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Abstract
Alpha-1 antitrypsin (AAT) is the most abundant irreversible serine proteinase inhibitor in the circulation and plays 
a major role in protecting lung tissue against destruction from neutrophil serine proteinases. Genetic mutation of 
AAT leads to reduced circulating levels and AAT deficiency (AATD) which is associated with an increased risk of 
developing emphysema. This observation suggests that the balance between AAT and neutrophil serine proteinase 
is crucial in maintaining tissue homoeostasis. In AATD, the overexuberant proteinase activity resulting from 
inadequate AAT control creates a self-perpetuating inflammatory cycle, driving progressive tissue injury. Re-
establishing this physiological balance is therefore critical for preserving lung architecture, function, and abrogating 
disease progression.

Several avenues within this pathophysiological pathway are being explored. This chapter addresses the 
pathophysiological process, current treatments targeting the pathway, and alternative approaches within the 
pathway that can potentially mitigate proteinase imbalance.
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INTRODUCTION
Alpha-1 antitrypsin [(AAT); also known as Serine Protease Inhibitor (SERPIN) family A1] is a polymorphic 
protein expressed in a codominant fashion by 2 alleles on chromosome 14[1]. It has a modulatory role in 
inflammation showing an acute phase response in its manufacture and release from the liver (the major 
source of production) and increased diffusion into the affected tissues/organs where it plays a primary role 
in protecting tissues from the destructive effect of serine proteinases.

The importance of this role is indicated by the genetic deficiency first observed in the 1960s[2]. Of the initial 
5 cases identified, 3 had severe early onset basal emphysema and subsequent family studies confirmed the 
inheritance of the deficiency and the pulmonary association that appeared both spontaneously (with no 
recognised external risk factors[3]) but was accelerated by cigarette smoking[4]. Although other clinical 
associations such as panniculitis, systemic vasculitis, and liver cirrhosis are also recognised associations, it is 
the pulmonary disease that dominates.

Much has been learnt about the pathophysiology of the disease since the early observation of plasma 
deficiency. Over 150 variants of the protein have been identified, although most are associated with 
apparently “normal” concentrations and function. Deficiency can vary from partial due to heterozygosity of 
deficient genes with a normal gene to complete absence of AAT related mostly to point mutations and 
frameshift truncating mutations, although these are especially rare[5]. The majority of clinically relevant 
deficient cases are those homozygous for the Z variant which has a point mutation resulting in an amino 
acid substitution at position 342 (Glu to Lys) in the mature protein. This substitution can be identified 
through the genomic databases as rs28929474-p.Glu366Lys. As a result, this produces a protein that has a 
reduced association rate with its target enzymes[6-8]. This mutation also increases the likelihood of the 
protein to polymerise, particularly in the liver, impeding its secretion (by approximately 80%), resulting in 
plasma concentrations of ~5 µM[6-8].

The most relevant targets for AAT are serine proteinases and especially those stored in and released by 
circulating and migrating neutrophils. In the 1970s, the first report on the pulmonary damaging effect of 
neutrophil elastase was published[9]. Although this enzyme retains its importance as the direct mediator of 
emphysema and damage to many vital immune functions in the lung, it should be noted that two other 
enzymes stored in the same granules in the neutrophil (Proteinase 3 and Cathepsin G) can play similar 
damaging roles.

In the 1980s, the link between AAT deficiency (AATD) and emphysema was well established and the logical 
way to manage the condition was to enhance the circulating and hence lung concentration of AAT. 
Purification of plasma AAT from blood donors proved feasible and intravenous administration raised both 
the plasma[10] and lung[11] concentrations of AAT to safe and protective levels. Based on these studies, the 
United States Food and Drug Administration (FDA) approved weekly intravenous augmentation therapy 
for Z homozygous individuals on biochemical efficacy alone.

