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Abstract
Dielectric capacitors with ultrafast charge-discharge rates are extensively used in electrical and electronic systems. 
To meet the growing demand for energy storage applications, researchers have devoted significant attention to 
dielectric ceramics with excellent energy storage properties. As a result, the awareness of the importance of the 
pulsed discharge behavior of dielectric ceramics and conducting characterization studies has been raised. 
However, the temperature stability of pulsed discharge behavior, which is significant for pulsed power applications, 
is still not given the necessary consideration. Here, we systematically investigate the microstructures, energy 
storage properties and discharge behaviors of nanograined (1-x)BaTiO3-xNaNbO3 ceramics prepared by a two-step 
sintering method. The 0.60BaTiO3-0.40NaNbO3 ceramics with relaxor ferroelectric characteristics possess an 
optimal discharge energy density of 3.07 J cm-3, a high energy efficiency of 92.6%, an ultrafast discharge rate of 
39 ns and a high power density of 100 MW cm-3. In addition to stable energy storage properties in terms of 
frequency, fatigue and temperature, the 0.60BaTiO3-0.40NaNbO3 ceramics exhibit temperature-stable power 
density, thereby illustrating their significant potential for power electronics and pulsed power applications.
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INTRODUCTION
Dielectric capacitors, as fundamental components in high-power energy storage and pulsed power systems, 
play an important role in many applications, including hybrid electric vehicles, portable electronics, medical 
devices and electromagnetic weapons, due to their high power density, ultrafast charge-discharge rates and 
long lifetimes[1-6]. However, most current commercial polymer dielectric capacitors and multilayer ceramic 
capacitors (MLCCs) possess somewhat low energy densities of < 1-2 J cm-3, which results in them occupying 
relatively large volumes and/or weights in devices[7-10]. The development of third-generation semiconductors 
and the need for device miniaturization have resulted in an urgent demand for high-energy-density 
dielectric capacitors[1,11].

Under an applied voltage, the dielectric materials in dielectric capacitors polarize to store energy[1,12,13]. Their 
energy storage properties can be calculated through polarization-electric field (P-E) loops, namely, 

,  and η = Wd/Wc, where Wc and Wd are the charge and discharge energy density, 
respectively, Pmax and Pr are the maximum and remnant polarization, respectively, and η is the energy 
efficiency[14-16]. Among all dielectric materials, relaxor ferroelectrics with high Pmax, low Pr, high breakdown 
strength (Eb) and slim P-E loops have been investigated extensively for their excellent energy storage 
properties[17-22]. The polar nanoregions in relaxor ferroelectrics can switch rapidly under an applied electric 
field, which significantly reduces loss and results in high η[23-28]. In addition, the excellent fatigue and 
temperature stability of the pulsed discharge behavior and energy storage properties are highly desirable for 
dielectric capacitors operating in harsh environments, i.e., aerospace fields and oil-well drilling[29-32]. Many 
strategies have been utilized to enhance the temperature stability of dielectric materials in recent years, 
including multiscale optimization[27], composite strategy design[28], unmatched temperature range design[33] 
and special sintering methods[34]. However, the temperature stability of pulsed discharge behavior is not 
given sufficient attention in current research into dielectric materials.

In this study, we prepare nanograined (1-x)BaTiO3-xNaNbO3 ceramics, which possess relaxor ferroelectric 
characteristics with a good P-E relationship (high Pmax, low Pr and slim P-E loops) and high Eb, using a solid-
state reaction method. The 0.60BaTiO3-0.40NaNbO3 ceramics exhibit an optimal Wd of 3.07 J cm-3 and a 
high η of 92.6% under 38.1 MV m-1 at ambient temperature. Stable energy storage properties in terms of 
frequency (0.1-100 Hz), fatigue (106 cycles) and temperature (25-120 °C) are also achieved. Moreover, the 
ceramics possess an ultrafast discharge rate of 39 ns and a high power density of 100 MW cm-3. The 
variation of the power density is less than 15% from 25 to 140 °C. All these results suggest that 0.60BaTiO3

-0.40NaNbO3 ceramics are ideal candidates for energy storage applications in pulsed power systems.

