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Abstract
Material molecular representation (MMR) plays an important role in material property or chemical reaction 
prediction. However, traditional expert-designed MMR methods face challenges in dealing with high 
dimensionality and heterogeneity of material data, leading to limited generalization capabilities and insufficient 
information representation. In recent years, graph neural networks (GNNs), a deep learning algorithm specifically 
designed for graph structures, have made inroads into the field of MMR. It will be instructive and inspiring to 
conduct a survey on various GNNs used for MMR. To achieve this objective, we compare GNNs with conventional 
MMR methods and illustrate the advantages of GNNs, such as their expressiveness and adaptability. In addition, 
we systematically classify and summarize the methods and applications of GNNs. Finally, we provide our insights 
into future research directions, taking into account the characteristics of molecular data and the inherent 
drawbacks of GNNs. This comprehensive survey is intended to present a holistic view of GNNs for MMR, focusing 
on the core concepts, the main techniques, and the future trends in this area.
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INTRODUCTION
Material molecular representation (MMR) is a hot topic of research in materials informatics[1,2] and an 
essential basis for the studying of various properties of materials. The quantitative structure-activity 
relationship (QSAR)[3,4] studies have shown that accurate predictions depend on the quality of 
representation. In addition, MMR also plays a vital role in the investigation of the quantum chemistry and 
physicochemical properties of materials[5]. The purpose of MMR is to encode the molecular and atomic 
composition of materials to obtain important properties. However, traditional methods of MMR suffer 
from human influence and incomplete information. Recent studies have found that MMR based on graph 
neural networks (GNNs) has shown powerful capabilities[6-9]. In this paper, we compare the advantages and 
disadvantages of GNNs over traditional methods and provide a systematic review of recent advances in 
MMR. Figure 1 shows the proportion of GNN publications to molecular property prediction publications 
and the intersection of publications included in this survey.

Motivation 1: MMR based on GNNs is a trend
As computational resources and data availability increase, deep learning gradually replaces traditional 
methods in various fields. Convolutional neural networks extract multi-scale local spatial features and are 
widely used in computer vision[10-12]. Recurrent neural networks (RNNs) are deep learning algorithms that 
use sequential data as input and are making a splash in speech recognition and natural language 
processing[13-15]. In addition to these, GNNs are algorithms explicitly designed for graph-structured data[16,17]. 
GNNs have shown excellent performance in processing unstructured data and have a wide range of 
applications, such as recommendation systems and social network analysis. Unlike traditional MMR based 
on feature engineering, GNNs can automatically extract node relationships and topology structure 
information, reducing the cost of manually designing features and eliminating human influence. The 
increasing availability of computational resources and data will further promote the trend of using GNNs in 
practical applications.

Motivation 2: GNNs have advantages over traditional methods
With the development of GNNs, the shortcomings of the traditional MMR methods are becoming more 
apparent. Traditional MMR is based on molecular fingerprints[18] or strings[19]. While the molecular 
fingerprints-based method is simple to use, it tends to produce sparse results for small molecule 
materials[20]. With the increasing advancement of natural language processing, string-based methods have 
been explored; however, it is difficult to express complex molecular structures in a single linear sequence. In 
contrast, the GNN approach directly encodes the material topology, capturing richer information than the 
string-based approach. Moreover, the end-to-end learning approach of GNNs makes the MMR denser and 
smoother, which benefits the learning of downstream tasks. A comprehensive comparison between GNNs 
and traditional methods is described in the section titled “REQUIREMENTS FOR GOOD MMR”.

Contributions
The main contributions of this work are summarized as follows:

• We set out some requirements for good MMR and then compare GNNs with traditional methods.
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Figure 1. Shows the proportion of GNN publications to molecular property prediction publications and the intersection of publications 
included in this survey. The keywords were retrieved from Google Scholar up to 2022.12. GNN: Graph neural network.

• We systematically review MMR methods based on GNNs and classify and summarize these methods and 
corresponding datasets.

• In response to some problems with GNNs in the field of MMR, we share our thoughts on future research 
directions to provide a reference for the community.

REQUIREMENTS FOR GOOD MMR
As shown in Figure 2, research on MMR has gone through three phases in the last few decades, 
from molecular fingerprints to string-based methods to GNNs. During the earlier stages, specific 
rules were devised to extract features of material molecules, and these hand-crafted features were used 
in machine learning (ML) to predict the properties of materials. For example, Ding et al. 
successfully predicted the properties of ionic liquids by combining molecular fingerprints and 
XGBoost[21]. Molecular fingerprints have also been widely used in the studying of material similarities[22]. 
Extended-Connectivity Fingerprints (ECFP)[23] are typical molecular fingerprints. They first assign a 
unique identifier to each atom, then update the identifier through its neighbors, and finally compress it 
into a 2048-dimensional vector. In addition, the Rapid Overlay of Chemical Structures (ROCS)[24] and 
Molecular ACCess System (MACCS)[25] are also critical molecular fingerprints. However, these 
methods require extensive feature engineering and are unsuitable for all downstream tasks. To avoid 
these issues, string-based MMR has been proposed, and the main idea of such an approach is to encode 
a string containing material molecular information using a sequence model-like RNN[26,27]. Widely 
used strings are the simplified molecular input line entry specification (SMILES)[28] and the 
international chemical identifier(InChI)[29], which store material molecular information compactly 
in a standardized format. Lin et al.[30] combines SMILES and BiGRU to successfully learn a low-
dimensional representation of molecules, achieving state-of-the-art performance on some datasets. 
However, string-based MMR compresses the two-dimensional (2D) spatial information of material 
molecules. The distance between neighboring atoms in the sequence dimension is stretched, which poses 
an obstacle to the aggregation of atoms. Recently, MMR based on GNNs has become popular, which
treats material molecules as graphs, atoms or groups as nodes, and chemical bonds as edges[31]. 
Compared with molecular fingerprints, GNNs do not need to construct features manually, and the 
representation of molecules is dense. Unlike string-based methods, GNNs directly aggregate atoms on 2D
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Figure 2. The annual trend of research literature on the MMR included by Google Scholar. GAT: graph attention networks; GCN: graph
convolutional network; InChI: international chemical identifier; MACCS: molecular ACCess system; MMR: Material molecular
representation; ROCS: rapid overlay of chemical structures; SMILES: simplified molecular input line entry specification; UGRNN:
undirected graph recursive neural networks.

molecular graphs with less information loss. In order to compare the three methods mentioned above more 
systematically, we put forward four requirements for good MMR, as shown below.

