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Abstract
Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical 
role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, 
proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, 
abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect 
EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal 
dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that 
lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the 
endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, 
oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and 
currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include 
neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their 
contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface 
engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of 
enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs 
as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, 
improving circulation time and targeted delivery.
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INTRODUCTION
Lysosomal storage disorders (LSDs) include over 70 rare heritable (inborn) errors of metabolism. In LSDs, a 
single gene mutation causes deficiency of a lysosomal protein or lipid, which leads to gradual accumulation 
of undigested macromolecules and negatively affects lysosomal function. Because lysosomal hydrolases are 
involved in the stepwise degradation, primary substrate accumulation in lysosomes gradually leads to 
secondary accumulation of upstream substrates within the same catabolic pathway. The accumulation leads 
to enlargement of the organelle and functional inhibition of genetically correct enzymes and proteases 
which further limits their processing abilities[1-3]. This sets off a cascade of alterations in the endolysosomal 
pathway due to impaired fusion that can affect autophagy, but also in other organelles including the 
endoplasmic reticulum and mitochondria[4]. This may further lead to altered calcium homeostasis, oxidative 
stress, energy imbalance, and apoptosis[5,6]. The degree of the effect on these cellular processes highly 
depends on the type of LSD and its specific genetic mutation[7]. The complex interplay of the cellular 
pathways is shown in Figure 1. The cellular impairments seen in LSDs can lead to cell death and cause 
progressive multisystemic symptoms that often include visceromegaly, bone abnormalities, cardio-
respiratory problems, and neurodegeneration[8,9].

Around 70% of the LSDs are enzyme deficiencies and can be further subclassified based on their storage 
material, such as Glycoproteinoses, Mucopolysaccharidoses, and Lipidoses. Other subgroups of LSDs 
include deficiencies in integral membrane proteins, transporters and proteins involved in trafficking, 
regulation, or post-translational modification. Despite the classification, LSDs are clinically very 
heterogeneous, even within the same subtype. The symptoms depend on the specific genetic mutation and 
to which degree this affects the lysosomal protein or lipid, as well as the spatial and temporal accumulation 
of macromolecules[7]. While individual LSDs are rare, collectively, they have an estimated incidence of 1 in 
5000-8000[10-12]. All LSDs that will be described in this review are listed in Table 1.

To date, the most established treatment option for LSDs is enzyme replacement therapy (ERT)[16]. ERT is 
available for several enzyme deficiencies, where it can improve clinical symptoms and slow down disease 
progression. Unfortunately, ERT comes with serious limitations that include the development of 
neutralizing antibodies against the enzyme, low plasma half-life, inability to cross the blood-brain barrier 
(BBB), and high costs. Furthermore, patients treated with ERT are left with residual disease due to its poor 
biodistribution, which fails to effectively target certain organs[17-19]. Besides ERT, hematopoietic stem cell 
transplantation (HSCT) is available for a very limited group of LSDs, including MPS-IH, MPS-II, α-
Mannosidosis, MLD, and Krabbe Disease. To improve its effects and survival of patients, early diagnosis 
and early treatment with HSCT are critical. The effect of stem cell transplantation is based on the 
production of the missing enzyme by the healthy donor cells that will allow cross-correction[20-25]. However, 
HSCT is not fully curative and unable to completely halt disease in hard-to-reach tissues. This is often the 
case for connective tissue, resulting in progression of skeletal malformations, corneal clouding, valvular 
dysfunction, as well as inconsistent results for joint, tendon, and ligament stiffness[15]. Several other novel 
strategies have been developed over the years, including substrate reduction therapy (SRT), pharmacological 
chaperone therapy (PCT), and gene therapy[26-28]. For most LSDs, the only solution remains symptomatic 
treatment and supportive care[7]. A cure that will be more broadly applicable to treat more LSDs, including 
those with severely affected neurological manifestations, has yet to be discovered.
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Table 1. Described Lysosomal Storage Disorders

Disease (gene) 
Eponyms and/or types Primary deficiency Accumulated molecules Approved therapies

 
Sphingolipidoses

Fabry Diseasea (GLA) α- Galactosidase A Globotriaosylceramide ERT and CT

Farber Lipogranulomatosisa

(ASAH1)
Acid ceramidase Ceramide S/S

Gaucher Diseasea (GBA) 
Type I, IIb, IIIb, perinatal lethal formb 
and cardiovascular[13]c

β Glucocerebrosidase/β- 
glucosidase

Glucocerebroside/ 
glucosylsphingosine

ERT and SRT (types I, II and III), 
none (perinatal lethal form)

GM2 Gangliosidosis  
Tay-Sachs Diseasec (HEXA)

β- Hexosaminidase GM2 ganglioside, 
glycosphingolipids and 
oligosaccharides

S/S

Globoid Cell Leukodystrophya,b 

(GALC) 
Krabbe Disease

Galactosylceramidase Galactocerebroside and 
psychosine

HSCT (infantile 
onset) and S/S

Metachromatic Leukodystrophya,b 

(ARSA and PSAP) 
MLD 

Arylsulfatase A Sphingolipid 
activator protein SAP-B

Sulfatides HSCT

Niemann-Pick Diseasea (SMPD1) 
Type Ab and B 

Sphingomyelin 
Phosphodiesterase

Sphingomyelin S/S

 
Mucopolysaccharidosis (MPS)

MPS IIIa,b,d 
III-A Sanfilippo A (SGSH) 
 
III-C Sanfilippo C (HGSNAT)

N- Sulfoglucosamine 
sulfohydrolase 
Heparan- α-glucosaminide- 
N- acetyltransferase

HS (KS) S/S

MPS IVa 
IV-A Morquio syndrome A 
(GALNS)

N-acetylgalactosamine- 
6-sulfatase 

KS, C6S ERT (IV-A) and S/S (IV-B)

MPS VIIa,b (GUSB) 
Sly Disease

β- Glucuronidase DS, HS, C4S, C6S (KS) ERT

 
Glycogen Storage Disorders (GSD)

GSD IIa (GAA) 
Pompe Disease 

Lysosomal α- glucosidase/acid 
maltase

Glycogen ERT

 
Glycoproteinoses

Sialidosisa (NEU1) 
Type I, cherry-red spot myoclonus 
 
 
Type IIb, Mucolipidosis I

Neuraminidase-1 Sialylated oligosaccharides 
and glycopeptides 
 
Sialylated oligosaccharides 
and glycopeptides, LAMP1 and 
amyloid precursor protein

S/S

 
Integral Membrane Protein Disorders

Cystinosis (CTNS) Cystinosin Cystine SMT

Niemann-Pick Disease
C1 (NPC1)
C2b (NPC2)

NPC intracellular 
cholesterol transporter 1 
 
NPC intracellular 
cholesterol transporter 2

Cholesterol and 
sphingolipids

SRT

 
Neuronal Ceroid Lipofuscinoses (NCL or CLN), Batten Disease

CLN2b (TPP1) 
Jansky-Bielschowsky Disease

Tripeptidyl peptidase 1 Subunit c of mitochondrial 
ATP synthase

ERT

CT: Chaperone therapy; C4S: chondroitin 4-Sulfate; C6S: chondroitin 6-sulfate; DS: dermatan sulfate; ERT: enzyme replacement therapy; HS: 
heparan sulfate; HSCT: hematopoietic stem cell therapy; KS: keratan sulphate; LAMP1: lysosome-associated membrane glycoprotein 1; SMT: 
small-molecule therapy; SRT: substrate reduction therapy; S/S: symptomatic and supportive therapy. aDenotes enzyme deficiency. bDenotes 
diseases that involve the Central Nervous System (CNS). cType depends on specific mutation[14]. dDenotes disorders with severe and attenuated 
forms that result in a phenotype spectrum[7,15].
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Figure 1. A schematic illustration of different pathways affected in LSDs. (1) In LSDs, a single gene mutation causes the deficiency of a 
lysosomal protein or lipid. The defect leads to gradual accumulation of macromolecules, inhibition of other lysosomal components, and 
enlargement of the lysosome which can be followed by lysosomal rupture and secretion. Furthermore, dysfunction of the lysosome and 
its altered calcium (Ca2+) homeostasis leads to impaired fusion with cellular structures including autophagosomes and 
endosomes/multivesicular bodies (MVBs). (2) The accumulation of autophagosomes can potentially lead to secretion of the organelle 
to clear its obstruction. Additionally, autophagy is downregulated by hyperactivation of mTOR in some LSDs (MPS-I, MPS-VI, MPS-VII, 
and Gaucher Disease). Subsequently, impaired or inhibited autophagy results in mitochondrial dysfunction that can lead to energy 
imbalance, apoptosis, and inflammation. (3) There is a balance between degradation and EV release, which is highly dependent on the 
faith of MVBs. (4) Impaired fusion of MVBs with the lysosome can lead to fusion of MVBs with the plasma membrane, which causes 
increased secretion of EVs (Niemann-Pick type C, Sialidosis, Krabbe and Fabry Disease). Hence, inhibition of autophagy and 
subsequential increase of EV secretion might be an alternative route for LSD cells to clear obstruction of the accumulating molecules to 
naturally improve the cellular phenotype. (5) In multiple sphingolipid storage disorders (Gaucher Disease, GM1 and GM2 
Gangliosidoses, and Niemann-Pick type A) Endoplasmic reticulum (ER) calcium homeostasis is perturbed, which leads to elevated Ca2+ 
in the cytosol. (6) Dysfunction of the Golgi apparatus has been reported for most lipid storage disorders and MPS IIIB. This includes 
altered morphology and accumulation of large storage bodies.