MATERIALS AND METHODS
(1-x)BaTiO3-xNaNbO3 ((1-x)BT-xNN) dielectric ceramics with x = 0.35, 0.40, 0.45 and 0.50 were prepared 
through a conventional solid-state method. According to the stoichiometric ratio of (1-x)BT-xNN ceramics, 
BaCO3, TiO2, Na2CO3 and Nb2O5 powders with analytical grade, as the raw materials, were weighed and ball 
milled with ethanol for 24 h. The mixed powders were then dried at 80 °C and calcined at 950-1030 °C for 
5 h in the closed alumina crucibles to avoid the volatilization of Na. Afterward, the calcined (1-x)BT-xNN 
powders were ground with a polyvinyl butyraldehyde solution (PVB, 10 wt.%) and uniaxially pressed into 
cylinders with a diameter of 8 mm and a thickness of 0.5 mm under a pressure of 2 MPa. The cylinders were 
heated at 600 °C for 5 h to remove the PVB binder and then sintered with a two-step sintering method[35,36] 
(all samples were heated to 1250-1350 °C for 1-10 min and then cooled down to 1100-1150 °C for 3-5 h).
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The ambient-temperature X-ray diffraction profiles of the (1-x)BT-xNN ceramics were obtained using a 
Rigaku 2500 X-ray diffractometer (Rigaku, Tokyo, Japan) with Cu Kα radiation and λ = 1.5418 Å. The 
surface microstructures of the ceramics after thermally etching at 1050 °C for 0.5 h were characterized using 
scanning electron microscopy (SEM, MERLIN VP Compact, Zeiss Ltd., Germany) at 15 kV. To measure the 
ferroelectric properties and pulsed discharge behaviors, the compact ceramics were polished down to 
180-200 µm in thickness and then gold electrodes with a radius of 1.5 mm were sputtered on both surfaces. 
The P-E loops were measured using a TF ANALYZER 2000E ferroelectric measurement system (aixACCT 
Systems GmbH, Aachen, Germany) under different frequencies (0.1-100 Hz) and various temperatures 
(25-140 °C). The dielectric properties were measured under a frequency range of 1 kHz to 1 MHz and a 
temperature range of -150 to 300 °C using an impedance analyzer (E4980A, Agilent Technologies, USA). 
The overdamped and underdamped pulsed discharge behavior was measured using a charge-discharge 
platform (CFD-001, Gogo Instruments Technology, Shanghai, China) with a resistor-capacitance load 
circuit. More details regarding the resistor-capacitance circuit measurement system are given in 
Supplementary Figure 1.

RESULTS AND DISCUSSION
The ambient-temperature X-ray diffraction profiles of the (1-x)BT-xNN ceramics are displayed in Figure 1. 
All samples exhibit typical perovskite structures with traces of a Ba6Ti7Nb9O42 secondary phase 
(PDF#47-0522). The approximate amounts of Ba6Ti7Nb9O42 phases are displayed in Supplementary Table 1 
and are less than 5% in all (1-x)BT-xNN ceramics. The (200) peaks between 45° and 46° without splitting 
suggest that all samples are mainly pseudocubic phases at room temperature. The cell parameters of 
(1-x)BT-xNN ceramics decrease with increasing NN content [Supplementary Table 2], which is mainly 
because the radius of Na+ (1.39 Å) is smaller than that of Ba2+ (1.61 Å). The SEM images of the surface and 
cross-section microstructures of the (1-x)BT-xNN ceramics are displayed in Figure 2 and Supplementary 
Figure 2. There are no obvious pores in the (1-x)BT-xNN ceramics, suggesting that all samples possess high 
relative density. The grain size distributions [Supplementary Figure 3] are counted by the Feret diameters of 
more than 250 grains from the SEM images, and they show that all the ceramics possess nanograins with 
average grain sizes of 180-280 nm. The grain size tends to increase with NN content and the distribution 
moves toward larger sizes. Generally, fine grains are conducive to achieving high Eb and η. The elemental 
distribution results of the 0.60BT-0.40NN ceramics are shown in Supplementary Figure 4, where it can be 
seen that all the elements are uniformly distributed in the ceramics.