Expressive: The expressiveness of MMR[32] is required to be rich and fine-grained. Rich means that it
contains extensive information and describes the physical and chemical properties of material molecules in
a multi-layered and multi-faceted manner. Fine-grained means that molecules, atoms, and chemical bonds
can be described. Specifically, the expressiveness of MMR necessitates the ability to capture information
about atoms, chemical bonds, multi-order adjacencies, and topologies.

Adaptive: Adaptive[33,34] MMR adjusts itself to different downstream tasks. A frozen representation will only
be helpful for some tasks that are highly relevant to that representation. Correspondingly, the adaptive
representation will actively generate representation relevant to the downstream task based on the
characteristics of that task, which is the most significant difference between adaptive and frozen MMR. In
addition, the most crucial part of MRR is the mining of adjacent atomic information. A dynamic approach
will make the representation more flexible.

Multipurpose: Multipurpose[35,36] means that MMR can be competent for various downstream tasks,
reflecting the breadth of applications. Specifically, downstream tasks can be divided into four categories:
node classification, graph classification, connection prediction, and node clustering.

Invariant[37,38]: The MMR must be stable, and the same material molecule should have the exact
representation. String-based MMR contains a massive pitfall in this requirement because completely
different SMILES sequences can represent the same molecule. For example, the SMILES sequences
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“CC1=CC(CCC1)Br” and “CC1=CC(Br)CCC1” represent the same molecule, which would introduce risk in 
the sequence model.

Table 1 shows the specific relationships between the aforementioned methods and requirements. It can be 
observed that the molecular fingerprint-based MMR does not meet the requirements of being adaptive and 
multipurpose. String-based MRR, while somewhat less expressive, also fails to meet the requirement of 
invariance. In contrast, the GNN meets all the requirements. However, there are still problems, such as poor 
interpretability of GNN, which will be discussed in the “OUTLOOK” section.

Influenced by the new generation of artificial intelligence techniques, the method of materials science 
research is transforming into a data-centered drive[39,40]. One of the goals pursued by the industry is to 
combine the latest GNN with massive material information[41,42]. In recent years, significant progress has 
been made in GNN research, especially in its localization application in the field of materials[43-47], which 
plays a vital role in promoting the realization of the value of GNNs.

This paper discusses the task scenarios of these excellent benchmarking GNNs in the background of 
material data. They were classified according to basic graph elements, granularity, and scale of different 
material tasks. In addition, classic application cases were listed to analyze the differences between these tasks 
in detail and show the specific coping and solving details of the GNN model. Figure 3 shows the different 
application scenarios of GNNs for MMR.

METHODOLOGY
There are many types of GNNs that are commonly applied to MMR. Material molecules are generally 
considered as undirected graphs, with atoms as nodes and chemical bonds as edges. Each node and edge in 
the graph have its own set of features. The main concept behind MMR based on GNNs is to develop a 
propagation method that enables the aggregation of the attributes and topological information of the atoms. 
GNNs can be divided into convolution-based GNNs and recurrence-based GNNs, depending on the 
propagation method. The convolution-based GNN is effective in extracting local features of material 
topology, while the recurrence-based GNN is more adept at extracting features over long distances. 
Specifically, convolution can be further subdivided into spectral convolution and spatial convolution. In 
addition, skip connection and subgraph embedding are also essential components of GNNs. Skip 
connection is intended to address the problem of “over-smoothing”, characterized by node-level 
representations of materials that become too similar and difficult to differentiate. Subgraph embedding 
introduces subgraph-level representation that enhances specific semantic and structural information, 
performing well in heterogeneous graphs. This section presents various methods and typical examples of 
GNNs for MMR. Figure 4 shows the different types of GNNs used in MMR.

Convolution
Convolution-based GNNs are the most common, and their main idea is to extend the convolution operator 
from convolution neural networks (CNNs) to the graph domain. Research in this area has evolved from 
spectral to spatial convolution. Spectral convolution draws on traditional signal processing methods and 
performs convolution operations in the spectral domain. In contrast, spatial convolution draws on the CNN 
method to weigh adjacent nodes.

Spectral convolution
The graph structure is not as stable as the 2D grid structure, with each node having different neighboring 
nodes. Therefore, it is impractical to use the same convolution kernel directly for all nodes. To address this 
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Table 1. The relationship between the methods and the requirements

Requirements\Methods Molecular fingerprints String- 
based GNNs

Atoms, chemical bonds √ √ √

Multi-order adjacencies √ × √

topologies √ × √

Expressive

Representation of atoms and chemical bonds × √ √

Generate representation relevant to the downstream task × √ √Adaptive

Dynamic mining of adjacent atomic information × × √

Node classification × √ √

Graph classification √ √ √

Connection prediction × × √

Multipurpose

Node clustering × √ √

Invariant / √ × √

√: It meets the requirement; ×: it does not meet the requirement; GNNs: graph neural networks.

Figure 3. Different application scenarios of GNNs for MMR. GNNs: Graph neural networks; MMR: material molecular representation.

challenge, researchers propose that convolution can be defined in the spectral domain. As shown in 
Figure 4A, the graph-domain signal is first converted into a spectral-domain signal by the Fourier 
transform. The convolution operation is then performed on the spectral-domain signal, and finally, the 
spectral-domain signal is converted back into a graph-domain signal by the inverse Fourier transform. 
Spectral convolution is defined as follows:
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Figure 4. The GNNs with different methods. (A) spectral convolution; (B) spatial convolution; (C) recurrence; (D) skip connection; (E) 
subgraph embedding. GNNs: graph neural networks.

Here, x is the graph signal input, g is the convolution operator in the graph domain, F is the Fourier
transform, F-1 is the inverse Fourier transform, U is the matrix of eigenvectors of the normalized graph
Laplacian                          (D is the degree matrix and A is the adjacency matrix), and UTg is the 
convolution operator in the spectral domain. However, this spectral convolution requires loading the 
entire graph structure information and performing eigenvalue decomposition, which is computationally 
inefficient. On this basis, various variants of spectral convolution have been created and used for 
molecular representation.

Defferrard[48] et al. used a graph convolutional network (GCN) for convolutional operations and carried out
research related to material molecular graph classification. The GCN replaces the spectral convolution
operator with a first-order Chebyshev polynomial, avoiding the time loss associated with eigenvalue
decomposition and changing the computation from global to local. In addition, GCN reduces the risk of
overfitting compared to multi-order Chebyshev polynomials[49]. The convolution operator of the GCN is
defined as follows:

Here, w is learnable parameters, and parameters, parameters, and Ã = A + IN,       = ΣjÃij .