Post-treatment residual disease in connective tissues has drawn attention towards multipotent 
mesenchymal stem cells (MSCs), which have the ability to differentiate into multiple lineages of bone, 
cartilage, and fat. Moreover, MSCs are characterized by their intrinsic self-renewal capacity and their 
capability of immunomodulation. Their transplantation is widely tested in clinical trials and considered 
safe[29,30]. In comparison to hematopoietic stem cells (HSC), MSCs secrete significantly higher levels of 
mucopolysaccharidosis (MPS)-related enzymes[31]. Thus, MSCs might be able to improve skeletal 
malformations and neurological deficits in LSD patients at an early stage of disease development[29,32]. 
Several studies with MSCs derived from various tissue sources have been performed in mice models for 
different LSDs. In these studies, improvement in motor function, decreased inflammation and apoptosis 
were reported post-injection of the cells into different parts of the brain[5]. To date, intravenous injection of 
MSCs has only been tested on patients with Metachromatic Leukodystrophy (MLD); this showed promising 
results regarding its safety and improvement of stabilization on neurological manifestations[33,34]. Currently, 



Hegeman et al. Extracell Vesicles Circ Nucleic Acids 2022;3:393-421 https://dx.doi.org/10.20517/evcna.2022.41 Page 397

a clinical trial is assessing the safety of human placental-derived MSCs (phase I) in multiple other LSDs (ID: 
NCT01586455). However, increasing evidence suggests that the therapeutic efficiency of MSC therapy is not 
dependent on the engraftment of MSCs or their capability to differentiate after transplantation. Most likely, 
the mode of action of MSCs relies on their paracrine signaling including extracellular vesicles (EVs) to 
support surrounding tissues[35].

Over the last two decades, attention has been drawn towards EVs as important mediators of intercellular 
communication. EVs are a heterogeneous population of stable lipid membrane particles and play a critical 
role in the regulation of numerous physiological and pathological processes[36]. EVs capture the metabolic 
status of the cell[37], which qualifies them as potential sources of biomarkers for LSDs. Furthermore, EVs are 
biocompatible, low immunogenic and can traverse multiple biological barriers. For instance, several studies 
have indicated that EVs are able to cross the BBB[38,39]. Additionally, bioengineering approaches can modify 
EVs to load specific cargo or target specific sites[40]. This makes EVs of high interest as both therapeutic 
agents and drug delivery vehicles, which could open doors to the development of novel treatments for LSDs 
including those with neurological deficits. In this review, we will provide an overview of the current 
knowledge and potential of EVs in unraveling LSDs, their diagnostics, treatment, and potential future drug 
delivery for gene correction strategies. For an overview of the existing synthetic nanotechnology-based 
approaches that have been explored as delivery vehicles in the treatment of LSDs, we refer the reader to the 
reviews of Abasolo et al., Schuh et al., and Del Grossoet al.[41,42,43].

THE BIOGENESIS OF EXTRACELLULAR VESICLES
EVs are a heterogeneous population of small lipid membrane vesicles that are secreted by all cells, and have 
been observed in all body fluids[36]. EVs are conventionally classified into subtypes based on their biogenesis: 
exosomes and ectosomes. Exosomes (40-140 nm) are a part of the endo-lysosomal system and form through 
intraluminal vesicle (ILV) formation by inward membrane budding in the late endosome. This process 
involves the endosomal sorting complexes required for transport (ESCRT) machinery, tetraspanins and 
lipid-dependent interactions, which ultimately leads to the formation of multivesicular bodies (MVBs)[44]. 
MVBs can release their intraluminal vesicles upon fusion with the plasma membrane into the extracellular 
space, after which they are referred to as exosomes. Ectosomes, also referred to as microvesicles 
(50-1000 nm), directly bud off the plasma membrane[45]. Clear classification of EVs remains a challenge due 
to their heterogenous size, cargo, and lack of specific biomarkers to distinguish the EV subtypes[46,47].

EVs are known for their contribution to cell-to-cell communication by transferring cargo such as RNA, 
including mRNA and long noncoding RNAs, lipids, and proteins including lysosomal enzymes[48-50]. Over 
the last decade, it has become clear that EV cargo reflects the status of the secreting cell and its tissue 
origin[37,51]. Cargo transportation through EVs plays a critical role in the regulation and progression of 
numerous physiological and pathological processes[36]. The contribution of EVs to pathology has been 
shown for several neurological disorders that have been associated with LSDs or other pathologies related to 
endolysosomal dysfunction, such as Parkinson’s Disease (PD)[52], Alzheimer’s Disease[53], and Huntington’s 
Disease[54,55]. Since these neurological disorders are currently not classified as classical LSDs, describing the 
endolysosomal involvement in the pathology of these disorders is beyond the scope of this review. For more 
in-depth information on these diseases, we refer the readers to the reviews of Navarro-Romero et al. and 
Almeida et al.[56,57]. In these neurological disorders, EVs are thought to contribute to inflammation and seem 
to sequester and spread the accumulating pathogenic proteins[53,58]. This suggests that EVs may contribute to 
the altered physiology in LSDs as well[59]. This makes EVs a potentially useful source of information to 
further determine the altered processes in LSDs as biomarkers for diagnostics and disease progression, 
including their location[51,60].
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As EVs hold the ability to traverse multiple biological barriers and can be modified to avoid uptake by the 
mononuclear phagocytic system, EVs are potential therapeutic agents and drug delivery vehicles for LSDs, 
due to their biocompatibility and low immunogenicity[61-63]. Adaptation of EVs through bioengineering 
approaches could further optimize their delivery potential and therapeutic value by targeted loading of 
therapeutic components through fusion proteins, or to target EVs to specific tissues[40,64]. This strategy could 
actively load ERT into EVs, which could reduce neutralizing antibodies against the enzyme, improve its 
plasma half-life, and facilitate delivery towards the nervous system by crossing the BBB[38]. As such, EVs 
have the potential to both improve existing treatment and lead to new therapeutic options for LSD patients 
in the future, including those with severe neurological deficits.

EV RELEASE IN LSDS: A NEW ROUTE IN UNDERSTANDING DISEASE PATHOLOGY
Lysosomes are essential organelles in the degradation of macromolecules delivered by endocytosis or
autophagocytosis. The lysosomal characteristic acidic lumen includes over 60 hydrolases that can return
molecules to catabolites, thereby allowing recycling of these molecules. These functions allow lysosomes to
play a fundamental role in multiple cellular processes including autophagy and its regulation, cellular
homeostasis, cell signaling, mitochondrial function and vesicle fusion[65,66]. Several of these processes are also
implicated in EV release and uptake, which are both parts of the endolysosomal pathway. As described
before, the fusion of MVBs with the plasma membrane leads to EV release. Alternatively, MVBs can fuse
with both lysosomes and autophagosomes, leading to degradation of MVBs. Moreover, both studies on
ESCRT proteins and autophagy modulators show a tight relationship between autophagy and MVB
biogenesis, thereby determining the faith of its ILVs and, subsequently, of EVs[44]. The lysosomal
dysfunction in LSDs does not make it difficult to envision its effects on both EV release and uptake, which
will be discussed in this section.

Autophagy is a multi-step process where damaged organelles and molecular aggregates are degraded and
recycled. The process starts with the formation of autophagosomes that can fuse with early and late
endosomal vesicles, such as MVBs, to form amphisomes, to eventually fuse with lysosomes[4,7]. Under
homeostatic conditions, cells maintain a constitutive basal level of autophagy; however, the process can be
induced in response to cellular and metabolic stress[67]. In several LSDs, it has been shown that lysosomal
dysfunction leads to the accumulation of autophagosomes and autophagic substrates, such as damaged
mitochondria[4,68,69]. However, accumulation of autophagosomes does not necessarily indicate an increased
induction of autophagy as this increase could also be caused by blockage of fusion with the lysosome.
Nevertheless, the autophagy pathway in LSDs is disrupted, which could either mean activation or inhibition
of autophagy, depending on the LSD type. For instance, in MPS-I, MPS-VI, MPS-VII, and Gaucher Disease,
hyperactivation of mTOR, a negative regulator of autophagy, has been shown[69,70]. In this study, mTOR
hyperactivation increased phosphorylation of the UVRUG protein, which led to reduced autophagosome
maturation and reduced fusion with the lysosome[69]. Moreover, activated mTOR can phosphorylate
transcription factor EB (TFEB), which inhibits its translocation to the nucleus and, with that, lysosomal
biogenesis and function[8]. Thus, there might be a vicious cycle in play where lysosomal accumulation
inhibits the induction of autophagy, perhaps to prevent further accumulation-induced damage. The
complex interplay of autophagy and the endolysosomal pathways is shown in Figure 1.

There is a balance between autophagy and EV release, which is highly dependent on the faith of MVBs. It
has been shown that in hepatic stellate cells, activation of mTOR signaling induced the release of exosomes
by inhibiting autophagy. Furthermore, the activation of mTOR can stimulate release of microvesicles
through activation of ROCK1 signaling[71]. The hyperactivation of mTOR in some LSDs could play a vital
part in the secretion of EVs by these cells. In a study by Bartolomeo et al., it was shown that mTOR
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hyperactivity significantly reduced the formation of Phosphatidylinositol-3-phosphate (PI3P)[69]. This may 
influence EV release considering that PI3P is required in vesicle and (auto)phagosome fusion with 
lysosomes. As PI3P reduction may limit the fusion between MVBs and autophagosomes, this could 
potentially shift the faith of MVBs towards fusion with the plasma membrane and secretion of EVs instead, 
to limit accumulation and maintain homeostasis. Furthermore, PI3P is involved in ESCRT protein 
recruitment and cargo organization, and serves as a substrate for PI(3,5)P2 formation[72,73]. Therefore, the 
diminished presence of PI3P through mTOR hyperactivation could also lead to reduced PIP2 formation. 
The absence of PIP2 has been shown to increase EV secretion[74]. In addition, reduction of PI3P formation 
promoted secretion of atypical exosome containing undigested lysosomal components in neuronal 
disorders with lysosomal dysfunction closely related to Niemann-Pick type C[73,75]. A study by Strauss et al. 
confirmed increased EV release in Niemann-Pick type C cells[76]. Table 2 gives an overview of all studies 
describing the EV release by LSD cells. In Niemann-Pick type C, loss of function of a late endosomal 
membrane protein leads to accumulation of free cholesterol and sphingolipids. Strauss et al. showed a 
flotillin-dependent pathway of EV secretion as an alternative to secrete free cholesterol to ameliorate its 
storage within cells[76,77]. Moreover, increased EV release has been shown in several enzyme deficiencies, 
including Sialidosis, Krabbe and Fabry Disease[68,78,79]. Hence, inhibition of autophagy and subsequential 
increase of EV secretion might be an alternative route for LSD cells to clear obstruction of the accumulating 
molecules to improve the cellular phenotype.