Because AATD is relatively rare (1 in 1500 to 1 in 5000) related to migration patterns from the Baltic 
areas[12], it was not felt feasible to carry out classical placebo-controlled studies to demonstrate clinical 
efficacy on the physiological progression of emphysema. However, observational studies[13,14] suggested a 
benefit. With the advent of highly sensitive quantitative computed tomographic density measurements of 
the lung as a direct measure of the emphysema process, the powering of studies to demonstrate the efficacy 
of augmentation therapy became feasible. Initial observational[13,14] and placebo-controlled studies[15-17] and a 
subsequent adequately powered placebo-controlled study[18] confirmed the ability of intravenous AAT to 
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slow the progression of emphysema.

However, intravenous augmentation therapy is both expensive and inconvenient for the patient and 
remains unavailable in many countries. Research has continued into the pathophysiology of chronic lung 
disease including the processes relevant to AATD that suggest alternative strategies may be equally or 
potentially more effective in correcting the imbalance that occurs when enzymes such as elastase are 
released into an environment where deficient AAT fails to adequately control the enzyme activity exceeding 
its physiological role and leading to excessive tissue damage. The mechanism and potential strategies to 
enhance protection in AATD are discussed below.

The pathophysiology of emphysema
The proteinase/antiproteinase balance theory
AAT is the most abundant serine proteinase inhibitor in the circulation and plays a major role in the lung 
by largely entering the tissues via simple transudation and therefore increases in the presence of local 
inflammation[19]. In healthy individuals, plasma concentration of AAT ranges between 20 to 40 µM resulting 
in interstitial concentrations of roughly 80% of that in plasma. The other significant lung inhibitor is the 
secretory leukocyte proteinase inhibitor (SLPI) produced by mucous glands and bronchoepithelial cells and 
can be secreted basally into the interstitium[20]. Although a reversible inhibitor (unlike AAT, which is 
irreversible), it is better at protecting elastin from neutrophil elastase than AAT[21] despite being unable to 
inhibit Proteinase 3[22].

When the physiological balance between these enzymes (as in AATD) is disturbed, excessive tissue 
breakdown occurs as the proteinases will have a longer duration and radius of activity[23,24]. During 
neutrophilic inflammation, the neutrophil traffic and elastase load to the lung is increased. In those with 
normal AAT, the acute phase response increases AAT production and inflammation increases its 
penetration into the lung leading to modulation of inflammation. In AATD, the AAT concentration is too 
low at baseline and inflammation is greater than in patients with normal AAT which is associated with a 
poor acute phase response[25]. This potentially leads to greater and more persistent tissue damage, 
destruction of elastin, and the development and progression of emphysema.

When AAT-deficient individuals were reported to have increased susceptibility to emphysema 
development[2], researchers quickly recognised the balance between AAT and a destructive enzyme/s[3] 
(subsequently identified as a feature of neutrophil serine proteinases[9,26]) was key to maintaining elastin 
homeostasis and that emphysema reflected a disturbance in this balance where proteinase activity prevails.

The proteinase/antiproteinase imbalance between AAT and its cognate proteinase is reflected by the 
excessive amount and activity of neutrophil elastase in AAT-deficient individuals[27]. Neutrophil elastase 
load in the lung tissue is directly associated with the pathological severity of emphysema[28]. Furthermore, 
the systemic footprint of neutrophil elastase measured as a neutrophil elastase-specific fibrinogen cleavage 
product (AaVal360) is significantly higher in AAT-deficient individuals and correlates with the severity and 
progression in the early stages of AATD lung disease[29,30].

In the most prevalent form of AATD, it is the replacement of Glu to Lys at position 342 (hinge loop region) 
of the Z variant AAT protein that increases the likelihood of spontaneous polymerisation[6]. As a 
consequence, retention in the liver reduces secretion and hence the plasma and lung concentration, 
increasing susceptibility to tissue damage by neutrophil serine proteinases. In addition, polymerised AAT 
aggregates can be found in the lung tissue[31], associated with the accumulation and activation of neutrophils 
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in the localised areas halting their migration into the airways, and hence causing more localised tissue 
damage. Furthermore, after degranulation, proteinases can become bound to neutrophil cell membranes 
(especially in AATD[32]) and remain active while being resistant to AAT inhibition, which further 
complicates the control of local proteinase activity, especially for AATD individuals.