The temperature-dependent (150-300 °C) dielectric properties of the (1-x)BT-xNN ceramics were measured 
at various frequencies [Figure 3] and indicated prototypical relaxor ferroelectric characteristics. The 
dielectric constants of all the (1-x)BT-xNN ceramics at room temperature are ~1000-1200 and the 
Ba6Ti7Nb9O42 phases are considered to have paraelectric characteristics. Hence, the Ba6Ti7Nb9O42 phases may 
not significantly affect the dielectric characteristics of the ceramics. It can be found that the dielectric 
constant and the Curie temperature increase with increasing NN content. All the (1-x)BT-xNN ceramics 
exhibit low dielectric loss of less than 0.012 between -100 and 200 °C. Generally, the modified Curie-Weiss 
law, 1/ε – 1/εm = (T - Tm)γ/C, is utilized to describe the dielectric characteristics of relaxor ferroelectrics, 
where ε and εm are the dielectric constant and maximum value of ε, respectively, T and Tm  are the 
corresponding temperatures, C is the Curie constant and γ is used to describe the degree of diffuseness. The 
γ value varies from one for typical ferroelectrics to two for ideal relaxor ferroelectrics[24,37]. The fitted γ values 
of all the ceramics are shown in Figure 4 and are between 1.686 and 1.766 at 1 MHz, thereby manifesting 
strong relaxation behavior. This strong relaxation behavior causes the (1-x)BT-xNN ceramics to respond 
rapidly under an applied electric field, resulting in high η.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
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Figure 1. X-ray diffraction profiles of (1-x)BT-xNN ceramics.

Figure 2. Surface microstructure images of (A) 0.65BT-0.35NN; (B) 0.60BT-0.40NN; (C) 0.55BT-0.45NN; and (D) 0.50BT-0.50NN.

The unipolar P-E loops of all ceramics measured at 25 °C and 20 MV m-1 are shown in Figure 5A, with all 
ceramics exhibiting slim P-E loops. Among these, the 0.55BT-0.45NN ceramics possess the largest Pmax and 
Pmax - Pr values [Figure 5B], leading to high Wd. However, due to the lower Pr, relatively larger Pmax - Pr value 
and the highest Eb [Figure 5B and C], a Wd of 3.07 J cm-3 and a high η of 92.6% are achieved in the 
0.60BT-0.40NN ceramics at 38.1 MV m-1, which are the optimum energy storage properties among all the 
(1-x)BT-xNN ceramics at 25 °C [Figure 5D]. Figure 6 exhibits the energy storage properties as a function of 
the applied electric field. All BT-NN ceramics possess high Eb between 32.7 and 38.1 MV m-1 and high η 
between 87.5% and 93.0%. The corresponding current-field curves of the (1-x)BT-xNN ceramics are shown 
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Figure 3. Temperature-dependent dielectric properties measured at 1 kHz to 1 MHz for (A) 0.65BT-0.35NN; (B) 0.60BT-0.40NN; 
(C) 0.55BT-0.45NN; and (D) 0.50BT-0.50NN.

Figure 4. Fitted γ values for (A) 0.65BT-0.35NN; (B) 0.60BT-0.40NN; (C) 0.55BT-0.45NN; and (D) 0.50BT-0.50NN.
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Figure 5. (A) Unipolar P-E loops for (1-x)BT-xNN ceramics at 25 °C, 20 MV m-1 and 10 Hz. (B) Pmax, Pr and Pmax - Pr as a function of NN 
content. (C) Unipolar P-E loops at 25 °C, maximum applied electric field and 10 Hz. (D) Energy storage properties as a function of NN 
content.

Figure 6. Energy storage properties at 25 °C and 10 Hz for (A) 0.65BT-0.35NN; (B) 0.60BT-0.40NN; (C) 0.55BT-0.45NN; and (D) 
0.50BT-0.50NN.



Zhao et al. Microstructures 2023;3:2023002 https://dx.doi.org/10.20517/microstructures.2022.21 Page 7 of 11

Figure 7. (A) Unipolar P-E loops of 0.60BT-0.40NN ceramics measured under 19 MV m-1 at various frequencies, (C) under 15 MV m-1 
at different cycles and (E) under 20 MV m-1 at various temperatures. Corresponding (B) frequency-dependent, (D) fatigue-dependent 
and (F) temperature-dependent energy storage properties.

in Supplementary Figure 5, confirming the high η. Noticeably, the η of the 0.60BT-0.40NN ceramics 
decreases slightly with increasing E and shows a slight variation of < 4% within the whole electric field range 
tested, which is conducive to high η energy storage applications.