Therapeutic stimulation of EV release may have the potential as (pre-)treatment for LSDs through the 
reduction of LSD specific molecule accumulation inside the cell. This could lower the secondary effects on 
the endolysosomal pathway by ameliorating the accumulation of MVBs. Advantageous effects of autophagy 
suppression on the secretion of EVs have been shown in Alzheimer’s Disease and PD[85,86]. In these studies, 
autophagy inhibition by ammonium chloride or bafilomycin A treatment led to the release of EVs 
containing the accumulated molecules alpha-synuclein and amyloid precursor proteins[85,86]. A similar effect 
was observed in Pompe Disease, where ATG7 was inactivated in the mouse muscles. The autophagy 
suppression alone led to a 50%-60% reduction of the accumulating glycogen, and after ERT delivery, this 
was restored to normal levels[87]. Unfortunately, the effects on EV secretion were not tested in this study, and 
it appeared that the accumulating molecule was digested in the cytosol, which improved the cellular 
phenotype. Contradictory to these results, other studies on Pompe Disease showed improvements in 
myotubes and muscle tissue after induction of autophagy through TFEB overexpression[88,89]. Moreover, 
induction of autophagy with rapamycin has been shown to lead to higher secretion of lipid particles and 
CD63+ vesicles in Niemann-Pick type B. This data is in line with studies that predict a way in which 
autophagy-inducing conditions, mainly rapamycin treatment, have a specific role in unconventional 
secretion[90]. It must be noted that in LSDs, there is no problem with the formation of autophagosomes. 
Autophagy problems are secondary to dysfunctional lysosomes that create a blockage in the autophagic flux 
and alter this pathway. Therefore, it must carefully be evaluated to what degree each mutation affects the 
endolysosomal pathway in all LSDs separately. Alongside the effect of TFEB on autophagy, it can increase 
lysosomal biogenesis and lysosomal exocytosis. Lysosomal exocytosis could be an alternative route to 
induce cellular clearance and has been implicated as a mechanism used by MLD and mucolipidosis type I 
cells[91,92]. Lysosomal exocytosis can also be induced by drugs such as 2-hydroxypropyl-β-cyclodextrin (HPB-
CD). HPB-CD is used as excipient to facilitate the transport of molecules across membranes as well as 
treatment to manipulate cellular cholesterol levels. The drug is approved by the FDA and was already used 
to alleviate cholesterol accumulation in Niemann Pick Type C patients[93]. Treatment with HPB-CD can 
induce calcium-dependent lysosomal exocytosis and EV release[83].
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Table 2. The secretion of extracellular vesicles in lysosomal storage disorder models

LSD Disease model EV isolation method Major results Reference

Fabry Disease In vitro 
CRISPR/Cas9 altered human embryonic 
stem cells differentiated into 
cardiomyocytes

Total Exosome Isolation 
Reagent (Thermo Fisher 
Scientific)

> Downregulation of proteins related to EV transportation, secretion, and exocytosis (Rab GTPases: 
Rab-11, GDIR2, VPS36 and VTI1A) 
> Impairment of the autophagic flux and protein turnover, which increased reactive oxygen species, 
apoptosis, and necrosis 
> Increased production and secretion of exosomes

[68]

Farber Lipogranulo-
matosis (Partial 
model)

Asah1fl/fl/Smooth Muscle (SM)cre mice Centrifugation (4 °C): 
300 g, 10 min 
Filter 0.22 µm filters to 
100,000 g, 90 min Washing 
step 
100,000 g, 90 min

> Acid ceramidase (Ac) contributes to the development of arterial medial calcification (AMC) in the 
aorta and increases osteogenic markers 
> Decreased colocalization of MVBs with lysosomes and upregulation of sEV markers was seen in 
coronary arterial smooth muscle cells (CASMCs) of vitamin D treated Asah1fl/fl/SMCre mice; The 
same effect was observed in phosphate (Pi) treated CASMCs in vitro 
> Untreated Asah1fl/fl/SMCre CASMCs show increased sEV release, whereas Pi treated 
Asah1fl/fl/SMCre CASMCs show even more sEV release and increased MVB formation 
> Ac gene deletion remarkably decreased ML-SA1 induced Ca2+ release through TRPML1 channels

[80]

In vitro 
Primary erythrocytes and 
oligodendrocytes from Twitcher mice-
pups

Centrifugation: 
100 g, 10 min at RT 
21.000 g, 20 min at 4 °C

> Psychosine accumulation introduces focal regions of rigidity in the plasma membrane, which affects 
curvature and facilitates increased budding and shedding of 0.5-4 μm EVs in erythrocytes and 
oligodendrocytes

[79]Krabbe Disease

In vivo 
Twitch mice 
(GALC-/-)

Centrifugation: 
300 g, 10 min (P1) 
2.000 g, 10 min (P2) 
10,000 g, 30 min (P3) 
100,000 g, 90 min (P4) 
Sucrose gradient 
200,000 g, 16 h 
Washing step fractions 
100,000 g, 90 min

> At early disease stage, an increased number of brain-derived EVs was found, and this was 
decreased at a late stage 
> Significant increase in psychosine, myelin proteolipids and myelin basic proteins in brain-derived 
EVs, which further increased parallel to disease development 
> Treatment with ceramide production inhibitor GW4869 significantly decreased the number of 
brain-derived EVs, which accelerated the acquisition of the final disease state

[81]

MLD In vivo 
ASA-/- mice (cortex) 
 
 
 
 
 
 
 
 
 
 
In vitro 
Primary Neural Precursor (NP) and glial 
cells

Centrifugation (4 °C): 
300 g, 10 min 
2000 g, 10 min 
10,000 g, 30 min 
100,000 g, 70 min 
Wash step 
100,000 g, 70 min 
Sucrose gradient 
200,000 g, 16 h 
Washing step fractions 
100,000 g, 70 min 
Filtration (0.22 μm) 
Centrifugation: 
100,000 g, 90 min 
Washing step 
100,000 g, 90 min

> ASA-/- Cells have a defective PDGFRα pathway: Reduced PDGFRα protein levels and failure to 
phosphorylate AKT 
> ASA-/- glia, NP and cortex-derived exosomes contain significantly increased PDGFRα levels 
> Enzyme correction of ASA-/- NPs normalized PDGFRα levels, led to re-localization of the receptor in 
detergent-resistant membrane domains, increased AKT phosphorylation, normalized the production 
of oligodendrocytes and reduced exosomal shedding 
> PDGFRα is secreted in vivo through exosomes during the peak of myelination 

[82]

In vitro 
Neu1-/- mice myofibroblasts 

Centrifugation (4 °C): 
300 g, 10 min 

> In Neu1-/- myofibroblasts, there is excessive lysosomal exocytosis and significantly increased 
secretion of EVs 

Sialidosis 
(type I and II)

[78]
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Human skin fibroblasts 2000 g, 10 min 
10,000 g, 30 min 
100,000 g, 2 h 
Washing step 
100,000 g, 2 h 
Sucrose gradient 
100,000 g, 2.5 h

> Neu1-/- myofibroblasts-derived EVs contain molecules of the TGF-β and WNT signaling pathways 
Several molecules were present on the outer membranes of EVs through glypicans 
> Neu1-/- myofibroblasts and fibroblast EVs induce proliferation and migration/invasion in WT cells 
through profibrotic signals 
> Neu1-/- myofibroblasts EVs convert normal fibroblasts into myofibroblasts through significantly 
upregulating genes encoding members of the TGF-β and WNT signaling pathways

In vitro 
NPC1-/- liver cells from BALB/c mice

Centrifugation: 
100,000 g, 60 min

> 2-hydroxypropyl-β-cyclodextrin (HPB-CD) treatment stimulates lysosomal exocytosis and EV 
secretion in a calcium-enhanced manner, which ameliorates endolysosomal cholesterol storage 

[83]

In vitro 
Human NPC1-/- skin fibroblasts and 
CT43 CHO cells; NPC1 siRNA treated 
oligodendroglia 
(Oli-neu)

Centrifugation: 
3000 g, 10 min 
4000 g, 10 min 
4000 g, 10 min 
10,000 g, 30 min 
100,000 g, 60 min 
Sucrose gradient 
200,000 g, 18 h 
Washing step 
100,000 g, 1 h

> NPC1-/- fibroblasts secrete significantly higher amounts of EVs; 
> NPC1-/- CHO cells secrete significantly higher amounts of EVs containing cholesterol; 
> Cholesterol enhances the release of flotillin-2-positive EVs

[76]

Niemann-Pick Disease 
type C

In vitro 
NPC1-/- fibroblasts 
NPC1 KO HeLa cells

Centrifugation (4 °C): 
2.000 g, 30 min 
10,000 g, 30 min 
 
100,000 g, 90 min

> Treatment of NPC1-/-cells with LBPA precursor phosphatidylglycerol (PG) reduces endolysosomal 
cholesterol accumulation through increased secretion in EVs containing cholesterol

[77]

Niemann-Pick Disease 
type B

In vitro 
Human ASMase-/- 
B lymphocytes

TEM and Flow Cytometry > LAMP-3/CD63 accumulation, which points to impairment of endocytic trafficking 
> Microvesicle/lipid particle release may partially bypass the trafficking blockage caused by lipid 
accumulation 
> Rapamycin might regulate autophagy/mitophagy and contribute to the clearance of lipid storage by 
vesicle secretion and lysosomal exocytosis

[84]

While improving the cellular state sounds promising, the secretion of EVs by LSD cells could have negative effects on neighboring cells or tissues. Their cargo 
could contribute to the progression of the pathological conditions over time, considering that EVs from LSD cells can contain the accumulated 
metabolites[76,94]. This could especially have a major impact on neuronal tissue and avascular connective tissue. Both tissue types are hard to reach and treat due 
to the lack of blood supply or barriers, which results in the progression of symptoms after the first line of treatment[15]. Increased secretion of the accumulating 
metabolites could further alter the carefully regulated composition and spatial orientation of the extracellular matrix (ECM). Alterations in the ECM are often 
seen in LSDs and mostly in MPS, where the primary storage material is a component of the ECM. The specific alterations depend on the type of LSD and may 
include changes in the size, expression, and arrangement of both fibrous elements and proteoglycans. Furthermore, alterations in the levels of hyaluronic acid 
(HA) and matrix metalloproteinases (MMPs) are often reported. The ECM modifications in LSDSs can have effects on multiple signaling pathways, cell-
matrix and cell-cell interactions[95]. The contributions of EVs to these processes were shown by Van de Vlekkert et al., who demonstrated that Neu1−/− 
myofibroblasts derived-EVs were able to convert normal fibroblasts into myofibroblasts propagating fibrosis[78]. This effect was obtained through upregulation 



