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Abstract
Antimicrobial resistance (AMR) is recognized as one of the most serious threats to public health. Unparalleled 
population growth and accelerated rates of AMR emergence and dissemination have resulted in both novel 
resistance in pathogenic organisms and the re-appearance of infections that were formerly under control. 
Consequently, this has led to an increased quantity of infectious diseases. One of the main drivers of antimicrobial 
overuse is inappropriate prescribing in human and veterinary medicine. The ability to rapidly survey the spread of 
antimicrobial resistance within human populations is key for its prevention, intervention, and control. However, 
many constraints are present for current clinical surveillance systems and their capacity to determine AMR 
dynamics in the microbiome of healthy individuals as well as in clinical pathogens causing infections. Wastewater-
based epidemiology (WBE) is an emergent technique that has the capacity to act as a supplementary measure for 
current infectious disease surveillance systems and as an early warning system for infectious disease outbreaks. 
The development of disease outbreaks to the community level can be monitored in real time through the analysis 
of population pooled wastewater. This review provides an introduction to using wastewater-based epidemiology to 
monitor AMR bacteria, as well as an overview of wastewater-based epidemiology and its components.
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INTRODUCTION: ANTIMCROBIAL RESISTANCE
Antimicrobial resistance (AMR) is a global, overlooked pandemic[1]. From common infections such as 
urinary tract infections, sepsis, and sexually transmitted infections, high rates of AMR have been observed 
worldwide, indicating that the treatments we have are becoming ineffective[2-4]. AMR is a concern because 
once existing efficacious antimicrobials are exhausted, common infections and medical procedures may 
become lethal[2,5].

Epidemiological surveillance networks in Europe have documented that AMR bacteria have become much 
more prevalent during the past decade[6].

According to statistical models, there were a predicted 4.95 million deaths associated with bacterial AMR in 
2019, including 1.27 million deaths directly caused by bacterial AMR[1]. The impact of AMR on death tolls, 
the economy, and the burden on healthcare systems will be catastrophic unless action is taken to mitigate 
this risk[7,8].

Antimicrobials can be defined as any drug or compound that exhibits antimicrobial activity - such that they 
impair the growth of microbial life forms (e.g., bacteria, viruses, fungi, protozoa, etc.)[4]. The discovery and 
use of antimicrobials have decreased the burden of infectious disease and allowed the innovation of 
complex medical procedures and surgeries in humans and animals.

AMR occurs when a microbe gains the ability to survive in the presence of an antimicrobial compound[4]. 
Evidence also shows that sub-lethal concentrations of antimicrobials can also favor resistant bacteria, which 
grow faster than susceptible bacteria at low antimicrobial concentrations[9]. AMR has occurred naturally 
over time in environmental bacteria exposed to antimicrobials produced by microorganisms, but human 
use and misuse of antimicrobials have accelerated AMR evolution. This review will focus on AMR bacteria.

Some bacteria are intrinsically resistant to specific antimicrobials, or resistance can be acquired through 
mutation of specific genes or through horizontal gene transfer (HGT) of mobile genes via transformation, 
transduction, or conjugation[10,11]. Molecular mechanisms of resistance to antimicrobials usually involve 
compound metabolism, target site alterations, or reduced cell membrane permeability/increased cell 
efflux[11,12]. There are many molecular mechanisms that use the aforementioned strategies to resist 
antimicrobial compounds and they are described in detail elsewhere[10-14]. Research in the discovery of novel 
resistance mechanisms is ongoing and is beneficial in directing research in the discovery of new 
antimicrobials[15].

Antimicrobial misuse and overuse in human and animal medicine and crop production are key drivers in 
the evolution of AMR[7,16,17]. AMR in humans is connected to AMR in animals and the environment because 
humans can be infected by pathogens found in their microbiomes[18] and resistance genes can also pass 
between microbe species via HGT[19]. AMR bacteria and genetic determinants are found in humans, food, 
animals, and the environment and can be transferred freely between these components. The following 
sections illustrate why AMR is a global concern with impacts on humans, animals, plants, and the 
environment.