The role of neutrophil elastase in the pathophysiology of emphysema is widely recognised. However, 
emerging evidence suggests that Proteinase 3 may play a greater role in driving emphysema in AATD. 
Proteinase 3 is stored at 3-4 times greater concentrations in the azurophilic granule than neutrophil 
elastase[33]. In addition to replicating pathological changes similar to emphysema in animals[26,34,35], 
mathematical modelling indicated that Proteinase 3 possessed a greater potential for injury than neutrophil 
elastase diffusing over a greater radius for longer before reaching an enzyme inhibitor equilibrium, 
especially in AATD[23]. Neutrophils from AATD subjects also expressed more Proteinase 3 on the cell 
membrane[32], which is replicated by treating healthy neutrophils with deficient Z as opposed to normal M 
AAT plasma, suggesting that AAT itself modulates cell membrane localisation.

An additional factor influencing the role of Proteinase 3 is that SLPI (the predominant antiproteinase in 
airway secretion) is a poor inhibitor of Proteinase 3 and suggests that Proteinase 3 likely has a more 
important role in tissue destruction, especially in AATD[22-24]. This is supported by the persistent Proteinase 
3 activity in lung secretions of AATD patients compared to those with non-deficient chronic obstructive 
pulmonary disease (COPD) even when elastase activity is undetectable[32,36] and the greater plasma 
concentrations of the Proteinase 3 activity footprint than that of the neutrophil elastase footprint as 
measured by the specific fibrinogen cleavage products[37].

Neutrophils and emphysema
Neutrophil serine proteinases, particularly neutrophil elastase and Proteinase 3 are essential to neutrophil 
migration through the lung interstitium[24,38]. The movement of neutrophils is facilitated by the mobilisation 
of proteinases to the leading edge of the cell[39]. During this process, the concentration of the released 
proteinases in the pericellular space overwhelms their inhibitors, causing an area of obligate destruction 
closely surrounding the neutrophils until the proteinases diffuse away and an equilibrium is reached[24,32]. In 
AATD, the destructive effect is amplified as cell surface proteinases are less controlled, potentially causing a 
greater area of damage[40].

Accumulation of neutrophils in the lung is well documented in AATD. This neutrophilic accumulation is in 
response to locally released chemoattractants. Leukotriene B4 (LTB4) is generated and released by alveolar 
macrophages in response to excess neutrophil elastase activity[41]. Similarly, CXCL8 can be released from 
epithelial cells in response to an elastase challenge[42]. Both these potent chemoattractants have been detected 
at high levels in lung secretions of AATD[43]. Additionally, tissue degradation products generated by elastase 
from elastin can also add to the chemoattractant signal gradient[44], providing an amplification loop to the 
lung neutrophilic response, thus enhancing tissue damage.

Understanding the whole pathway involved in tissue damage in AATD (See Figure 1) provides a series of 
potential therapeutic interventions to restore a physiological balance and protect the lung.

With this whole pathway in mind, there are several defined points at which the process can potentially be 
modulated.
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Figure 1. (1) Neutrophil proteinases are transcribed and packaged early in cellular differentiation in the bone marrow. Cell division later 
in differentiation divides the preformed packages (azurophil granules) amongst daughter cells and the mature cells are released into the 
circulation. (2) When the circulating cell senses a chemotactic gradient, it adheres to the endothelium via specific adhesion molecules 
and transmigrates through endothelial junctions. Granules migrate to the leading edge and the cell releases elastase at the point of 
transmigration, facilitating movement into the tissues, degrading a connective tissue pathway while leaving enzyme in its wake. (3) The 
presence of AAT polymers in AATD patients can potentially drive further neutrophil recruitment and local activation, which in the 
presence of deficiency amplifies local tissue damage, generating chemotactic fragments that add to the chemoattractant signal[31]. 
(4) Once in the airway, further release of elastase generates additional chemoattractants such as matrikines[44] and DAMPs[45], 
amplifying neutrophil recruitment. CatC: Cathepsin C; NSPs: neutrophil serine proteinases; DAMPs: damage-associated molecular 
patterns; ECM: extracellular matrix; CXCL8: C-X-C Motif Chemokine Ligand 8; LTB4: leukotriene B4; AAT: Alpha-1 antitrypsin; AATD: 
Alpha-1 antitrypsin deficiency; SLPI: secretory leukocyte proteinase inhibitor.