Page 402 Hegeman et al. Extracell Vesicles Circ Nucleic Acids 2022;3:393-421 https://dx.doi.org/10.20517/evcna.2022.41

of genes in the TGF-β and WNT signaling pathways[78]. This suggests that Neu1−/− myofibroblasts derived-
EVs can contribute to and/or cause progression of fibrosis. Furthermore, in Krabbe Disease, accumulation 
of psychosine results in more rigid myelin fluidity and demyelination which occurs through the shedding of 
myelin by microvesicles[79]. This deregulates cell signaling and may introduce focal weak points. In a healthy 
situation, myelin covers and protects nerve cells to ensure rapid transmission of nerve signals. 
Consequently, demyelination interrupts signaling of the central and peripheral nervous systems, which 
contributes to the neurological symptoms seen in Krabbe patients[96]. In additional Sphingolipidoses 
Niemann-Pick type A and C[97,98], changes in the membrane organization and decreased fluidity have been 
reported. This decrease in membrane fluidity is linked to altered activity of membrane-bound enzymes, 
carrier-mediated transport, and receptor binding at the cell membrane[98]. Whether this influences EVs 
release in these LSDs remains to be determined. To study EV release in Fabry Disease, Song et al. used 
CRISPR/Cas editing to create GLA-null human embryonic stem cells (hESCs)[68]. This model for 
hypertrophic cardiomyopathy showed impaired autophagic flux and protein turnover combined with 
increased EV release[68]. These studies show the contribution of EVs to the clinical manifestations of LSDs, 
such as fibrosis, delamination, and hypertrophic cardiomyopathy. More research is needed to investigate 
the role of the secondary cascade following lysosomal dysfunction in individual LSDs. This will greatly 
improve our understanding of its pathophysiology inside the cell and its contribution to disease 
progression. In addition, this could contribute to more targeted and more efficient therapy development. 
For now, these studies on EVs have demonstrated the potential of vesicles as biomarkers for these 
symptoms.

THE POTENTIAL OF EVS AS BIOMARKERS FOR LSDS IN DIAGNOSTICS AND DISEASE
MONITORING
EVs are able to reflect the metabolic status of the parent cell through alterations in their cargo, including
RNAs, lipids, sugars and proteins[37]. They can be isolated from patient material, such as blood, urine, saliva,
tear fluid, cerebrospinal fluid, and amniotic liquid[99-101]. Moreover, the concentration of EVs in fluids seems
to be disease-state dependent as well[60]. Therefore, EVs are considered a novel and promising tool in
diagnostics and their role as biomarkers has been well studied in multiple diseases with similarities to LSDs,
including Alzheimer’s Disease[102] and PD[103]. However, their potential as biomarkers in LSDs has yet to be
explored.

Since most LSDs are elusive at birth, the diagnostic process of LSDs often relies on suspicion of the
physician based on clinical manifestations. However, early diagnosis of LSDs is of utmost importance to
start early treatment and prevent irreversible damage to all organ systems involved[104]. Current diagnostics
of LSDs rely on genetic testing, analyses of undegraded metabolites, and enzymatic activity with dry blood
spots (DBSs). Testing on undegraded material is mostly performed on plasma and urine samples; however,
this is only available for a limited number of LSDs and lacks specificity. Therefore, confirmation mostly
relies on enzymatic testing with DBSs in high-throughput platforms, which is only possible for enzyme
deficiencies[105,106]. Until now, research on the diagnostic potential of EVs in LSDs is limited. Nevertheless, it
has been shown that EVs isolated from Niemann-Pick type C cells contain the accumulated metabolite
cholesterol and MLD-EVs contain the accumulated sulfatides[76,94]. This might be the case for EVs in other
LSDs as well, as the content of EVs reflects the contents and state of the EV-producing cells. Thus,
collection of EVs from different types of body fluids could be a valuable source of biomarkers. Their
prediction efficiency as biomarkers could be dependent on the location of specific LSD symptoms. For
instance, tear fluid has been shown to contain approximately 100-fold higher EV concentrations than
plasma[101]. Since ocular symptoms such as corneal clouding are often present in LSDs, EVs isolated from
tear fluid could be a suitable candidate for biomarker analysis. In other ocular diseases, it has been shown
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that isolated EVs contain a distinctive protein pattern compared to healthy controls[107]. Furthermore, 
enzyme activity studies can be performed on tear samples as previously shown for MPS I[108]. These findings 
warrant EVs to be studied as a potentially valuable biomarker source in diagnostics, monitoring of disease 
progression and analysis of treatment efficiency in the future.

As stated before, early indication of LSDs is extremely important to start effective treatment and prevent the 
development of organ damage. Amniotic fluid could be used for the detection of LSDs. However, most 
LSDs are typically not evaluated for in the initial standard-of-care workup when babies are born. In several 
states in the US, parent advocacy has led to the expansion of NBS programs that now include newborn 
screening in dried blood spots (DBS) for Pompe, Krabbe, Gaucher, Fabry, MPS-I, MPS-II, and Niemann-
Pick A/B or a subset[109], while in the Netherlands the screening only includes MPS I[110]. Firstly, more LSDs 
and other metabolic disorders could be included in the standard workup[111]. Secondly, when parents choose 
to have an amniocentesis, co-collection of an amniotic fluid sample could be performed. Isolation of 
amniotic EVs from these samples could potentially improve early diagnosis. However, as performing an 
amniocentesis has several risks, collection of EVs from amniotic fluid could be considered alongside 
scheduled amniocentesis. Keller et al. showed that it is possible to separate EVs derived from the fetus and 
the mother and that these EVs partly represent the renal system of the fetus[112]. Even early in development, 
these EVs could already carry the undegraded material in case of a LSD, as this can normally be detected in 
urine samples of newborns[105]. Using EV-based biomarkers in the diagnostic process may hold the potential 
to improve the speed of diagnosis and clinical risk assessment of LSDs early in development. In general, the 
use of EVs could increase the sensitivity of biochemical assays by increasing the concentration of test 
material. If successful, this could improve both maternal and fetal patient management[113].

Until now, biomarker research in LSDs is limited to the enzyme deficiencies Fabry, Gaucher and MLD. 
Table 3 shows an overview of all literature related to EVs and their role as biomarkers in these LSDs. EVs 
could play a role in real-time analysis of disease progression, which could improve personalized treatment 
protocols. Following this idea, Levstek et al. studied urine-derived EVs (uEVs) to evaluate their potential in 
the prediction of nephropathy progression in Fabry Disease[114]. In almost all Fabry patients  the kidneys are 
affected. In this study, it was shown that uEVs from Fabry patients with nephropathy contained increased 
expression of miR-29a-3p and miR-200a-3p. On the other hand, patients who were not affected by renal 
dysfunction had higher expression levels of miR-30b-5p, which plays a protective role in podocyte injury. 
This shows that screening of uEVs in these patients could help define the presence and status of 
nephropathy[114]. For patients with some residual enzyme activity, this method could be used to assess when 
to start ERT, while for patients with little or no residual enzyme activity, this could mark the start of 
dialysis[115]. Gaucher Disease includes a major genetic risk factor for the development of PD in these 
patients. Tatiana et al. performed proteomic profiling of EV proteins from blood plasma of Gaucher 
patients to find any association with PD[116]. While they showed increased EV size in patient material, 
proteomics did not reveal any PD-associated proteins[116]. Additional EV cargo, such as lipids, sugars and 
RNAs, were not tested in this study.

In addition to protein and miRNA content, the lipid composition of EVs could be involved in the reflection 
of disease pathology. Hence, Pergande et al. performed an untargeted lipidomic analysis of brain-derived 
EVs isolated from MLD mice[94]. In the sphingolipidosis MLD, deficiency of the aryl-sulfatase A (ARSA) 
enzyme leads to accumulation of sulfatides, including multiple sulfated glycolipids[94]. The accumulation of 
sulfatides causes severe neurological symptoms in MLD patients. Sulfatides have been found in EVs before, 
for instance, in EVs isolated from plasma and oligodendrocytes[119,120]. Pergande et al. showed that MLD-EVs 
contained numerous altered lipid species from a broad range of lipid classes[94]. This included sulfatides and 
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Table 3. Extracellular vesicles as biomarkers for LSDs

LSD Study 
design

Patient 
material 

EV cargo 
(biomarker) Isolation method Major results Reference

Patient 
material

Urine Negative: 
miR-29a-3p and 
miR-200a-3p 
 
Positive:miR-30b-5p

Centrifugation: 
2000 g, 15 min 
Storage -80 °C 
Mix urine with PBS and 
EDTA 
AMICON Ultra-15 Spin-
filter 
4000 g, 10 min 
SEC (70 nm column) 
AMICON Ultra-4 Spin-Filter 
4000 g, 6 min at 4 °C 

> uEVs contain increased expression of 
miR-29a-3p and miR-200a-3p over 
time in patients with nephrology 
 
> Over 10 years, uEVs of patients 
without renal dysfunction contained 
increased levels of miR-30b-5p, which 
has a protective role in podocyte injury

 
[114]

Fabry 
Disease 
 

Patient 
material 
 
In vitro 
HUVEC

Plasma miR-126-3p Plasma EVs 
Centrifugation: 
1500 g, 10 min 
3000 g, 30 min  
10,000 g, 30 min 
100,000 g, 1 h 45 min at 4 
°C 
 
HUVEC EVs 
Centrifugation: 
300 g, 10 min 
2000 g, 20 min 
10,000 g, 30 min 
110,000 g, 70 min 
Washing step 
110,000 g, 70 min 