GCN-like spectral convolutions are designed for graphs with fixed or shared structures. However, the sizes 
of molecules and the connectivity of atoms are different for material molecular graph data. Li[50] et al. 
proposed adaptive graph convolutional neural networks (AGCN) and designed two learnable adjacency 
matrices, B and C, to learn the underlying relationships of the data. B is used to learn the typical patterns of 
molecular graphs, while C is used to learn the unique patterns of each molecular graph. AGCN has proven 
effective in multi-task prediction on material molecular datasets.

Spectral convolution has a rigorous theoretical foundation that provides the basis for generalizing 
convolution operators to the graph domain. However, most spectral convolution methods heavily rely on 
the adjacency matrix of the graph. While this explicit information aid is effective in the training set, it can be 
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less accurate in the test set due to the low level of generalization.

Spatial convolution
Spatial convolution-based GNNs perform convolutional operations directly in the graph domain, updating
the state of the current node by assigning different weights to neighboring nodes. The general steps are
divided into three parts: (a) initialize the node features, (b) for each node, aggregate the neighborhood
information by weighted summation of the features of neighboring nodes, and then obtain new node
features by a non-linear transformation of the aggregated information, and (c) repeat the operation of (b)
until the number of repetitions reaches a predefined number.

As shown in Figure 4B, some researchers have used various methods, such as summation and averaging, to
allocate weights. Neural FPs[20] are an ECFP-like neural network that uses summation to aggregate features
of neighboring nodes to ensure the order invariance of neighboring atoms. Monti et al.[51] 
considers the importance of each neighbor to be different and uses the degree of a node to measure the 
importance of neighboring nodes. The greater the degree of a neighbor node, the less significant it 
is. Diffusion-convolutional neural networks (DCNN)[52] use an averaging operation to aggregate 
neighborhood features, but the neighborhood nodes selected differ for each aggregation. For the first 
aggregation, the selected neighbor nodes are nodes with a distance of 1 from the current node, while 
nodes with a length of 2 are selected for the second aggregation. These methods are computationally 
simple and exhibit some scalability, but the predefined methods consider limited information and are 
difficult to validate in complex MMR scenarios.

Regarding the success of attention mechanisms in machine translation[53], some researchers adaptively
calculate the weights of neighboring nodes by attention mechanisms. This approach is less affected by
outliers and has better generalization capabilities. Graph attention networks (GAT)[54] successfully applied
the attention mechanism to feature propagation of nodes and the weights of node i and node j were
calculated as follows:

Here, W is a shared parameter that enables data augmentation by performing a linear transformation of 
node features. [∙||∙] is a splicing operation, a is an N × 1 parameter matrix that maps the high-dimensional 
features to an actual number, and LeakyReLU is the activation function that normalizes the weights. In 
addition, GAT follows the multi-head attention mechanism, using multiple attention operators to calculate 
and weigh multiple sets of weights. Compared with the predefined weights, GAT better integrates the 
correlation between nodes into the model. In MMR, the spatial convolution-based approach is more 
commonly used than spectral convolution because it aligns with human intuition.

Recurrence
Another trend in GNNs is the combination of RNN models for information propagation, an approach 
known as recurrence-based GNNs, which improves the effectiveness of information propagation over long 
distances. In contrast to the convolution-based approach, recurrence-based GNNs share weights between 
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each layer of the network, enabling the parameters to converge quickly. While this method has some 
drawbacks in extracting local topological information, it proves advantageous when dealing with slender 
material molecules. The following section describes commonly used recurrence-based GNNs.

Lusci[55] et al. used undirected graph recursive neural networks (UGRNN) to predict the water solubility of 
molecules. Molecules are usually described by undirected recurrent graphs, whereas recurrence-based 
GNNs are usually applied to directed acyclic graphs. To address this discrepancy, the authors propose to 
build directed acyclic graphs centered on heavy atoms. As shown in Figure 4C, a heavy atom is selected, and 
the other atoms generate the shortest path with that heavy atom as the target, thus obtaining a directed 
acyclic graph. If a molecule has multiple heavy atoms, multiple directed acyclic graphs can be generated. 
Each directed acyclic graph is then characterized using RNN. Finally, the representations of all the directed 
acyclic graphs are aggregated to obtain a representation of the molecule. Although this approach performs 
effectively on several benchmark datasets, it suffers from high complexity and is unsuitable for small 
datasets.

Altae-Tran[56] et al. combined a variant of LSTM with MMR to develop iterative refinement long short-term 
memory networks (Iterative LSTMs) based on one-shot learning, which significantly improved the learning 
of meaningful distance metrics for small molecules. The method has also been shown to have a strong 
generalization capability and maintain accuracy in predictions for unseen material molecules. Recurrence-
based GNNs have not only made their mark in the field of one-shot learning but also in the field of material 
molecular generation. Segler[57] et al. applied recurrence-based GNNs to generate material molecular 
structures, similar to text generation in natural language processing. Overall, recurrence-based GNNs have 
been developed rapidly with the help of sequence models, which often lead to unexpected results in specially 
shaped material molecules.

Skip connection
Some experts have pointed out that deeper networks abstract features to a higher degree and greatly 
outperform shallower networks, for the same time, complexity. Therefore, attempts have been made to 
deepen the GNN and enhance the aggregation ability of each node to neighboring nodes to obtain better 
results. However, many experiments have demonstrated that the performance does not improve as the 
GNN deepens. The reason is that as the network gets deep, similar representations are created between 
nodes, a problem known as “over-smoothing”. To solve this problem, some experts have taken inspiration 
from residual networks in computer vision and added “skip connection” to GNNs. As shown in Figure 4D, 
“skip connection” allows the model to directly connect between two non-adjacent layers during information 
transmission, enabling the model to better combine low-level information with high-level information. In 
this section, two examples of “skip connection” are presented.

Rahimi[58] et al. proposed the highway GCN model, where a gating mechanism is added to each layer of the 
network to achieve a skip connection. Specifically, the input is multiplied by the weights obtained from the 
gating mechanism and then added to the output to obtain the final output. The gating mechanism is 
designed to balance the old inputs with the new outputs, and in the worst case, the original inputs can be 
used as outputs, thus allowing the network to become deeper. However, the experimental results found that 
the number of layers of the network still cannot be deepened indefinitely and that the best performance is 
achieved when the number of layers equals four.