The environment as a reservoir of antimicrobial resistance
Once antimicrobials are consumed by humans or animals, they are excreted into the environment either as 
parent molecules, metabolites, or a combination of both[20]. These chemicals often end up in wastewater 
treatment facilities and potentially contaminate groundwater, rivers, lakes, and agricultural land[17,21]. This is 
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of concern because once these chemicals are released into the environment, they have the potential to select 
for AMR[21-26]. People and animals may be exposed to microbial pathogens and AMR bacteria through 
recreational activities in contaminated water, drinking contaminated water, eating contaminated foods, or 
inhaling aerosols[17,21]. Importantly, AMR has been shown to evolve at sub-inhibitory concentration levels of 
antimicrobials[9,23,27,28]. For instance, it has been shown that environmentally relevant levels of heavy metals 
can select for antimicrobial resistance[29]. This is of particular concern because locations with even low 
concentrations of antimicrobial compounds could select for AMR in the environment[9].

The natural environment is a known reservoir of AMR E, which has been found in freshwater lake 
environments[30], on  plastics[31], in  sewers[32] and  wastewater[33,34], in  soil[35], and  in  groundwater[36]. 
Furthermore,  animals  themselves  can act  as  reservoirs  of  resistance[19,37,38]. Areas  where 
pharmaceutical[33,37,39], agricultural[40], municipal[41], and hospital waste[42] enter the environment and 
freshwater are of particular concern as they have increased AMR prevalence and provide routes for human 
exposure and transmission [Figure 1].

In brief, the acquisition of AMR bacteria in the environment is caused by three key mechanisms that may 
occur in combination[43]: (1) HGT of resistance genes between different bacterial species; (2) genetic 
mutation and recombination; and (3) selection pressure caused by antibiotics or other substances such as 
biocides or heavy metals, which may induce or accelerate the rates of (1) and (2)[44].

Many studies have made headway in determining the prevalence of AMR bacteria in the 
environment[34,43,45-49]. Most notably, a systematic review in 2015 found that AMR bacteria were detected in 
all (66/66) of the “contamination” sources (wastewater and manure) included in the review[21]. The review 
also included molecular evidence supporting AMR transmission from wastewater to the environment[21]. 
This paper illustrated that AMR bacteria are ubiquitous in the environment, and the authors emphasize that 
measuring the extent of AMR in the environment is important for the innovation of intervention strategies 
to limit the spread of AMR in the environment[21]. While ubiquitous, not all AMR is of equal concern, as 
different resistance genes confer resistance to different classes of antibiotics with differing clinical 
importance. In addition, some resistance genes, mobile genetic elements carrying multiple resistance genes, 
and AMR clinical pathogens have an “anthropogenic signature”, meaning they have been selected for in 
humans or animal microbiomes, and therefore pose a more immediate transmission and infection risk 
(relative to resistance harbored by most environmental bacteria).

The long-term effects of the dissemination of antimicrobials in the environment are still unfolding, and the 
effect on the natural environment and the emergence of AMR in human and animal pathogens remains 
unclear. What is evident, however, is that the release of antimicrobials, AMR bacteria and the potential for 
subsequent evolution of AMR in various microbes can have serious consequences for both human and 
animal health.

Antimicrobial resistance surveillance
The first step in mitigating the problem of AMR is to examine its risk to human[50] and animal health and 
understand its drivers before creating public health policy to contain it. Comprehensive integrated AMR 
surveillance is needed to create evidence-based policy. The development of regional, national, and global 
collaborative surveillance networks is important in determining the risk AMR poses[51,52]. AMR surveillance 
can include recording antimicrobial prescribing in humans, infection rates in humans, antimicrobial use in 
agriculture, antimicrobial compound concentrations in the environment, and AMR microorganisms and/or 
gene concentrations in the environment, amongst others. Informed by these variables, integrated 
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Figure 1. The environment as a reservoir for antimicrobial resistance. Created in BioRender.com[138].

surveillance programs can advise and inform policy on multiple drivers of AMR across the One Health 
continuum, including, but not limited to, antimicrobial use in medicine, livestock and crop production, 
infection control in hospitals, biosecurity on farms, and waste management.

Surveillance of antimicrobials and AMR in the environment is critical for public health authorities to 
evaluate the risk that AMR poses in different parts of the world, and to distinguish specific local drivers and 
risk factors. Policies can then be implemented, informed by evidence from surveillance and the latest 
research findings[51-56]. Theoretically, if certain resistance mechanisms (such as fluoroquinolone resistance) 
are high in a specific human population determined by wastewater surveillance, for example, public health 
authorities could warn against using the corresponding antimicrobial and suggest the use of an 
alternative[51]. Surveillance programs are important for evaluating risk and advising a course of action to 
mitigate further harm[4].