Augmentation of the antiproteinase screen
Since the genetic deficiency is likely central to the disturbance of the physiological balance with neutrophil 
serine proteinase in the lung, the most logical step is to restore the missing protein to normal/safe levels. 
Gadek and colleagues[10] demonstrated this was feasible with AAT purified from plasma, given weekly at 
60 mg/kg to achieve a putative “protective” nadir level (≥ 11 µM)[24,46,47].

Registry data found that patients receiving AAT augmentation had slower lung function decline, especially 
in a limited midrange detected by the forced expiratory capacity volume in 1 sec (FEV1) as a surrogate 
marker of emphysema progression[13,48]. This observation was supported by the slowing of lung density 
decline in later controlled clinical trials through measuring computed tomographic densitometry, a more 
direct marker for emphysema[15-17]. However, despite AAT infusion reducing the rate of lung density decline, 
a more recent randomised control trial did not observe an effect on halting deteriorating lung function 
stabilising or improving health status or reducing exacerbations[18], although the study was not statistically 
powered for such outcomes[49].
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Assessment of the clinical efficacy of AAT augmentation therapy is complicated by different study designs 
and standard outcome measurements. The longstanding debate concerning the clinical impact of AAT 
augmentation therapy was more recently addressed by the European Respiratory Society. A comprehensive 
meta-analysis was undertaken and concluded a clinical benefit in reducing emphysema progression assessed 
by computed tomographic densitometry and the slowing of lung function decline[50], although a longer 
study of augmented and non-augmented patients showed no apparent benefit of augmentation as 
determined by the decline in FEV1

[51]. Nevertheless, although the benefit of augmentation on the loss of lung 
tissue is now accepted, the progression continues even with this therapy, albeit at a slower rate, suggesting 
that other factors are at play[52].

Modified AAT forms are also being explored for possible improved stability and better cost-effectiveness. 
INBRX-101 (also known as rhAAT-Fc) is a modified AAT that is more resistant to oxidative inactivation[53]. 
Intraperitoneal administration of INBRX-101 in mice was more protective than using pooled plasma AAT 
in emphysema induced by elastases (pancreatic porcine elastase and neutrophil elastase) or cigarette 
smoke[54]. Recently, the phase 1 trial of intravenous INBRX-101 every three weeks showed that it restored 
functional AAT levels in the plasma of AATD patients, comparable to those of healthy individuals 
(40.4 μM), which was sustained over the course of the study period[55]. However, the full results or any 
potential biochemical efficacy have yet to be released[55]. INBRX-101 may be more sustainable than 
traditional AAT augmentation therapy and possibly have a greater effect than conventional plasma-purified 
AAT in abrogating disease progression.

ALTERNATIVE STRATEGIES FOR AATD INFUSION
Increase Alpha-1 antitrypsin secretion
Alpha-1 antitrypsin folding drug
In Z AATD, the reduced circulating levels of AAT are not due to a lack of production of AAT, but rather a 
result of intracellular Z AAT aggregation impeding secretion into the circulation. Based on this concept, 
drugs such as ZF874[56] and VX864[57] were developed to help rescue the misfolding of the Z AAT, thereby 
potentially preventing aggregation and increasing the release of monomeric AAT into the bloodstream and, 
thus, partially restoring inhibitory capacity. Phase 2 trials for both drugs have recently been completed. 
Results for both drugs are currently undocumented, although details relating to side effects have been 
released. It was announced that high-dose treatment of VX864 in patients with Z AATD over 28 days 
lowered plasma Z AAT polymers by approximately 90% and the level of functional plasma AAT was 
increased. However, the magnitude of this increase was deemed insufficient to protect the lung 
adequately[57]. A 48-week trial is currently underway to assess the long-term effects of VX864 in AATD 
patients.