Li[59] et al. combined residual connection in Resnet and dense connection in Densenet and used hole 
convolution to implement skip connection. The hole convolution picks k*d neighboring nodes for each 
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node and samples the neighboring nodes in steps of d to obtain k neighboring nodes. The hole convolution 
uses different contextual information and increases the diversity of neighboring nodes. A 56-layer GCN was 
constructed in this approach, and better results were obtained.

The introduction of skip connection provides a viable solution for deepening GNNs. Skip connection 
avoids overlap in the neighborhood of each node and allows for a more diverse representation of nodes. 
However, the problems that come with deepening the network have not been completely resolved.

Subgraph embedding
Spatial convolution is popular with researchers because of its locality (only neighboring nodes need to be 
considered) and linear complexity. However, some studies[60] have shown that this method is comparable to 
the one-dimensional Weisfeiler-Leman graph isomorphism heuristic (1-WL) and has limited ability to 
distinguish non-isomorphic graphs. 1-WL is a classical method for determining whether two graphs are 
structurally isomorphic. A small perturbation of the graphs that fail the 1-WL test allows them to pass it. 
This idea has led to research related to subgraph embedding. As shown in Figure 4E, the original graph is 
partitioned into multiple subgraphs, and higher-quality graph embeddings can be obtained by performing 
convolution operations and aggregation on each subgraph.

Papp[61] et al. proposed dropout GNNs, where multiple subgraphs are generated by performing a dropout on 
the input graph (each node has a probability p of being deleted. Embeddings are obtained for each 
subgraph, and eventually, these embeddings are combined to obtain graph representation. In multiple 
subgraphs, the neighborhood information seen by each node is different, which enhances the ability of the 
model to discriminate between non-isomorphic graphs. DropEdge[62], which generates subgraphs by 
removing a certain number of edges from the input graph, also shows strong competitiveness.

Sun[63] et al. proposed SUGAR, which enhances the generalization ability of the model by selecting 
significant subgraphs through reinforcement learning without prior knowledge. A mechanism based on 
self-supervised mutual information maximization is proposed to enrich the diversity of subgraphs. In 
addition, the authors analyzed the relationship between model and subgraph size and found that larger size 
subgraphs can significantly improve performance.

Bevilacqua[64] et al. considered subgraphs as the key information to distinguish non-isomorphic graphs and 
thus proposed equivariant subgraph aggregation networks (ESAN). ESAN represents each graph as a set of 
subgraphs via a predefined policy, then uses the same encoder for each subgraph and finally aggregates the 
representation of the subgraphs. In addition, a subgraph sampling algorithm is proposed that not only 
solves the time complexity problem caused by multiple subgraphs but also improves the expressiveness of 
the model by increasing the randomness of the network. ESAN can even distinguish isomorphic graphs that 
are indistinguishable from 3-WL, which is challenging with other methods.

Subgraph embedding can be understood as a data augmentation method. It effectively improves the 
representation of the model to the graph by adding sub-graph level representations but also increases the 
computational burden.

Recently, there has been widespread attention to new GNN architectures in fields such as materials and 
molecules, which aim to model and predict chemical molecules at specific spatial structures. Gasteiger[65] et 
al. proposed a direction message passing method called DimeNet for molecular graphs. This method 
transforms the dependency between atoms and chemical bonds into directed edges and nodes for 
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directional message passing. Experimental results show that this model can achieve better performance in 
physical and chemical tasks. Liu[66] et al. proposed a spherical message-passing method called SphereNet for 
modeling and predicting features of 3D molecule graphs. This method embeds atoms in a sphere and uses 
convolutional neural networks for statistical information extraction, which can be applied in drug design 
and materials science. GemNet[67] is also a generic directional GNN used for classification, regression, and 
generation tasks of chemical molecules. The method contains two components: the edge-attribute network, 
which encodes geometric information such as distances and angles of neighboring chemical bonds around 
each atom, and the internal energy network, which explicitly models the overall atomic features. In 
summary, these graph-based neural network methods demonstrate unparalleled potential in material and 
molecular fields and can help material researchers better understand the structure and properties of matter.

MATERIAL SIMULATION AND DESIGN
High throughput computation and experiments generate material data, which brings challenges and 
opportunities to material design and discovery[68]. Fast and accurate screening of structure, chemistry, and 
property spaces of material molecules and shortening the development cycle of new materials are the goals 
of current efforts[69,70]. Material space search techniques based on GNNs can efficiently explore and visualize 
the space of the materials to help identify underlying patterns. The general idea of material space search is to 
embed the high dimensional material representation into the low dimensional manifolds, which requires 
the model to have strong material feature representation ability. Recently, node-level feature embeddings 
can efficiently map the properties of high-dimensional materials. Xie et al. used the powerful feature 
representation capability of the crystal graph convolutional neural network (CGCNN) for material 
molecules. They extracted the learned vector representation of the local environments at the atomic scale 
from different layers of the model and then used comprehensive distance metrics to describe the similarities 
between materials at different scales, including elemental similarities, local environment similarities, and 
local energies[71]. This work can provide richer hierarchical feature representations than graph-level 
embedding-based material space search tasks; however, since the graph-level embedding considers the 
overall material feature map, a more continuous space can be obtained compared to the discrete material 
space output based on the node level, which facilitates the subsequent introduction of optimization 
algorithms such as gradient descent. They applied the proposed method to perovskites, elemental boron, 
and inorganic compounds, showing promising applications in automated materials design. In exploring 
peroxides, CGCNN achieved a mean absolute error of 0.042 on 2,000 test data points, and such high 
prediction performance can steadily increase with an increase in training data amount. The representation 
vectors learned through CGCNN can improve accuracy by at least 60% compared to random 
representations and were proven in experiments predicting properties such as block type for each element. 
In addition, Gómez-Bombarelli[72] et al. proposed a graph autoencoder VAE that consists of an encoder, a 
decoder, and a predictor to provide a continuous space for representing material molecular features. 
Although VAE is independent of chemical properties and only generated through training using SMILES 
strings, it can indeed generate molecules that conform to the inherent distribution of the training set. 
Furthermore, the molecules generated by VAE were closer to the training dataset compared to those 
generated by the genetic algorithm. The authors concluded that this approach performs better when the 
training samples have a larger combinatorial space. In contrast, genetic algorithms tend to produce 
molecules with higher chemical complexity but lower drug similarity.

