research on soil MPs is not systematic 
and comprehensive enough, and some systematic thinking and research are needed. Here, we put forward 
several prospects for future research:

(1) Separation and detection of MPs in soil: At present, the separation and detection methods of MPs in soil 
are limited and different, so it is difficult to compare horizontally. In addition, nanoscale plastics are 
neglected and difficult to separate and extract. It is difficult to accurately analyze and judge the overall 
abundance and pollution degree of MPs in soil. Therefore, it is urgent to establish a standardized and 
structurally damage-free MP separation and detection method.

(2) Environmental health risk assessment of soil MPs and their additives: MPs contain plasticizers such as 
phthalates (PAEs), which are not covalently bound to the polymer and may leach during the chemical and 
non-chemical aging of the plastic. Therefore, it remains unclear whether the environmental behavior and 
risks of MPs are due to the particle effect of MPs, the chemical effect of plastic additives, or the effect of 
combined pollution.

(3) Control and reduction of soil MPs: Soil MPs will bring a series of risks to the ecosystem. Therefore, soil 
microplastic pollution remediation needs to be carried out through source control or indirect reduction. To 
mitigate the risk of MP pollution from the perspective of source control, environmentally friendly 
biodegradable plastics have been widely promoted and used as substitutes for non-degradable plastics, but 
there is a lack of research on their possible ecological and environmental effects during the process of 
biodegradation, requiring further exploration. For the indirect reduction process of MPs, biodegradation 
and abiotic processes, synergistic removal with other pollutants, and synergistic operation with agricultural 
production should be taken into consideration.

(4) Food chain transmission mechanism and risk research of soil MPs: MPs ingested by soil animals can be 
transmitted to the human body through the food chain; however, due to ethical restrictions, little is known 
about the transmission mechanism of MPs entering the human body and their risk effects on human tissues 
and organs. Subsequent studies should be carried out through in vitro cell models.
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