Inhaled therapy
Delivering AAT directly to the airways might have a greater impact on airway inflammation than giving it 
intravenously, thereby focussing the distribution in the lung. The direct effect (if any) on emphysema 
remains unknown. A randomised controlled trial that assessed the effects of aerosolised AAT over 50 weeks 
in AATD patients with severe emphysema did not reduce the time to exacerbation (the primary outcome) 
compared to the placebo cohort[58], although post hoc analysis suggested a benefit on FEV1. While inhalation 
studies have shown that AAT levels rise in lavage fluid[59,60], the levels are unlikely to reach the alveolar 
region where emphysema occurs and subsequently penetrate through epithelial tight junctions into the 
interstitium.
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Another strategy to control excessive proteinase activity would be to give SLPI, a proteinase inhibitor 
already enriched in airway secretions produced locally by bronchoepithelial cells[20]. SLPI also inactivates 
neutrophil elastase via direct 1:1 inhibition[61] and can additionally inhibit elastin-bound neutrophil elastase 
which is AAT-resistant[21,62]. SLPI levels in sputum or epithelial lining fluids are, however, influenced by 
local neutrophil elastase falling during inflammation[61,63]. This is also a feature of AATD as significantly 
lower levels of SLPI are present in the sputum of such individuals, likely a result of the increased local serine 
proteinase activity[36] and hence forming a potentiating inflammatory proteinase-rich loop.

SLPI has been given by inhalation for other conditions with excessive airway neutrophilic inflammation 
(such as in cystic fibrosis) showing an antiproteinase effect[64], but again in AATD where proteinase burden 
is high, a high concentration of SLPI will also have to reach the distal airways and penetrate into the 
interstitium. Furthermore, SLPI has no inhibitory activity on Proteinase 3[22] and Proteinase 3 also degrades 
SLPI[65], suggesting that SLPI may be less appropriate, especially as Proteinase 3 potentially has a major or 
even greater impact on driving disease progression than neutrophil elastase.

Neutrophil elastase inhibitors
Reagents (especially oral ones) capable of direct inhibition of neutrophil elastase would be a strong potential 
strategy based on the current understanding of elastase being a key direct mediator of emphysema and 
disease progression in AATD. Neutrophil elastase also orchestrates a series of proinflammatory responses, 
including cleavage activation of metalloproteinases[66], inducing the release of danger signals[67], and 
stimulating aberrant growth factor release[68] as well as impairing lung host defence mechanisms[69]. Thus, in 
addition to directly suppressing elastolysis, inhibiting neutrophil elastase could also prevent amplification of 
the inflammatory response and improve host defences.

AZD9668 is described as a potent selective inhibitor of neutrophil elastase[70]. Though the exact mechanism 
of action is currently unpublished, in vitro studies of AZD9668 successfully reduced plasma neutrophil 
elastase activity following whole blood stimulation by inhibiting both membrane-bound and liberated 
neutrophil elastase[70]. The disease-modifying potential of AZD9668 was validated in rodent models as oral 
administration of the drug attenuated systemic inflammation and neutrophil elastase-induced injury[70]. 
Furthermore, it was recently announced that oral administration of AZD9668 (Alvelestat or MPH966) 
successfully suppressed plasma evidence of neutrophil elastase activity in a phase 2 study in patients with Z 
AATD, demonstrating a progressive decline in the systemic fibrinogen biomarker of neutrophil elastase 
activity (AaVal360) in the high-dose treatment arm[71]. However, any effect on clinical outcomes has yet to 
be reported.

Modulation of neutrophils
Neutrophil chemotaxis
AAT-deficient neutrophils appeared to be inherently primed. When compared to healthy neutrophils, more 
AAT-deficient neutrophils spontaneously adhered to the endothelium[72] and displayed enhanced 
chemotactic response toward the chemoattractants LTB4 and CXCL8 which are abundant in the AATD 
lung[43]. The high chemoattractant burden, increasing neutrophil influx to the lung, and the resultant tissue 
damage suggest that modulating neutrophil migration to attenuate neutrophil-driven inflammatory effects 
could be advantageous. In the inflamed lung milieu, where a multiplicity of chemoattractants are present, 
chemokine receptor blockade offers an alternative approach to modulating elastase-mediated tissue damage.