Zhao[73] et al. proposed a framework for synthesizing inorganic Colloidal Nanocrystals (NCs), which 
includes data-driven robotic synthesis, robot-assisted controllable synthesis, and morphology-oriented 
inverse design. In the process of data-driven robotic synthesis, synthesis parameters were initially 
determined by mining existing literature and applied to the concentrations of known surfactants for gold 
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NCs and the types of unknown surfactants for lead-free double-perovskite NCs. Then, by building
experimental databases and training ML models, the controllable synthesis of morphology-tunable NCs was
achieved. Additionally, the morphology-oriented inverse design was successfully used in the reverse design
of gold nanotubes and double perovskite nanotubes. The proposal of this framework aims to reduce the
dependence on manual tasks and can achieve results on par with or even surpass experienced scientists in
certain fields.

Material generation and design is a critical topic for materials science and has attracted growing
attention[74-76]. Based on the deep neural network model, Zhao[77] et al. proposed a generative adversarial
network (GAN) for creating hypothetical materials with new compositions and structures and identified
several exploitive special property crystal structures. Current work for material molecular structure
generation is usually handled with deep generative models, which are essentially different from
discriminative models in GNNs to introduce node-level and graph-level tasks. In a molecular graph
generative model, the edge generation decision strongly impacts the overall task. You et al. extended 
the original graph RNN generation model GraphRNN[78] and introduced it into molecular structure 
generation to realize the generation of effective molecules[79]. However, generalizing this problem to an 
edge-level task is challenging due to diverse decision sequences resulting from different orders of 
edges for the same molecular graph. Moreover, the generation of edge cases is a critical consideration in 
this task. At last, it is important to combine node-level and graph-level information to increase the 
diversity of subgraph generation. Therefore, in material molecular graph generation, multiple-scale 
information is usually interdependent and mutually influenced.

Material design
Xie[71] et al. present a unified framework for visualizing the similarity between materials using the GNN. The
GNN framework enables efficient exploration and visualization of materials data generated by high-
throughput computations and ML methods in novel materials design. As the typical application, such a
framework was demonstrated on three classes of materials: perovskites, elemental boron, and general
inorganic crystals, and it showed that patterns automatically emerge that reflect similarities at different
scales. As shown in Figure 5A, several representative elemental boron patterns were successfully identified.
The method could help in the transition to a data-centered exploration of material space in automated
materials design. In 2018, Gómez-Bombarelli[72] et al. described a method for transforming between discrete
and continuous representations of molecules, which enables the generation of new molecules through
exploration and optimization in chemical compounds, as shown in Figure 5B. A deep neural network
trained on hundreds of thousands of existing chemical structures was used to create three functions: an
encoder, a decoder, and a predictor. The encoder converts discrete molecular representations into
continuous vectors, the decoder converts the continuous vectors back into discrete representations, and the
predictor predicts chemical properties from the latent continuous vector representation of the molecule.
The continuous representation of molecules allows the automatic generation of novel chemical structures
and efficient optimization with gradient-based methods.

The large space of potential materials is computationally difficult to fully explore; therefore, inverse designs
aim to discover materials that satisfy a particular desired feature. Advances in ML, particularly in the field of
GNN, have led to the rapid development of methods for inverse molecular design. These methods[80-82] have
been applied to a wide range of materials, including drugs, organic compounds, photovoltaics, redox flow
batteries, and solid-state materials [Figure 5C-E]. As a pioneering work, Jain et al. present MatErials
Graph Network (MEGNet), a framework for predicting the relationship between structure, state, and
properties in both molecules and crystals. MEGNet models, as shown in Figure 5F, based on graph
networks, are a generalization of previous graph-based models and outperform previous ML models in
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Figure 5. (A) Visualization of the local environment representations learned from the elemental boron dataset. The color of each plot is 
coded with learned local energy. Reproduced with permission[71]. Copyright 2018, AIP Publishing; (B) A diagram of the autoencoder used 
for molecular design, including the joint property prediction model; (C) Different types of molecular representations applied to one 
molecule. Reproduced with permission[80]. Copyright 2018, American Association for the Advancement of Science; (D) A scheme of 
how TS-MGCN works; (E) Model Structure of molecular distance matrix prediction mode. Reproduced with permission[81]. Copyright 
2022, Elsevier; (F) Overview of a MEGNet module. Reproduced with permission[41]. Copyright 2019, American Chemical Society. 
MEGNet: matErials graph network; MLP: multilayer perceptron; SMILES: simplified molecular input line entry specification.

predicting properties on the QM9 and Materials Project datasets[83]. The authors also propose a new strategy 
for unifying multiple free energy MEGNet models into a single model by incorporating state variables as 
global inputs, resulting in a multi-fold increase in training data size with minimal increase in model 
parameters. The authors also show how interpretable chemical trends can be extracted from elemental 
embeddings and used in transfer learning to improve the performance of models with smaller datasets.

Due to the difficulty in obtaining strain energy density functions for hyperelastic materials with complex 
hexagonal and tetragonal crystal structures, Im[84] et al. bypassed the assumption of strain energy density 
functions and constructed neural network constitutive models (NNCMs) to obtain data for a wide range of 
materials under different deformations. Performance prediction is significant in modern materials design; as 
previously mentioned, graph-level embeddings can handle multiple task scenarios, and graph-level 
classification task in materials science is perfect for applying material properties prediction[45,85-87]. Since Xie 
et al. proposed CGCNN, the convolution GNN has become a general paradigm and one of the most 
competitive models for material molecular modeling. Only using the distance information between atoms to 
aggregate and fit the properties of molecules has certain defects, especially the over-smoothing issue also 
hinders the efficiency of the model. The subsequent introduction of the attention mechanism and skip-
connection can continue to exploit the potential of the convolutional GNN, and the priority rules or 
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experience that can improve predictions successfully push the predictive performance of such models to the 
extreme[88]. Based on GNNs, Li[89] et al. proposed a deep learning algorithm with general applicability to 
extract useful interactions between target atoms and their neighboring clusters for bioactivity prediction and 
other tasks related to drug discovery and material design, achieving a minimum mean absolute error.