Given that the stability of the energy storage properties for dielectric materials is crucial in practical 
applications, the frequency, fatigue and temperature stabilities of the energy storage properties for the 
0.60BT-0.40NN ceramics are characterized in Figure 7. The Pmax of the 0.60BT-0.40NN ceramics only 
decreases from 15.1 to 14.3 µC cm-2 with increasing frequency from 0.1 to 100 Hz, while the Pr remains 
almost unchanged [Figure 7A]. Hence, the variations in Wd and η are less than 6.0% and 1.2%, respectively 
[Figure 7B]. The stable frequency-dependent energy storage properties are realized because the polar 
nanoregions can switch rapidly under the applied electric field[38]. To evaluate the fatigue stability, the 
unipolar P-E loops under 15 MV m-1 are characterized for 106 cycles [Figure 7C]. Fortunately, the P-E loops 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202211/5271-SupplementaryMaterials.pdf
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Figure 8. (A) Overdamped pulsed discharge current curves under various E values and (B) corresponding Wd as a function of time. 
Undamped pulsed discharge current curves (C) at 25 °C under various E values and (E) at 20 MV m-1 under various temperatures and 
(D and F) corresponding CD and PD values.

have no noticeable change and the variations in Wd and η are less than 0.6% and 0.7%, respectively 
[Figure 7D]. Figure 7E exhibits the unipolar P-E loops measured under 20 MV m-1 at various temperatures. 
It can be found that the Pmax of the 0.60BT-0.40NN ceramics is consistent with the trend of the ε and 
gradually decreases with increasing temperature. The reduction in Pmax results in a decrease in Wd, while the 
η stays over 90% when the temperature is up to 120 °C. Figure 7F shows the energy storage properties (Wd 
and η) of the 0.60BT-0.40NN ceramics with increasing temperature from 25 to 120 °C, revealing good 
temperature stability.

In practical applications, dielectric capacitors charge and discharge at the microsecond or nanosecond 
timescale[1]. The Wd and η calculated by the P-E loops cannot reflect the true energy storage properties[39], so 
a resistor-capacitance circuit is constructed to evaluate the discharge behavior of the 0.60BT-0.40NN 
ceramics. Figure 8A displays the overdamped pulsed discharge electric current-time (I-t) curves at various E 
values. The corresponding Wd can be calculated using , where R and V are the load resistor 
(here R = 100 Ω) and the effective volume of the sample, respectively[40]. The discharge rate is usually 
described by the discharge time corresponding to the 90% stored Wd value, which is abbreviated as τ0.9. As 
the E increases, the current peak and Wd also increase. Finally, the Wd reaches 1.21 J cm-3 at 25 MV m-1 
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[Figure 8B]. In general, the Wd calculated by the I-t curve is always lower than that calculated by the P-E 
loop because the characterization mechanisms with different measurement frequencies[1] and dielectric 
material losses differ[41]. The τ0.9 of the 0.60BT-0.40NN ceramics is ~39 ns [Figure 8B]. The ultrafast 
discharge rate comes from the low hysteresis polarization response and the relaxor characteristic. This 
makes the 0.60BT-0.40NN ceramics more competitive in high-power applications[38,42]. Moreover, the 
undamped pulsed discharge current curves at 25 °C under various E values are displayed in Figure 8C. From 
the current curves, we can calculate the current density (CD) and power density (PD) from CD = Imax/S and PD 
= EImax/2S, where Imax and S represent the maximum value of the undamped pulsed discharge current curves 
and the electrode area, respectively[26]. The CD and PD of the 0.60BT-0.40NN ceramics at 25 MV m-1 are 801 
A cm-2 and 100 MW cm-3, respectively [Figure 8D]. More importantly, from the undamped pulsed discharge 
current curves at 20 MV m-1 under various temperatures [Figure 8E], it can be found that the variations of C
D and PD are ~15% from 25 to 140 °C [Figure 8F], which suggests that the 0.60BT-0.40NN ceramics have 
significant potential for pulsed power system applications.

CONCLUSIONS
In summary, the 0.60BT-0.40NN ceramics with relaxor ferroelectric characteristics have an optimal Wd of 
3.07 J cm-3, a high η of 92.6%, a high PD of 100 MW cm-3 and an ultrafast τ0.9 of 39 ns. Moreover, they exhibit 
stable energy storage properties in terms of frequency (0.1-100 Hz), fatigue (106 cycles) and temperature 
(25-120 °C), as well as temperature-stable power density (25-140 °C). These ideal energy storage properties 
and pulsed discharge behavior make the 0.60BT-0.40NN ceramics more promising for high-stability energy 
storage MLCCs in pulsed power system applications.
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