> Circulating miR-126 levels 
physiologically increase with age 
> sEVs of Fabry Disease patients 
contain higher miR-126-3p levels 
> Glycosphingolipid accumulation 
induces premature senescence in 
HUVECs and increases miR-126-3p 
levels 
> Fabry Disease may aggravate the 
normal aging process

[117]

MLD In vivo 
MLD mice 
 
(ARSA-/-)

HIn vivo 
emi 
sagittal 
brains

Blade dissociation 
100 μm mesh filtration 
40 μm mesh filtration 
 
Centrifugation: 
300 g, 10 min 
2000 g, 20 min 
10,000 g, 30 min 
10,000 g, 30 min 
100,000 g, 90 min 
Sucrose gradient 
200,000 g, 16 h 
100,000 g, 90 min

> Brain derived-EV concentration 
increased in parallel with age 
> MLD brain-EVs are significantly larger 
at 3 months compared to day 30 or 6 
months 
> There is loading of accumulating 
sulfatides into MLD-EVs and alterations 
in the loading of different ceramides 
> Progressive decrease of FAs and 
FAHFAs in MLD-EVs

[94]

Patient 
material

Plasma Increased size Centrifugation: 
2000 g, 30 min 
16.000 g, 30 min  
110,000 g, 2 h 
Washing step 
Gentle swaying for 1h at 4 
°C 
Filtered (0.45 μm) 

> EVs of Gaucher Disease patients are 
increased in size and have altered 
morphology 
> Proteomic profiling of exosomal 
proteins did not reveal any proteins 
associated with PD pathogenesis 

[116]Gaucher 
Disease 

Patient 
material

Serum Increased number of 
MPs 

Centrifugation (20 °C): 
1550 g, 20 min 
18.800 g, 30 min 
Washing step 
18.800 g, 30 min

> Higher levels of MPs from different 
blood cells in patient samples both 
before and after ERT compared to 
controls 
> After 1 year of ERT, the total MPs in 
GD were significantly decreased

[118]

FAs: Fatty acids; FAHFAs: fatty acid ester of hydroxyl fatty acids; MPs: microparticles; SEC: size exclusion chromatography.

their ceramide precursors as well as fatty acids (FAs), fatty acid esters of hydroxyl fatty acids (FAHFAs) and 
acylglycerol lipids. The sulfatides include mostly 18-carbon fatty acid chains, which predominantly 
accumulate in MLD mice. Furthermore, these lipid alterations in EVs were found to be age-dependent and 
are proposed as relevant candidates for MLD biomarkers[94].
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Further research into specific LSD-related biomarkers could improve our understanding of disease 
pathology as well as improve patient care. Moreover, unraveling the tissue origin of EVs secreted in 
different body fluids through specific tissue biomarkers could improve our understanding of disease 
location and progression and thus improve treatment. We suspect that the use of algorithms in EV research 
will progress in the upcoming years and will be of great value to analyzing EV data from body fluids in 
relation to disease[51,121-123].

IMPROVEMENT OF THERAPEUTIC DELIVERY WITH EXTRACELLULAR VESICLES AS 
DRUG DELIVERY VEHICLES
EVs are biocompatible and have intrinsic tissue-penetrating abilities[124]. In addition, EVs show low 
immunogenicity and are stable in circulation due to their negatively charged surface and their ability to 
avoid the mononuclear phagocytic system upon modification[62]. These features qualify EVs as potential new 
therapeutic drug delivery vehicles. The ability of EVs to cross the BBB could open doors to the development 
of novel treatment and delivery strategies for LSDs with neurological deficits[38]. Furthermore, it makes EVs 
a more desirable delivery tool over existing nanotechnologies such as liposomes, synthetic polymers and 
gold nanoparticles[125,126]. EVs naturally contain lysosomal components including heparan-alpha-
glucosaminide N-acetyltransferase (HGSNAT)[50], beta-glucocerebrosidase (GBA), N-acetylgalactosamine-
6-sulfate sulfatase (GALNS)[127], cystinosis (CTNS)[128], deficient in MPS III, Gaucher, MPS IVA, and 
Cystinosin respectively. Considering the interplay between the endolysosomal pathway and EV secretion, 
there could be a broader range of natively loaded LSD deficient proteins into EVs[128], making them an 
interesting vehicle for ERT.

EV uptake into recipient cells can take place through a variety of different pathways. EV internalization 
predominantly occurs through endocytosis, which includes macropinocytosis, receptor-mediated, clathrin-
dependent and clathrin-independent mechanisms[129]. In addition, EVs could also enter the cells through 
phagocytosis. Additionally, EVs may also exert phenotypical effects on target cells without entry through 
direct receptor-ligand interactions[124,130]. Most of the internalization pathways lead EVs to the 
endolysosomal pathway. Numerous studies have shown strong colocalization of EVs with lysosomes, 
reaching up to ~50%-60% in fibroblasts[130]. For most therapies, this will be a disadvantage when 
(intraluminal) EV cargo needs to be delivered to the cytosol of nucleus. In that case, EVs need to escape the 
endosome to avoid degradation in the lysosome. It is largely unknown how EVs can naturally induce 
endosomal escape; however, there is some evidence that fusion between the membranes of EVs and the late 
endosomal membranes plays a role[124], potentially under the influence of acidification in the endolysosomal 
environment[131]. Nevertheless, EVs being trafficked towards the lysosome could be of substantial benefit for 
the delivery of therapeutics in the treatment of LSDs. However, whether the same distribution pattern 
towards the dysfunctional lysosomes in LSD cells will be seen remains to be determined.

Already a decade ago, Coulson-Thomas et al. showed that transplantation of human umbilical 
mesenchymal stem cells improves the corneal defects of MPS-7 mice[132]. After injections of these MSCs, 
improvements were hypothesized to be mediated through MSC-derived EVs[132]. At the time, EVs were 
gaining more recognition for their potential therapeutic abilities[133]. To date, several studies have shown that 
overexpression of lysosomal enzymes in cells leads to passive loading into EVs, including the deficient 
enzymes of Fabry[128], MPS IIIA[128], MPS IVA[127], and Batten Disease[134]. An overview of all studies regarding 
EVs in the treatment of LSDs can be found in Table 4.

While EVs improve drug stability and circulation time[139], they can be further optimized to improve EV 
uptake and biodistribution and obtain targeted delivery. All cells release EVs, but the number, composition, 
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Table 4. Extracellular vesicles as therapeutic carriers for LSD treatment

LSD Study design EV 
cargo EV concentration Isolation method Major results Reference

Fabry 
Disease

EVs from stable GLA expressing CHO 
DG44 cells 
 
In vitro 
HEK293T and NAEC cells 
 
In vivo 
GLA-/- mice 

GLA In vitro 
2.5 μg EVs/ml (c.a. 125 ng 
GLA/ml) 
 
In vivo 
 
1 mg/kg GLA

Centrifugation (4 °C): 
3900 rpm, 15 min (free enzyme) 
300 g, 10 min 
2000 g, 10 min 
10,000 g, 20 min 
VIVAspin 30,000 KDa 
7.000 g, 10 min 
Precipitation o/n with ‘Total Exosome 
Isolation Reagent’ 
16.000 g, 1 h

> Significant amounts of GLA in EV lysates compared to 
whole cell lysates 
> Predominant contribution of clathrin-mediated 
endocytosis and macropynocytosis in EV uptake 
> EVs protect GLA and increase its enzymatic activity upon 
delivery compared to commercial GLA and agalsidase alfa 
used in ERT 
> EVs were well tolerated in vivo and distributed among all 
main organs, including the brain after i.a. administration 

[128]

MPS IIIA Transient SGSH expressing HEK293 
cells 
 
In vitro 
HEK293T and NAEC cells 

SGSH 2.5 μg EVs/ml Centrifugation (4 °C): 
3900 rpm, 15 min (free enzyme) 
300 g, 10 min 
2000 g, 10 min 
10,000 g, 20 min 
VIVAspin 30,000 KDa 
7000 g, 10 min 
Precipitation o/n with ‘Total Exosome 
Isolation Reagent’ 
16.000 g, 1 h 

> Significant amounts of SGSH in EV lysates compared to 
whole cell lysates 
> EVs restore lysosomal function much more efficiently 
than the recombinant enzyme in clinical use 
 
> In vivo, EVs were well tolerated and distributed among all 
main organs, including the brain

[128]

MPS IVA hUMSC-derived EVs 
 
In vitro 
 
MPS IVA deficient patient fibroblasts

GALNS Co-cultures Conditioned medium 
3000 rpm, 15-20 min at 4 °C 
 
Centrifugation: 
300 g, 10 min 
10,000 g, 30 min 
0.22-μm filter 
100,000 g, 90 min

> UMSC-EVs containing functional GALNS enzyme and can 
deliver it to CALNS deficient cells; 
> Mannose-6-phosphate inhibition did not affect enzyme 
delivery after EV treatment; 
> EVs are a function and novel technique for reducing GAG 
accumulation in cells of avascular tissues

[127]

amMSCs and bmMSCs 
 
In vitro 
Patient derived CTNS-/- skin fibroblast 
and ciPTEC 

CTNS Co-cultures, 
 
1-2 mg microvesicles/mg 
fibroblast protein

Centrifugation (4 °C): 
300 g, 5 min 
100,000 g, 2 h 
Washing 
100,000 g, 1 h 
Washing 
100,000 g, 1 h

> Amniotic fluid or bone marrow derived hMSCs, reduce 
pathologic cystine accumulation in co-culture with patient 
CTNS-/- fibroblasts or proximal tubular cells; 
> MSC derived EVs contain wildtype cystinosin protein and 
CTNS mRNA 

[135]

> Vesicle addition to 
CTNS-/- fibroblast leads to 57% cystine depletion 
> LC-MS/MS analysis of the vesicles shows three 
cystinosin peptides with 7.4% coverage of the human 
cystinosin sequence 
> Quantitative tandem mass spectrometry showed 0.1 and 
1.2 pmol cystinosin per mg of vesicle protein 
> Both western blot and RT-PCR confirmed the presence of 