For example, in Australia, the Antimicrobial Use and Resistance in Australia (AURA) surveillance system 
retrieves and reports on data from hospitals, aged care facilities, and the community. AURA focuses on 
human health and uses data from five other national programs to create a report of patterns and trends of 
AMR across Australia[57]. The AURA program provides insight and suggestions for improving hospital care, 
aged care, and infection control. Notably, the sources AURA uses are mainly prescription data and not 
measurements of AMR in the environment or agriculture. Prescription data alone is not wholly reliable - as 
this does not mean the drugs are being taken or account for inappropriate disposal.

Another example of a surveillance system is the Global Antimicrobial Resistance and Use Surveillance 
System (GLASS)[58]. GLASS is a system put in place by the World Health Organization (WHO) and is the 
first international collaborative scheme to standardize AMR surveillance. GLASS implements a standard 
approach to the collection, analysis, interpretation, and sharing of data by countries and actively supports 
this by building and monitoring the status of existing and new surveillance systems. GLASS promotes a shift 
from traditional surveillance systems based solely on laboratory data to a system that encompasses 
epidemiological, clinical, and population-level data. GLASS has progressively incorporated data from 
surveillance of AMR in humans, such as the monitoring of resistance genes and the use of antimicrobial 
medicines, including AMR in the food chain and in the environment.

https://BioRender.com
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Comprehensive surveillance data is needed to inform evidence-based policy on AMR that can reduce the 
burden of AMR. Although many nations provide annual reports on prescription use and monitor resistant 
bacteria, national surveillance efforts are different across countries such that most incidence and prevalence 
data cannot be connected to epidemiological data[16,51,59]. Tacconelli and co-authors wrote a concise 
summary of the importance of surveillance systems across the world and emphasized the need to improve 
national AMR surveillance systems by including data from food, livestock, and the environment - in order 
to create a better narrative of the risk AMR imposes[51]. This integrated approach is called the One Health 
approach, and it has been promoted by organizations such as the WHO in their global action plan for 
combatting AMR[51,52,59-61].

An example of a surveillance system that has taken steps towards this One Health approach is the Canadian 
Integrated Program on Antimicrobial Resistance Surveillance (CIPARS). CIPARS is a national surveillance 
program which is maintained by the Public Health Agency of Canada's Centre for Food-borne, 
Environmental and Zoonotic Infectious Diseases and National Microbiology Laboratory in association with 
federal, provincial, and private industry partners. CIPARS collects and analyzes trends in antimicrobial use 
and AMR, in particular bacteria from humans, animals, and retail meat across Canada. The bacteria under 
scrutiny are known as enteric bacteria, and they can be passed between animals and humans. The program 
started by combining data on AMR from animal samples collected in abattoirs with data on AMR from sick 
animals and humans[59]. The CIPARS system has increased its level of complexity over time by adding 
collection points along the animal rearing system[49,59,62]. The program then added other types of data, such as 
AMR in farm samples and in retail meat samples, and data on the use of antimicrobials both in animal 
production and human health[59]. Another program that uses the One Health approach to surveillance is the 
National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) implemented in the 
United States[63].

The Global Sewage Surveillance Project (GSSP) uses wastewater (sewage) samples from 102 countries to 
monitor the prevalence of infectious disease and AMR and has published data using samples from around 
the world[64]. Human disease surveillance is often impeded due to ethical problems with the sensitivity of 
data from clinical samples and healthy individuals. Wastewater has been suggested as an alternative for 
population-based surveillance and the anonymous nature of wastewater avoids many ethical concerns[65]. 
The rapid development in metagenome analyses offers the potential to rapidly detect emerging pathogens 
and related antimicrobial resistance genes. Since monitoring of pathogens and AMR in wastewater can 
provide timely information on pathogens of concern, the information can be used to assist policy managers 
with information on prevention strategies. This is one of the first coordinated global efforts to use 
wastewater in AMR surveillance, but others have also used wastewater to monitor AMR[34,46,48] on a smaller 
scale. Another notable program is the National Wastewater Surveillance System  program in the United 
States, which was developed to track the presence of SARS-CoV-2 across the country[66] .