Optimization in the material design process can be achieved through pre-training and database creation:

(i) Pre-training is a technique used by GNNs to achieve high performance through the use of a large 
amount of labeled data, similar to most neural networks. However, when it comes to material molecules, 
there is a finite amount of labeled data available, and most labeling tasks are expensive and time-consuming. 
To address this problem, an approach similar to self-supervised pre-training in natural language 
processing[90-92] can be employed. Specifically, GNNs can enhance the representation of molecules by pre-
training on large amounts of unlabeled data. Wang[93] et al. proposed a self-supervised learning framework 
to implement pre-training of GNNs using contrast learning. This approach enriches intrinsic molecular 
representation by widening the distance between positive and negative samples. Positive samples are 
obtained by data enhancement of the molecular graph, such as atomic masking, bond deletion, and 
subgraph deletion. Undoubtedly, pre-training of GNNs is a hot research area for the future, as it allows the 
efficient use of unlabeled data and reduces the cost of data annotation. Ding[94] et al. proposed an ensemble 
of ensemble technology for ML to predict the ability of hydrogen release of LiBH4 compounds and rank 
each influence factor based on importance. Their work provides a valuable reference for future material 
design.

(ii) Datasets applied to MMR cover multiple material properties levels, which we describe mainly at the 
quantum mechanical and physicochemical levels:

Quantum mechanics provides insights into the microscopic level and expresses the internal properties of 
molecules. QM7[95], QM8[96], and QM9[97] are datasets commonly used in quantum mechanics studies and 
contain properties such as coulomb matrix representation of molecules and atomization energies. 
Traditional methods use density functional theory to model these properties[98,99], much slower than 
methods based on GNNs. Liao[100] et al. constructed a low-rank approximation to the graph Laplacian using 
the Lanczos algorithm for graph convolution. The method achieves promising results on the QM8 quantum 
dataset. Louis[101] et al. combined the GATGNN based on spatial convolution with the atomic composition 
and coordinates in 3D space to study electrode properties. In addition, Omee[102] et al. constructed a 
deeperGATGNN with more than 30 layers based on spatial convolution and skip connection to achieve 
state-of-the-art results in energy and band gap[103] prediction for high-performance materials.

The study of physical chemistry includes molecular interactions with solvents and inherent thermodynamic 
properties of molecules. The former includes the free energy of hydration[104], permeability[105], and water 
solubility[106], while the latter includes properties such as boiling point[107] and melting point[108]. Meng[109] et 
al. designed ExGCN by combining the attention mechanism and skip connection, achieving better 
performance in lipophilicity and solubility datasets. In addition, the properties of polycrystals also belong to 
the Physical Chemistry level. Dai[110] et al. designed PolycrystalGraph around the three factors of grain size, 
orientation, and interactions between neighboring grains and used it for embedding polysilicon 
microstructures. Datasets about quantum mechanics and physical chemistry are often used to predict 
material molecular properties. The quality of the MMR is reflected in the accuracy of the prediction, with 
more accurate predictions representing a higher quality of MMR.
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In addition, we have sorted out the commonly used datasets and the corresponding methods. Table 2 
contains the commonly used datasets for quantum mechanics and physical chemistry levels and the 
description of each dataset. Table 3 contains the classical methods on each level dataset.

PREDICTION OF MATERIAL PROPERTIES USING GNN
Next, we focus on advances in ML-based methods for material property prediction. While the 
aforementioned ML methods mainly focus on the study of configurations, ML methods based on targeted 
material properties can be effective in the reverse design of materials. These methods enable the design of 
new materials with specific applications. For example, Choi[130] et al. present a computational workflow that 
uses the HydraGNN library to perform Distributed Data-Parallel (DDP) training to predict the HOMO-
LUMO gap of molecules, which can be trained on both CPUs and GPUs. The proposed workflow is shown 
in Figure 6A. The accuracy and convergence behavior of distributed training with an increasing number of 
GPUs was also demonstrated. The authors state that HydraGNN provides an effective surrogate model for 
accurate and rapid screening of large chemical spaces for molecular design. Similarly, Pablo-García[135] et al. 
introduced the GNN GAME-Net, which is six orders of magnitude faster than density functional theory in 
evaluating adsorption energy tasks. The authors highlighted that this framework represents a useful tool for 
rapidly screening catalytic materials, especially for cases that cannot be simulated by traditional methods. In 
addition to molecular systems, much more relevant research has progressed in periodic systems. For CO2 
adsorption in metal-organic frameworks (MOFs), the Atomistic Line GNN (ALIGNN) method was 
proposed to predict CO2 adsorption in MOFs. The method is trained on a database of 137953 hypothetical 
MOFs with CO2 adsorption data obtained from grand canonical Monte Carlo simulations, as shown in the 
linear shape in Figure 6B. The ALIGNN model is then applied to the CoREMOF database to rank MOFs for 
experimental synthesis, showing the strengths and limitations of such GNN models, with a few selected 
MOFs evaluated using additional simulations to validate the ML predictions. In addition to these studies, 
the GNN approach for the study of functional materials with targeted properties has been applied to other 
areas, such as the data-driven theoretical design of novel 2D materials[132], the properties of polycrystalline 
materials[110], the design of doped transition metal compounds with good stability, and suitable electrical 
conductivity[133], as shown in Figure 6C-E. Very recently, a new approach for predicting the methane 
adsorption of MOFs using a GNN algorithm has been proposed[134]. The method (MOF-CGCNN, as shown 
in Figure 6F) takes into account key physical properties of MOFs and information on secondary building 
blocks. The new force field for CH4 was refined specifically for MOFs containing open metal sites. Analyses 
show that the new algorithm has a high Pearson correlation coefficient and a low mean error. The model 
uses the adsorption volume as the embedding representation, allowing transfer learning. The method can 
predict the methane adsorption volumes of all MOFs in a large database within hours and is expected to be 
a useful tool in the early stages of virtual screening for novel porous materials for gas adsorption or 
separation.

The uncertainty characterization/quantification in material property prediction is of great significance for 
the success and reliability of artificial intelligence in materials science. If the uncertainty of predicted values 
is unknown, it will be questioned. In many works, the confidence interval of the prediction model is 
reported. Typically, the smaller the confidence interval, the more reliable the prediction results of the 
model, and the lower the confidence interval, the less reliable the prediction results. Tavazza[136] et al. 
compared three methods, namely quantile loss function, ML, and Gaussian processes, for obtaining 
uncertainty on 12 physical properties. The authors found that Gaussian processes have a better estimation 
of uncertainty, which is influenced by hyperparameters, but this method is time-consuming. The quantile 
loss function needs to fit three models, and its effect is slightly lower than that of Gaussian processes. One of 
the greatest advantages of ML is that it adapts to any loss function. Kwon[137] et al. used GNNs to predict the 
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Table 2. Common datasets at different levels

Level Datasets Description

QM7[95], QM8[96], QM9[97] Computer-generated quantum mechanical properties

CSD[111], COD[112] Coordinates

OPV[113] Molecular properties and equilibrium coordinates

Quantum 
mechanics

ISO17[114] Atomic forces

FreeSolv[104] Hydration free energy

Lipophilicity[105], Az-logD[115] Permeability

Huuskonen[106], ESOL[116], Abraham[108], Delaney[108], OCHEM[105], 
Intrinsic Solubility[117]

Aqueous solubility

Physical 
Chemistry

Alkanes[107], Bradley[108] Boiling Point, Melting Point

Others PoLyInfo[118] A polymer database with polymer properties, chemical 
structures, etc.