Cystinosis 

EVs derived from Spodoptera 
frugiperda (Sf9) cells infected with 
Baculovirus 
 
In vitro 
CTNS-/- fibroblast 

CTNS - 0.2 μm filter 
Dialysis to dilution 
of 1/2500, or 2 (cut-off 3.5 kDa) 
 
Centrifugation: 
140,000 g, 3 h followed 
 
filter-sterilization

[136]
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cystinosin in these vesicles

EVs derived from Spodoptera 
frugiperda (Sf9) cells infected with 
Baculovirus containing the hCTNS-
GFP 
 
In vitro 
CTNS-/- fibroblast 
 
Rabbit globes

CTNS Gas-permeable stoppers 
containing 50 ml medium with 
or without the 1011/ml EVs

Freeze-thaw snap freezing medium 
Thawed 
Dialyzed into Ham’s F12, 48 h at 1:2500 
dilution 
0.22 μ filter 
 
Stored at 4 °C

> Baculovirus infected Spodoptera frugiperda cells (Sf9) 
spontaneously produce EVs that contain cystinosin 
> EVs are detected in CTNS-/- fibroblast with perinuclear 
and cytoplasmic distribution after treatment; 
> Upon ex vivo ocular EV delivery, GFP signal is detected for 
48 h

[137]

TPPI-plasmid DNA transfected 
peritoneal macrophages or sonication 
and permeabilization of EVs with 
saponin to load TPPI 
 
In vitro 
CLN2-/- skin fibroblasts 
 
In vivo 
Intraperitoneal EV administration in 
late-infantile neuronal ceroid 
lipofuscinosis (LINCL) mice

TPPI In vitro 
1010/mL 
 
In vivo 
Intraperitoneal administration 
 
Bioimaging: 
2 × 1011 in 200 μL saline 
Brain accumulation: 
1 × 1010 in 100 μL 
Therapeutic efficiency: 
4.3 × 1012 in 150 μL

Centrifugation: 
300 g, 10 min 
1000 g, 20 min 
10,000 g, 30 min 
0.2 μm syringe filter 
100,000 g, 4 h 
Washing 
120,000 g, 70 min 
Washing 
120,000 g, 70 min 
 
Sonification or permeabilization

> Both transfection with TPPI plasmid and 
sonification/permeabilization lead to proficient 
incorporation of functional TPP1 into macrophage-EVs (EV-
TPP1); 
> EVs significantly increase stability of TPP1 against 
protease degradation and provide efficient TPP1 delivery to 
CLN2-/- fibroblasts; 
> Around 70% of the EV-TPP1 is delivered to lysosomes; 
> Intraperitoneal administration of EV-TPP1 leads to 
accumulation in the brain of LINCL mice, which increased 
lifespan

[134]CLN2 

EVs derived from mice bone marrow-
derived macrophages 
 
In vitro 
CLN2-/- primary cortical neurons 
 
In vivo 
Intrathecal and intranasal routes 
CLN2-/- LINCL mice 

TPPI In vitro 
5 × 1011 EVs 
 
In vivo 
i.v. 6 × 1011 in 200 µL 
i.p. 6 × 1011 in 200 µL 
i.t. 1.5 × 1011 in 50 µL 
i.n. 6 × 1011 in 20 µL

Centrifugation: 
300 g, 10 min 
1000 g, 20 min 
10,000 g, 30 min 
0.2 μm syringe filter 
100,000 g, 4 h 
Washing 
120,000 g, 70 min 
Washing 
120,000 g, 70 min 
 
Sonification

> EV-TPP1 treatment though i.t. and i.n. routes lead to 
accumulation in the brain, decreased neuroinflammation 
and neurodegeneration and reduced aggregation in CLN2-/- 
mice; 
> EV-TPP1 treatment though i.v. and i.p, administration 
leads delivery to the liver, spleen, kidney, and lungs; 
> Combined i.t. and i.p. injection significantly prolonged 
lifespan in CLN2-/- mice

[138]

ciPTEC: Proximal tubular epithelial cells; CTNS: cystinosis; GALNS: acetylgalactosamine-6-sulfate sulfatase; GLA: alpha galactosidase A; i.n.: intranasal; i.p.: intraperitoneal; i.t.: intrathecal; i.v.: intravenous; SGSH: N
sulfoglucosamine sulfohydrolase; TPPI: tripeptidyl peptidase-1; UMSC: umbilical mesenchymal stem cells.

functionality and physicochemical characteristics vary between cell sources[62]. For instance, MSC-derived EVs have immunomodulatory and anti-
inflammatory effects. Recently, unmodified MSC-EVs were used to treat osteoarthritis and resulted in amelioration of disease progression through induced 
polarization of M2-type macrophages among other effects[140]. These positive effects on disease related to connective tissue could be beneficial to treat residual 
disease and target the connective tissue in LSD patients. Furthermore, the native characteristics of MSC-EVs could be further exploited through engineering. 
This might lead to delivery of the loaded protein while also promoting tissue repair and regeneration within the same treatment. Moreover, EV functionality is 
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dependent on the target as well, considering that some EVs are better taken up by one cell type compared to 
another[36]. Therefore, therapy specific selection of the optimal cell source, cell cultivation procedure, EV 
extraction and purification methods, and storage might be needed.

Recently, Seras-Franzoso et al. showed that stabile GLA expressing cell lines were able to produce EVs that 
protected the enzymes from proteases, and subsequently improved enzymatic delivery directly compared to 
soluble GLA and clinically approved ERT agalsidase alfa[128]. In addition, analysis of the GLA biodistribution 
showed that EVs were able to deliver significantly more active enzymes to the kidneys than non‐
encapsulated enzymes. It must be noted that agalsidase alfa used in ERT is governed by the presence of the 
mannose-6-receptor to increase uptake. This receptor is highly expressed in the liver and therefore might 
interfere with the biodistribution of non-encapsulated enzymes [141]. Furthermore, they showed the uptake of 
fluorescent labelled EV-GLA in the brain parenchyma with confocal microscopy an hour post-intra‐
arterially (i.a.) administration through cannulation of the external carotid artery. This delivery across the 
BBB could not be detected after intravenous administration through the tail vein[128]. Likewise, Haney et al. 
showed the loading of tripeptidyl peptidase-1 (TPP1) into EVs, which greatly improved enzyme 
stability[134,138]. After showing functional delivery of the TPP1 in EV treated fibroblast, the authors examined 
intraperitoneal administration of EVs in late-infantile neuronal ceroid lipofuscinosis (LINCL) mice to study 
EV distribution towards the brain. This type of administration led to accumulation of the enzyme in the 
brain. However, a clear distribution towards peripheral organs was also seen, including the liver, spleen, 
kidneys and lungs[134]. Therefore, they examined different EV administration routes in mice in another study 
to see the effect on crossing the BBB. Both intranasal and intrathecal administration resulted in 
accumulation of TPP1 in the brain and spinal cord, which reduced aggregation of lysosomal storage 
material, neurodegeneration and neuroinflammation. Importantly, these administration routes showed 
lower distribution of the EVs towards the peripheral organs compared to intraperitoneal and intravenous 
administration[138]. The loading of enzymes into EVs and their distribution towards the central nervous 
system (CNS) shows the potential of EVs as therapeutic carriers to treat the CNS. Thus, EVs could be used 
to load and protect ERT to improve biodistribution and lower antibody generation in patients.

ENGINEERING OF EXTRACELLULAR VESICLES FOR THERAPEUTIC TREATMENT OF
LSDS

While native EVs have multiple features that qualify them as promising drug delivery vehicle, endogenous
cargo loading, circulation time and tissue targeting are often inadequate. Biodistribution studies often show
accumulation of EVs in the liver, spleen, gastrointestinal tract and lungs. However, the specific pattern of
distribution seems to depend on the cell type the EVs are derived from, the route of administration[142] as
well as the injected dose[64]. Several studies have demonstrated a role for integrins in tissue targeting[143,144].
Integrins are enriched in EVs through their association with tetraspanins[145]. For instance, integrin
expression patterns in tumor-derived EVs play a role in the uptake of EVs by organ-specific cells and
creation of a pre-metastatic niche[143]. The use of fluorescent labelling and tracking techniques are valuable
tools to study and optimize the distribution pattern of (engineered) EVs. For an overview of the currently
used labelling and tracking techniques in the EV field, we refer to the review of Kooijmans et al.[129]. To
further optimize performance, EVs can be modified and engineered. To date, studies on EV engineering for
LSD treatment have solely focused on actively increasing therapeutic cargo loading. These modifications
can be obtained through a variety of different exogenous and endogenous methods. In exogenous
techniques, EVs are therapeutically loaded post-isolation by simple incubation, electroporation, sonication,
extrusion, and freeze-thawing. These techniques have variable degrees of success and can lead to EV or
cargo aggregation[146,147]. Uniquely, EVs can also be endogenously altered by biologically engineering the cells
that produce them. This strategy can equip EVs with new moieties while preserving their membrane



Hegeman et al. Extracell Vesicles Circ Nucleic Acids 2022;3:393-421 https://dx.doi.org/10.20517/evcna.2022.41 Page 409

integrity, which is an advantage over exogenous loading techniques[123].

Therapeutic protein loading into EVs is often achieved through parental cell engineering with genes that 
encode for the therapeutic protein fused to a membrane protein enriched in EVs or a transmembrane 
domain. These loading strategies may include the use of EV enriched proteins such as tetraspanins (CD9, 
CD63 and CD81), PTGFRN, and BASP1[148] or transmembrane domains such as the N-terminal fragment of 
syntenin[149]. With this strategy, the therapeutic protein will naturally be incorporated into EVs during 
biogenesis. This approach allows for both internal and external display of the therapeutic protein[150]. 
Successful protein loading and delivery, both in vitro and in vivo, has been shown in multiple studies[150-152]. 
This shows the potential for active enzyme loading and accumulation in EVs to increase functional delivery. 
When designing active enzyme loading strategies, it must be considered that lysosomal enzymes often 
require post-translational modification. These modifications need to take place before loading enzymes into 
EVs to eventually lead to functional delivery upon EV treatment[153,154].