Using more types of data (such as information provided by wastewater analysis and data on antimicrobial 
usage and AMR in agriculture) in the surveillance of AMR will help create a more informed narrative on the 
prevalence and magnitude of AMR around the world. Using these data, policy makers can create evidence-
based decisions on antimicrobial use and practice. Once work is done on standardizing data collection and 
reporting globally, data can be generated by an integrated One Health AMR surveillance system[5,51,52,54,59]. 
However, standardizing data collection is an ambitious goal for AMR surveillance because there are so 
many kinds of methods used for sample preparation and data collection.
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WASTEWATER-BASED EPIDEMIOLOGY: A BRIEF INTRODUCTION
Wastewater-based epidemiology (WBE) is an approach that can be used to give comprehensive health 
information at a population or community level. WBE has become a growing field of scientific research, as 
wastewater contains the collective urine and faeces of whole communities and therefore contains a wealth of 
epidemiological information about chemical exposure, lifestyle, infectious disease, and wellbeing[55,67-69]. This 
approach can provide a ton of information on spatial and temporal consumption and serves as an 
intelligence tool for authorities[55,69]. This tool can be used to link exposure to environmental contaminants 
to health outcomes[69].

It is based on the concept that markers of chemicals and biologicals we consume or are exposed to (such as 
chemical compounds and biological microorganisms, defined as biomarkers) are excreted into wastewater 
either in their original or in a modified form (chemical metabolites)[68] [Figure 2]. In a recent review, Choi 
and colleagues described WBE as the normalization of analyte influent concentration to per capita mass 
loads using the daily flow and wastewater treatment plant (WWTP) population size[70]. WBE includes the 
extraction, detection, and analysis of chemical and/or biological markers in wastewater. This was first 
described by Daughton in 2001[71] and later tested by Zuccato[72]. Methods to improve WBE are continuously 
improving and evolving.

A huge number of global, long-term WBE monitoring initiatives have been created worldwide, such as in 
Europe[64,73], Australia[68,74-76], and the USA[77]. In the early days of WBE, research was focused on illicit drug 
consumption, including heroin, cocaine, and amphetamines[72,78,79], but has since diversified to include a 
large range of other factors such as alcohol[80-82], tobacco[76], SARS-CoV-2 (aetiological agent of 
COVID-19[83]), and psychoactive substances[84,85]. The success of WBE has been demonstrated globally and 
has encouraged discussion on the future use of the approach[55,69,86]. For example, a study in the Northern 
Territory of Australia by O’Brien et al. showed the use of WBE to assess the impact of policy-based 
interventions[87]. In this study, WBE was used to assess the successful outcome of setting a minimum unit 
price for alcohol to decrease alcohol consumption.

WBE is also used by surveillance systems previously mentioned to monitor AMR, such as the GSSP 
mentioned previously[88]. Monitoring the presence and prevalence of AMR bacteria and resistance genes in 
wastewater can provide information about the level of antimicrobial use and the emergence and spread of 
AMR within a local human population. By analyzing wastewater samples from different sources, such as 
hospitals, nursing homes, and communities, researchers can identify hotspots for AMR bacteria and genes. 
This information can then be used to inform public health strategies, including the development of targeted 
interventions to reduce antimicrobial use and prevent the spread of AMR infections. The role of WBE in 
policy making for the management of AMR is still emerging[89]. Surveillance systems such as NWSS will play 
a key role in preventing the spread of AMR by allowing the monitoring of trends and the identification of 
hotspots for resistance.

WBE can be used to monitor the use of antimicrobial agents in different populations and settings. For 
example, a study in South Africa found higher per capita antimicrobial usage in informal settlements than 
in sewerage connected communities[90]. Another study measured spatiotemporal trends in concentrations of 
antibiotics in Eastern China[91]. WBE can also monitor resistant pathogen distribution in the community. In 
one study, wastewater testing revealed geospatial-temporal trends of AMR pathogens in Australia[92]. WBE 
can be used to monitor the use of antimicrobials and AMR pathogens in different populations and settings.
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Figure 2. Wastewater-based epidemiology workflow. Created in BioRender.com[138].

Key considerations for WBE
Appropriate wastewater biomarkers
Biomarkers are compounds in wastewater that can be targets for WBE. Biomarkers can be sorted by their 
role as biomarkers of exposure, biomarkers of effect, biological biomarkers (e.g., metabolites, hormones), or 
by the disease they may suggest (e.g., cardiovascular biomarkers, obesity biomarkers)[69]. Examples of 
potential biomarkers include illicit drugs, alcohol, tobacco, UV filters, caffeine, pesticides, RNA, DNA, and 
antimicrobials. The choosing of a biomarker is a difficult task, as it needs to satisfy criteria as outlined in 
previous studies[69].