Table 3. Classic GNNs in MMR

Methodologies\Levels Spectral 
convolution Spatial convolution Recurrence Skip connection Subgraph 

embedding

Quantum mechanics LanczosNet[100], 
HANet[119]

MV-GNN[120], GATGNN[98,101], 
DeeperGATGNN[102], 
DGGNN[121], MEGNet[122]

RNN[123], 
PotentialNet[124], 
EMNN[125], 
DGGNN[121]

DeeperGATGNN
[102], 
InfoGraph[126]

DropGNNs[61]

Physical Chemistry AGCN[50], 
PolycrystalGraph[110
]

MV-GNN[120], ExGCN[109], 
SAMPN[105], SkipGNN[127], C-
SGEN[128]

EMNN[125], 
PotentialNet[124], 
UGRNN[55]

C-SGEN[128], 
ExGCN[109]

FraGAT[129]

AGCN: Adaptive graph convolutional neural networks; GNNs: graph neural networks; MEGNet: materials graph network; MMR: material 
molecular representation; RNN: recurrent neural network; UGRNN: undirected graph recursive neural networks.

uncertainty of chemical reaction yield. They represented a chemical reaction as a set of graphs, with the 
output being the mean and variance of the reaction yield, i.e., the uncertainty. In the Buchwald-Hartwig and 
Suzuki-Miyaura datasets, they demonstrated the effectiveness of the proposed method and showed that 
greater uncertainty leads to higher prediction errors and may result in rejecting predictions. Often, error 
estimation can provide a quantitative assessment of uncertainty, which can be more reliable than applying 
only the root mean square error (RMSE) of the predictor. Gaussian process regression and random forest 
decision trees are powerful error assessment models that can provide a more comprehensive understanding 
of model errors. Therefore, when assessing real ML models, these approaches should be considered for 
improved reliability.

THE ATOMIC FORCE FIELD DEVELOPMENT USING ML
In this section, we focus on ML force field (MLFF)-based materials research toolkits that can extend the 
computational simulation system across time and length scales, eventually facilitating the rational design of 
novel materials and their performance prediction. To construct a high-precision MLFF for a specific task, a 
number of modeling steps are required [Figure 7A]. First, the general approach is to use the general 
approach is to use Discrete Fourier Transform (DFT) calculations in the data preparation stage to obtain 
sufficient first-principles data. It is ideal to consider the limitations of the chosen level of the theory itself 
(e.g., different functionals and long-range interactions, etc.). So far, numerous models have been developed, 
typically such as Behler-Parrinello neural network potentials[138], moment tensor potentials[139], aenet[140], 
DeePMD[141], etc. Although all of these methods can be used to construct MLFFs for any given chemical 
system, for some tasks, a particular method may be more promising than others. As a result, it is difficult to 
give a general recommendation for method selection. However, some key general rules should be followed 
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Figure 6. Selected examples of investigations based on ml-method predictions for targeted functional material design. (A) A 
computational workflow to predict the HOMO-LUMO gap. This workflow pits the conventional method against two alternative 
approaches: density functional-based tight binding (DFTB) calculations and a GCNN model. The latter leverages molecular structure as 
its input to estimate the HOMO-LUMO gap. Reproduced with permission[130]. Copyright 2022, BioMed Central; (B) GNN predictions 
and grand canonical Monte Carlo (GCMC) actual value comparisons of void fraction and adsorption at 2.5 bar using the Atomistic Line 
Graph Neural Network method. Reproduced with permission[130]. Copyright 2022, BioMed Central; (C) Schematic of the workflow of 
deep transfer learning for predicting 2D host material properties and identifying promising hosts (for example, 2D BN and 2D MoS2). 
Reproduced with permission[132]. Copyright 2020, American Chemical Society;  (D) A graphical representation of a polycrystalline 
microstructure composed of N grains. Reproduced with permission[110]. Copyright 2021, Springer Nature Limited; (E) The proposed 
workflow diagram of a visual interactive software (DeepTMC) to targeted design doped transition metal compounds. Reproduced with 
permission[133]. Copyright 2022, Elsevier; (F) Proposed crystal graph convolutional neural network (CGCNN) method for CH4 adsorption 
in MOFs. Reproduced with permission[134]. Copyright 2022, Elsevier.

to ensure transferability, compatibility, and computational efficiency[142-145]: (1) The training model should be 
able to describe molecules and periodic crystals, covering multiple dimensions of conformation. (2) 
Scalability of physical quantities in real space needs to be ensured. (3) Invariants such as translations and 
rotations in the structure should be preserved. (4) Human intervention should be avoided as far as possible.