To date, the only LSD for which active enzyme loading into EVs has been studied is Gaucher Disease. An 
overview of these studies can be found in Table 5. In patients with Gaucher Disease, the GBA enzyme is 
deficient, which leads to symptoms that include neurological complications. Do et al. showed active GBA 
loading into EVs with the use of vesicular stomatitis virus glycoprotein (VSV-G)[153]. In addition to loading 
and potential uptake through the VLDL receptor on the surface of recipient cells, VSV-G can also induce 
endosomal escape[90]. It should be noted that induced endosomal escape could potentially counteract the 
goal of this EV treatment by enabling the EV cargo escape their route to the lysosome. Despite that, Do et 
al. show significant colocalization of the EVs throughout uptake with the endosome, late-endosome and 
lysosome in an in vitro HEK293 cell model[153]. However, it is possible that delivery of GBA to these cellular 
structures would even further increase with the use of a loading strategy that does not additionally induce 
endosomal escape. Flow cytometry analysis showed a 73%-75% uptake rate based on mean fluorescent 
intensity of the co-loaded GFP[153]. Although this study focused on in vitro cell culture models, it underlines 
the potential of active loading strategies into EVs to deliver deficient enzymes as next-generation ERT. In 
the future, such therapies may lower antibody generation to ERT in patients and deliver functional enzymes 
to target organs including the central nervous system (CNS), which is severely affected in multiple LSDs.

THE USE OF EVS IN FUTURE THERAPEUTIC TREATMENT OF LSDS

Engineered EVs have already been explored for multiple purposes, including regenerative therapy[155],
immune modulation[156], delivery of small molecular drugs[157], vaccines[158], therapeutic proteins, and nucleic
acids[159]. For instance, cardiac progenitor cell-derived EVs loaded with miR-322 outperformed their
unloaded controls in enhancing angiogenesis in mice after ischemic injury[155]. Furthermore, numerous
small molecular drugs have been successfully incorporated into EVs, including curcumin. The loading of
curcumin into EVs enhanced its delivery and anti-inflammatory activity[156]. Drug loading into EVs has been
shown to improve accumulation in target cells and enhance drug stability and circulation time[139].
Currently, multiple groups are exploring the potential of employing EV engineering for the development of
therapeutic treatments. The variety and possibilities of this technique could greatly improve therapeutic
options for LSDs in the future.

Alongside the mentioned positive effects of using EVs to deliver ERT, delivery of other forms of LSD
treatment might also benefit from this camouflage strategy. This may include SRT and PCT, which use
small drugs to inhibit the production of the accumulating substrate and stabilize native structures of
mutated enzymes, respectively[26,27]. Loading both SRT and CPT into EVs might improve their distribution
and potential delivery to the CNS. Furthermore, newly discovered molecular drugs might benefit from
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Table 5. Engineered extracellular vesicles to treat LSDs

LSD Study design EV 
cargo Readout EV concentration Isolation method Major results Reference

Gaucher 
Disease

EVs from HEK293T cells 
 
Active loading 
VSVG-GFP-GBA 
 

GBA In vitro 
HEK293T, U7 and HepG2 

0.3 µg/μl Centrifugation: 
1500 g, 10 min 
0.2 µm syringe filter 
Mixed with ExoQuick-
TC solution (1:4) o/n at 
4 °C 
 
3000 g, 90 min at 4 °C

> HEK cells transfected with VSVG-GFP-GBA constructs 
secrete EVs that contain significantly more active GBA 
compared to control EVs; 
> The uptake of green, fluorescent dye labelled GBA-EVs 
was 73%-75%; 
> Upon treatment, GBA loaded EVs co-localize with 
lysosomes and lead to the delivery of functional GBA 
(40%-45%)

[153]

TPPI-plasmid DNA transfected 
peritoneal macrophages or sonication 
and permeabilization of EVs with 
saponin to load TPPI 
 
In vitro 
CLN2-/- skin fibroblasts 
 
In vivo 
Intraperitoneal EV administration in 
late-infantile neuronal ceroid 
lipofuscinosis (LINCL) mice 

TPPI In vitro 
IC21 cells, neuronal PC12 
cells and Human skin 
CLN2-/- fibroblasts 
 
In vivo 
LICL mice 
 

In vitro 
1010/mL 
 
In vivo 
Intraperitoneal 
administration 
 
Bioimaging: 
2 × 1011 in 200 μL 
saline 
Brain accumulation: 
1 × 1010 in 100 μL 
Therapeutic 
efficiency: 
4.3 × 1012 in 150 μL

Centrifugation: 
300 g, 10 min 
1000 g, 20 min 
10,000 g, 30 min 
0.2 μm syringe filter 
100,000 g, 4 h 
Washing 
120.000 g, 70 min 
Washing 
120,000 g, 70 min 
 
Sonification or 
permeabilization

> Both transfection with TPPI plasmid and 
sonification/permeabilization lead to proficient 
incorporation of functional TPP1 into macrophage-EVs 
(EV-TPP1) 
> EVs significantly increase stability of TPP1 against 
protease degradation and provide efficient TPP1 delivery to 
CLN2-/- fibroblasts 
> Around 70% of the EV-TPP1 is delivered to lysosomes 
> Intraperitoneal administration of EV-TPP1 leads to 
accumulation in the brain of LINCL mice, which increased 
lifespan 

[134]CLN2

EVs derived from mice bone marrow-
derived macrophages 
 
In vitro 
CLN2-/- primary cortical neurons 
 
In vivo 
Intrathecal and intranasal routes 
CLN2-/- LINCL mice 

TPPI In vitro 
Primary bone murine 
marrow-derived 
macrophages, cortical 
neurons and IC21 cells 
 
In vivo 
 
LICL mice

In vitro 
5 × 1011 EVs 
 
In vivo 
i.v. 6 × 1011 in 200 µL 
i.p. 6 × 1011 in 200 µL 
i.t. 1.5 × 1011 in 50 µL 
i.n. 6 × 1011 in 20 µL

Centrifugation: 
300 g, 10 min 
1000 g, 20 min 
10,000 g, 30 min 
0.2 μm syringe filter 
100,000 g, 4 h 
Washing 
120,000 g, 70 min 
Washing 
120,000 g, 70 min 
 
Sonification

> EV-TPP1 treatment though i.t. and i.n. routes lead to 
accumulation in the brain, decreased neuroinflammation 
and neurodegeneration and reduced aggregation in CLN2-/- 
mice 
> EV-TPP1 treatment though i.v. and i.p, administration 
leads delivery to the liver, spleen, kidney, and lungs. 
> Combined i.t. and i.p. injection significantly prolonged 
lifespan in CLN2-/- mice

[138]

GBA: β-Glucocerebrosidase/β-glucosidase; GCase: Glucocerebrosidase; VSV-G: Vesicular stomatitis virus G.

being loaded into EVs as well by increased loading efficiency, protection, improved circulation and crossing of biological membranes. As discussed before, in 
most LSDs, autophagy is altered and affected cells might reduce their accumulation through secretion in the hope of maintaining homeostasis. Curcumin 
treatment has been shown to alleviate the phenotype of Niemann-Pick type C through the elevation of cytosolic calcium levels[160]. Additionally, it has been 
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shown that curcumin promotes EV section in cells that represent Niemann-Pick type C, inducing 
cholesterol shuttling out of the cell[161]. Loading and delivery of curcumin via EVs may be a therapeutic 
approach to treat Niemann-Pick type C.

In addition to enzyme deficiencies, there are other subgroups of LSDs that include deficiencies in integral 
membrane proteins, transporters and proteins involved in the post-translational modification, trafficking, 
or regulation. For these subgroups, there are limited treatment options available. Gene therapy was 
evaluated to treat Niemann-Pick type C in which patients are missing or have defective NPC1 transporters. 
Currently, Evox Therapeutics filed a patent to facilitate the loading of NPC1 fused to syntenin/CD63 into 
EVs (Patent number: WO2019/092287 AI). The use of EVs to transport NPC1 will stabilize the integral 
membrane protein through the presence of lipid molecules[162]. This strategy of EV engineering could 
potentially be a step forward in designing treatment strategies for currently untreatable LSDs.

Current challenges of EVs that must be addressed to improve their therapeutic efficacy include their rapid 
clearance and limited targeted delivery. Possible solutions may involve adaptation of administration routes 
depending on the target tissue. Local administration might be preferred for connective tissues with limited 
blood supply, whereas intranasal or intrathecal administration might be beneficial to target the CNS[138]. 
Moreover, modification of the EV surface may improve EV circulation and tissue targeting[63,163,164]. 
Kamerkar et al. have reported that the presence of CD47 on EV surface inhibited EV uptake and clearance 
by macrophages and monocytes, which may lead to increased cargo delivery[165]. However, considering that 
LSDs are monogenetic disorders, the monocyte-macrophage system is affected in multiple LSDs as well[166]. 
Therefore, the uptake of drug-loaded EVs by these immune cells could also be beneficial. Several 
bioengineering strategies have been developed to increase the affinity of EVs for specific recipient cells. 
These approaches include receptor-ligand, enzymatic, and antigen-antibody or a combination of these 
methods. For instance, EVs containing a LAMP2b-designed ankyrin repeat protein (DARPin) G3 fusion 
protein are able to specifically target HER-2 positive breast cancers through receptor-ligand interaction. 
DARPins are a class of synthetic peptides that can bind biological receptors with high specificity and 
binding affinity and specificity[167]. An adaptation of the EV membrane that both improved circulation time 
and cell specificity was shown by the addition of epidermal growth factor receptor (EGFR) nanobodies 
conjugated to phospholipid (DMPE)-polyethylene glycol (PEG). The shielding properties of PEG 
compromised cell binding and increased detectability of EVs in the plasma from less than 10 min to over 60 
min post-injection. At the same time, the EGFR nanobodies directed the EVs towards tumor cells 
overexpressing the EGFR[63]. Surface modification can also be used to evade phagocytosis by the 
mononuclear phagocyte system (MPS). These strategies will increase circulation time which will improve 
the chance of EV uptake by the specific recipient cells and can be used to increase EV accumulation and 
cargo delivery in targeted tissues[63]. Alongside biological engineering, EVs can externally be altered through 
chemical or synthetic engineering by using click chemistry or fusion with nanotechnologies[62,129]. All the 
different engineering strategies make it possible to optimize EVs to potentially target any tissue and disease.