CXCR2 is a membrane chemokine receptor expressed on neutrophils involved in regulating neutrophil 
chemotaxis. Preclinical studies investigating CXCR2 antagonism successfully prevented CXCL8-mediated 
chemotaxis[73]. The effect of CXCR2 blockade was also shown in a phase 2 trial with 615 COPD patients 
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successfully reducing neutrophilic inflammation. However, more frequent episodes of exacerbation and 
pneumonia infections were reported in the high-dose treatment arms, implying that retaining adequate 
physiological responses is crucial for retaining host defence[74].

Neutrophil adhesion
An alternative approach to modulate neutrophil migration would be targeting endothelial adhesion. LTB4 
mediates neutrophil adhesion by upregulating a b2-integrin (Mac-1) on endothelial cells as well as 
promoting neutrophil chemotaxis and degranulation[75,76]. Although LTB4 receptor antagonists have been 
studied in neutrophilic inflammatory diseases including cystic fibrosis and COPD, so far, no evident clinical 
benefit has been reported[77], even though Gompertz and Stockley[78] showed an anti-inflammatory effect. In 
addition, directly blocking the adhesion molecules could have the same effect, although both strategies run 
the risk of impairing this important secondary host defence as indicated above for CXCR2.

Proteinase production
A further approach would be to target upstream regulators required for maturating neutrophil serine 
proteinases before packaging into granules, thereby reducing the proteinase payload delivered per 
neutrophil. Cathepsin C (CatC) is an essential endopeptidase regulating the activation and subsequent 
packaging of neutrophil serine proteinases. An uncleaved signal peptide in the zymogens is signalled for 
degradation and when it is removed by CatC, the neutrophil serine proteinases become activated and 
packaged into the azurophilic granules. This packaging process occurs early in neutrophil maturation[79].

Recently, it was discovered that azurophilic degranulation is also significantly enhanced in AATD 
neutrophils through Rac2 signalling induced by elastase activity on the proteinase-activated receptor 2 on 
the neutrophils[80], adding further amplification to neutrophil elastase release. CatC is therefore an appealing 
target to simultaneously abrogate neutrophil serine proteinase activity and control the magnitude of 
degranulation. More importantly, CatC inhibition does not seem to interfere with neutrophil migration and 
antibacterial properties, as individuals with severe CatC deficiency (Papillion-Lefèvre syndrome) do not 
experience increased susceptibility toward major bacterial infections[81]. CatC blockade, therefore, should 
cumulatively reduce the quantity of neutrophil elastase and Proteinase 3 packaged into each azurophilic 
granule, lessen the amount of proteinase released and prevent excessive degranulation restoring a 
proteinase/antiproteinase balance to a level consistent with AATD while retaining neutrophilic defence 
properties. However, this should be balanced to avoid severe deficiency associated with the Papillion-Lefè
vre syndrome.

CatC inhibition as a strategy is supported by AZD7986 (Brensocatib), a reversible CatC inhibitor used in a 
24-week phase 2 trial in non-cystic fibrosis bronchiectasis where it reduced sputum neutrophil elastase 
activity by 40% while lowering exacerbation rates. In AATD, this approach may have not just been a 
beneficial effect on emphysema decline targeting both neutrophil elastase and Proteinase 3 but also an 
added benefit to the 30% of AATD patients with both emphysema and bronchiectasis[82].

SUMMARY
Neutrophil serine proteinases are responsible for driving inflammation and tissue destruction in the lung, 
especially in chronic lung diseases, such as AATD. This process is partly modulated by AAT replacement in 
AATD.
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Replenishing AAT to restore protection against proteinase-driven damage is a logical and straightforward 
strategy but is costly and requires weekly infusions. Although AAT has broad immunomodulatory 
functions, it plays a passive role in preventing downstream injury as a side effect of excess neutrophil 
trafficking in response to chemoattractants. In comparison to the greater than $100,000 per patient per year 
for delivering augmentation therapy, novel oral drug candidates are likely to be cheaper but, importantly, 
less invasive and therefore more convenient for the patients.

CONCLUSION
Understanding the steps that lead to neutrophil migration, degranulation and tissue damage offers several 
potential strategies to modulate the proteinase/antiproteinase balance, although this has to ensure the 
important secondary host defensive functions are retained.
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