The next step is model training, where the parameters of the model are tuned to minimize the loss function, 
which measures the difference between the training data and the model predictions. The literature has 
increasingly emphasized the importance of validating MLFFs not only on the basis of numerical error levels 
but also on the basis of the predicted physical behavior[146,147]. The main motivation for the final training of 
MLFF was to use it for specific production applications, i.e., performing MD simulations. Once the 
transferability and accuracy of the force field have been fully tested, it can be used for large-scale molecular 
dynamics simulations. Due to the performance advantages of MLFFs, it is possible to extend the time scale 
of computational simulations beyond nanoseconds while maintaining first-principles accuracy, which is a 
significant advance in the theoretical study of materials[148]. We will then show this with some typical 
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Figure 7. Development and typical application of the MLFF. (A) The MLFF constructed by beginning with an initial dataset (AIMD
simulation generally). Subsequently, the MLFF is validated through a multistep process (i.e., force root mean square error (RMSE), radial
distribution functions (RDFs) of the selected structures randomly). If the potential quality is deemed insufficient, problematic structures
are identified and included in the training set until the final potential is achieved. Reproduced with permission[148]. Copyright 2021,
American Chemical Society; (B) The MLFF fitting database for elemental phosphorus by using the many-body Smooth Overlap of
Atomic Positions (SOAP) model. Reproduced with permission[148]. Copyright 2021, American Chemical Society; (C) The application of
active learning molecular dynamics approach for the perovskite. The black curve represents the actual error, while the red curve
represents the estimated error from MLFF. When the estimated error exceeds a certain threshold, it triggers DFT calculations to
generate new data, which is then used to retrain the MLFF. The top structures highlight the hydrogen atom with the highest error in red
for two different snapshots. Reproduced with permission[148]. Copyright 2021, American Chemical Society; (D)The figure on the left
shows the performance assessment of the committee NNP (c-NNP) for six different systems. The figure on the right is a bar plot that
summarizes the accuracy of the RDFs, VDOS, and force predictions for each system. Reproduced with permission[153]. Copyright 2021,
National Academy of Science; (E) (Left) Slab model of amorphous carbon from MLFF-based simulation. (Right) Crystal structures and
electron localization function (ELF) of (a) B4C and (b) Al-doped boron carbide (labeled as B12 -CAlC), and models of the B12-CAlC sliding
system along different (c, d) slip directions. The blue, orange, and yellow spheres represent B, C, and Al atoms, respectively. Reproduced
with permission[155]. Copyright 2018, American Physical Society. Reproduced with permission[156]. Copyright 2023, American Physical
Society.

applications.

A first typical example is the development of an MLFF for elemental phosphorus by Deringer et al.[149]. As 
shown in Figure 7B, using the newly developed GAP+R6 model for MLFF training, they have been able to 
account for the effects of many-body dispersion in layered phosphorus. The calculated results show that this 
MLFF can accurately represent the exfoliation process of black and violet phosphorus with the accurate 
prediction compared to the traditional empirical potential force field. The model was also applied to larger-
scale nanoribbon systems, demonstrating the power of accurate and flexible ML-driven force fields for 
modeling next generation materials. Another pioneering work comes from the VASP development group, 
which has developed an on-the-fly MLFF method and applied it to molecular dynamics simulations of 
hybrid perovskite, as shown in Figure 7C[150]. They found a strong correlation between the uncertainty 
estimate and the actual error in the MLFF, demonstrating that the method can effectively use data from 
DFT calculations. This results in a 99% reduction in the computational effort required for the 
corresponding ab initio trajectory, allowing the potential to be used to study complex phase transitions[151]. 
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This feature is already supported in the latest version of VASP and is expected to provide even more
valuable theoretical support for multi-scale studies of materials. Compared to solid or molecular systems,
materials with solid-liquid interfaces, such as water on the surface or water under solidification, are
important systems to examine[152]. However, current theoretical tools for calculating these systems 
of responsibility are challenging. Recently, Schran[153] et al. Figure 7D have shown how these limitations can 
be overcome in an automated ML procedure. For several different solution systems, MLFFs were obtained 
with an accuracy range close to that of DFT, showing that MLFFs can be used as effective tools to 
accelerate theoretical studies of complex systems. Another important application of MLFF is the 
simulation of nucleation processes in crystal structure and the simulation of mechanical properties of 
large-scale systems. Since the simulation of nucleation processes is not considered to be feasible with 
conventional DFT calculations [too many atoms for ab initio molecular dYnamics (AIMD) 
simulations], the traditional approach is to simulate them using the empirical force field method, but 
the accuracy of the simulation is highly dependent on the force field[154]. The development of MLFF 
overcomes this limitation and allows the simulation of nucleation processes and mechanical deformation 
of crystals with first-principles accuracy, typically for the simulation of amorphous carbon and the 
simulation of the mechanical properties of superhard materials as shown in Figure 7E.

OUTLOOK
MMR based on GNNs has evolved over the years, gradually replacing traditional methods with the 
mainstream and achieving better results in different levels of research. However, there are still some 
unresolved challenges. This section discusses some issues in GNNs for MMR and provides future research 
directions for reference.

Interpretability
The black box problem of deep learning has been criticized for a long time; therefore, interpretability[157,158] 
studies of GNNs can help researchers gain insight into which features influence representation. It can be 
helpful when designing new approaches for MMR, such as enhancing the portrayal of important features. 
Ma[120] et al. visualized the attention weights learned by GNNs and found that most of the carbon atoms 
responsible for building the topology of the molecule had zero weight. At the same time, the trifluoromethyl 
and cyanide of toxic functional groups showed highly high weights. It can then be surmised that in the 
study of toxicity, researchers will enhance the portrayal of functional groups known to be toxic. To this end, 
the interpretable study of MMR based on GNNs is a potential future direction. Although the propagation 
mechanism of GNNs is more explanatory than traditional neural networks, it is not enough for MMR.

Dynamic molecular graphs
Understanding the relationship between time and space is an important research topic in network science, 
and in the MMR field, this topic focuses on dynamic molecular graphs. Dynamic molecular graphs are 
widely referred to in studies such as protein folding and molecular reactions, where nodes and edges of 
molecules evolve over time. Indeed, dynamic graph-based GNNs have been well studied in applications 
such as communication and transport networks[159,160], recommender systems[161,162], and epidemiology[163,164] 
but have not been generalized in dynamic molecular graphs. Compared to other dynamic graphs, dynamic 
molecular graphs present two significant difficulties. Firstly, the space is microscopic, and descriptions of 
nodes in molecular graphs are not as detailed as those of macroscopic objects and cannot be effectively 
distinguished in the time dimension. Secondly, time is fleeting, and changes in the molecular graph over 
time are rapid and less detectable than in transport networks. Research in this direction is bound to become 
an essential element of GNNs in the field of molecular representation.
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CONCLUSIONS
In this work, we present neural graph networks for MMR, compare them with traditional methods, and 
present ideas for the future direction of the subject. Firstly, compared to traditional methods, GNNs are 
superior in all four requirements: Expressive, Adaptive, Multipurpose, and Invariant. Secondly, we believe 
that spatial convolution-based GNNs are the most versatile approach and are competent for studying 
material molecular properties at multiple levels. Skip connection and subgraph embedding methods are 
outstanding in solving specific problems. Thirdly, we discuss in detail the different application scenarios of 
the GNN in the field of material information and the classical processing cases based on the GNN according 
to the types and granularity of the applicable tasks. Finally, we provide ideas for two future directions: 
interpretability and dynamic molecular graphs.
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