EV-MEDIATED GENE EDITING: THE POTENTIAL ROUTE TO A PERMANENT CURE FOR
LSDS

LSDs are genetic disorders and recent studies have been exploring the possibilities of gene editing to correct
their mutations[168]. CRISPR/Cas technology possesses the ability to selectively target genes and create
deletions, insertions, and base pair substitutions. In this technology, the Cas9 protein is guided towards a
sequence with the help of single guide RNA (sgRNA). When using the native Cas9 protein, this results in a
specific double‐stranded break (DSB) in the targeted genomic DNA that can be corrected by the native
DNA repair mechanisms of the cell[169]. The repair of DSBs is associated with non-specific mutations, since
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it is typically repaired by the error-prone non-homologous end-joining (NHEJ) pathway, resulting in point 
mutations, deletions, and frameshifts[170]. To create precise changes in the DNA, the homology-directed 
repair (HDR) pathway utilizes a DNA repair template which shows homology in the sequences surrounding 
the DSB. This template can be delivered as a double-stranded DNA template or a single-stranded DNA 
oligo, which can contain a desired restorative mutation. However, HDR occurs at a relatively low frequency 
as compared to NHEJ. Thus, in order to generate base pair substitutions without the presence of NHEJ-
mediated non-specific mutations, Base Editing (BE) was developed. Here, enzymatic groups that are able to 
convert specific nucleotides are attached to dCas9, an adapted form of Cas9 whose endonuclease activity is 
removed through point mutations in its endonuclease domains. As a result, Cas9 will no longer create DSBs 
while still interacting with specific genomic sequences through the sgRNAs, and the base editing enzymatic 
groups are able to generate nucleotide substitutions in the sgRNA target sequence. There are different types 
of base editors, including cytosine base editors (CBEs) and adenine base editors (ABEs) that can mediate 
single base changes in the genome. Base editors can induce these alterations without requiring DSBs, HDR 
processes, or donor DNA templates[171-173]. The main drawback of these techniques is that the type of 
substitutions that can be made are currently limited, and since these substitutions could be made 
throughout the ~20 nt target sequence of the sgRNA, only a limited number of target sequences are suitable 
for base editing techniques.

Recently, Anzalone et al. reported a new versatile and precise genome editing method called prime 
editing[174]. Prime editing does not require a separate donor DNA repair template to precisely edit the DNA. 
Instead, the needed repair template is incorporated into the sgRNA combined with the desired edit, now 
called prime editing guide RNA (pegRNA). Furthermore, a catalytically impaired Cas9 nickase is fused to an 
engineered reverse transcriptase, now called the prime editor (PE). As prime editing is based on the use of a 
Cas9 nickase, which only cuts one strand of the double helix, DSBs and the subsequent error-prone NHEJ 
repair process are avoided. After the pegRNA guids the PE towards the target sequence, the reverse 
transcriptase domain of the PE uses the repair sequence added to the pegRNA to template reverse 
transcription of the desired edit. This leads to direct transcription of the DNA onto the nicked target DNA 
strand. The edited DNA strand will replace the original DNA strand, which creates a heteroduplex of one 
edited strand and one unedited strand. The edited strand will be favored due to the inherent preference of 
the endogenous endonuclease FEN1 to excise 5’ flaps. This leads to hybridization of the edited 3’ flap being 
favored copying the edit onto the unedited strand, completing the process. Prime editing can incorporate all 
the potential 12 modifications; accordingly, prime editing could, in principle, correct up to 89% of known 
genetic variants associated with human diseases[174,175]. In addition to efficient gene correction in cell lines, 
prime editing has already been shown to be as efficient in 3D grown organoids derived from patients with 
inherited metabolic disorders[176]. This substantially expands the scope and capabilities of genome editing, 
but the in vivo delivery remains challenging[174].

The CRISPR/Cas system can be delivered either as plasmid DNA, mRNA or as ribonucleoprotein (RNP) 
complex. Delivery of the RNP complex has advantages over plasmid and mRNA delivery, including lower 
off-target effects, and faster and more efficient gene editing[177]. Nevertheless, there are limitations to in vivo 
RNP complex delivery, including its large size, negative charge, immunogenicity, pre-existing 
antibodies[178], and rapid degradation[179]. Loading of the RNP complex into EVs could potentially overcome 
most of its limitations, as well as lowering its off-target effects by increased tissue targeting.

Whereas EV trafficking towards the lysosome after uptake by recipient cells is an advantage when using 
engineered EVs to deliver ERT, for the functional delivery of the RNP complex, endosomal escape is 
required, as the RNP complex needs to be able to reach the cell nucleus to induce genomic editing. 
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Incorporation of viral fusogenic proteins into the EV membrane could increase the relatively low efficiency 
of endosomal escape of unaltered EVs. The viral protein VSV-G is known to incorporate into the EV 
membrane upon transfection of the cells with VSV-G encoding plasmids[180]. This protein specifically 
induces endosomal escape, as it requires the decrease in pH in the late endosome to undergo the 
conformational transformation that induces the membrane fusion that facilitates cargo release. This will 
greatly increase endosomal escape and with that the delivery of the EV loaded RNP complexes or other 
therapeutic components that require delivery to the cytoplasm. Nevertheless, the use of viral proteins can be 
problematic due to their cytotoxicity and potential immunogenicity[181]. The substitution of these viral 
proteins is a hurdle that needs to be overcome. EVs may contain some endogenous capacity to escape the 
endosome that could be explored. For instance, through the incorporation of endogenous proteins with 
fusogenic activity like syncytins. Syncytins are incorporated into placenta-derived EVs and mediate uptake 
by recipient cells[182]. Their incorporation into the membrane may facilitate EV fusion and subsequently 
deliver the EV cargo[129,183]. It is hypothesized that EVs contain additional proteins that facilitate endosomal 
escape through membrane fusion, as treatment of unmodified EVs with proteinases has been shown to 
abrogate their capability of membrane fusion[131]. The use of endogenous proteins with fusogenic activity to 
induce endosomal escape for the delivery of CRISPR/Cas could increase the safety of these EVs.

Efficient gene editing after EV mediated delivery of RNP complexes has already been demonstrated. Active 
loading can be obtained through direct or indirect fusion of the Cas9 protein to known EV markers. This 
was shown by the indirect loading approach of Ye et al., who used CD63-GFP and Cas9-GFP nanobody 
fusion proteins that sufficiently loaded and delivered the complex[184]. Furthermore, Wang et al. proposed 
the use of ARRDC1, a protein required in plasma membrane budding together with known EV marker 
TSG101 to form ectosomes[152]. ARRDC1 interacts with proteins containing WW domains and recruits them 
into vesicles. Wang et al. fused either two or four WW domains to a Cas9 protein and showed that co-
expression with ARRDC1 leads to sufficient loading of the RNP complex into EVs[152]. They went on to 
show functional gene editing upon delivery by knocking down GFP expression in their recipient cells using 
an anti-GFP sgRNA[152]. Recently, light‐induced dimerization loading was shown to be effective. In this 
approach, Osteikoetxea et al. used Cryptochrome 2 combined with either CD9 or a Myristoylation‐
Palmitoylation‐Palmitoylation lipid modification[185]. This method provides controllable loading and release 
of the complex upon delivery[185]. In addition to loading of the complex through the Cas9 protein, RNA 
binding proteins such as HuR can increase complex loading by the addition of AU rich elements to the 
sgRNA[159]. At the same time, this strategy shows the potential of EV engineering in the delivery of other 
RNAs, including miRNA[159] and mRNA[152]. Furthermore, the delivery of Cas9-sgRNA or prime editing 
complexes with EVs could be a major step towards a permanent cure for LSDs. Figure 2 gives an overview 
of the general EV engineering strategies and the potential of engineered EVs for future LSD treatment.

CONCLUSION
As with any new class of therapeutic agents, EVs face several hurdles in their advancement into the 
clinic[186]. Optimization of loading efficiency, EV production, isolation, functional properties, purity, storage 
for potential off-the-shelf availability, as well as selection of the optimal cell source, is needed[47]. In addition, 
standardization of these processes’ clinical and industry-accepted validation must be developed for the 
regulatory approval of EV- diagnostics and therapeutics. A better understanding of EV biogenesis, uptake, 
cargo delivery and the normal in vivo journey will not only accelerate their therapeutic translation, but also 
improve their function in understanding LSD pathology and use as biomarkers. The EV field holds great 
potential and may one day contribute to diagnostics and the design of a new generation of smart vehicles 
for targeted delivery of drugs, ERT, RNA therapeutics and gene editing to manage or treat multisystemic 
LSDs.
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Figure 2. Future EV-based therapeutic options for the treatment of LSDs. Various EV engineering approaches and techniques can be 
used to optimize the therapeutic potential of EVs, including: (1) Cargo engineering, which can either be accomplished through 
exogenous loading techniques applied to the EVs post-isolation or endogenous loading techniques. In endogenous loading techniques, 
loading is accomplished through adaptation of the parental cell. Cargo can either be passively or actively loaded with the use of fusion 
proteins binding the cargo to EV-enriched proteins or transmembrane domains; (2) Surface engineering, which can improve circulation 
time of EVs, their tissue targeting potential and endosomal escape, which is needed for efficient intraluminal cargo delivery. 
Furthermore, EVs can be combined with synthetic nanoparticles. These hybrid systems can modulate the contents and functionality of 
both the particle surface and cargo. Future EV therapeutic modalities for LSDs potentially include; (3) Replacement therapies, which 
include enzyme-, and transporter-replacement therapy. These therapies can be loaded into EVs and delivered to target cells as mRNA or 
directly as protein; (4) Targeted drug delivery, for substrate reduction therapy (SRT), pharmacological chaperon therapy (PCT) and 
potentially drug induced autophagy regulation; (5) Gene therapy & gene editing, which includes loading of constructs such as plasmid 
DNA, mRNA, miRNA and siRNA for gene addition or modulation. Moreover, EVs could be engineered to contain CRISPR/Cas or Prime 
editing constructs in the form of plasmid DNA, mRNA or RNP complexes; and (6) Other therapies, which include unmodified or 
engineered EVs for adjuvant therapy, including immune-modulatory, regenerative therapy and autophagy regulation.
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