From a WBE perspective, a usable biomarker must be stable enough to allow for its measurement in WW - 
laboratory scale sewer reactor experiments can evaluate this[93]. Population biomarkers need to have low 
variance in the daily excretion. The selection of biomarkers can largely affect the results of the research and 
should be considered carefully.

A large number of resistance genes and antimicrobials can be potentially used as biomarkers, but not all are 
of equal importance[70]. Some guidelines for the selection of genes for wastewater-based monitoring were 
proposed by  Lhat et al. and Berendonk et al., who suggested the following: (i) clinically relevant genes 
posing a risk to human health; (ii) genes found in mobile elements, thus demonstrating potential for 
transfer; (iii) genes conferring resistance to high consumption antibiotics; (iv) genes conferring resistance to 
antibiotics that have been in use for a long time (e.g., tetracycline, sulfonamides); and (v) genes conferring 
resistance to newer, clinically relevant antibiotics such as the extended-spectrum beta-lactams[94,95]. Notably, 
sulfonamide and tetracycline resistance genes are among the most common resistance genes studied in 
wastewater, as both sulfonamide and tetracycline antimicrobials have been in use for a long time and cause 
resistance via multiple mechanisms[70].

Many new methods are currently being developed for the quantification of antimicrobials in wastewater, 
such as direct injection liquid chromatography-tandem mass spectrometry[96].

Wastewater sample collection
Wastewater samples are usually collected from municipal WWTPs as they serve communities located in 
specific sewerage catchment areas. Hence, wastewater from said community can be considered as its pooled 
excreta. Samples typically collected from WWTPs include wastewater influent and effluent as well as 
biosolids. Wastewater influent, which is collected at the inlet of the WWTP, can be analyzed to determine 
chemical or biological biomarkers that are excreted or discharged into the wastewater pipeline. This kind of 
sample can be used to determine community consumption of, or exposure to, a substance. Wastewater 
effluent samples, on the other hand, are samples that are collected at the exit of the WWTP after the 
wastewater has been treated. This type of sample is commonly used to estimate removal efficiencies during 
the treatment process and to monitor chemicals that are being discharged into the environment. Effluent 
can contain biological contaminants that can cause harm to humans and the environment. Therefore, it is 
important to analyze the risks associated with inadequate treatment and to understand the consequencesof 

https://BioRender.com
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poor removal efficiencies.

In order to accurately determine the per capita amount of biomarkers from a sample, representative samples 
are collected over a specified time frame using autosamplers that collect high-frequency flow (preferred) or 
time-proportional wastewater influent samples[68,97]. Per capita daily consumption of a parent compound in 
each catchment is calculated using Equation (1)[72]

where Ci is the concentration of a given drug residue, i, measured in wastewater samples, F is the total 
wastewater volume during the sampling period, P is the number of people in the catchment, Ri is the ratio 
of molar mass of parent drug to its metabolite, and Ei is the average excretion rate of a drug residue, i[72].

Different methods can be employed to collect wastewater samples, including continuous and discrete 
sampling modes[97]. The most representative sampling mode is the continuous flow-proportional mode. In 
this mode, a side stream of wastewater enters that autosampler at a rate proportional to the flow rate of 
wastewater in the WWTP. Variants of this mode are described in detail in a review[97]. The least 
representative sampling technique is called the grab sample, as it only represents the amount of analyte 
present at a single time point[97]. An alternative sampling mode involves the use of passive samplers, which 
can absorb chemicals over a longer period, often days or weeks.

Once the wastewater is collected, a preservative such as hydrochloric acid may be added in order to 
minimize microbial degradation before samples are stored for chemical analyses - however, suitable 
preservation techniques can be biomarker-specific[70,98]. If the sample is being collected for genomic or 
culturing analysis, then it is mixed with 20% v/v of sterile glycerol and stored at -80 C in order to preserve 
the microbial community in the sample[46].

Wastewater analysis
Wastewater can be analyzed for AMR using several methods including analytical chemistry and molecular 
biology techniques[54]. When an appropriate chemical biomarker has been selected, samples can be analyzed 
to determine analyte concentrations. This often consists of a sample pre-treatment step, including filtration 
to remove solids in the sample matrix, as well as solid phase extraction (SPE) for clean-up and 
concentration of target analytes in a sample. Once the sample is “cleaned up”, it can undergo chemical 
analysis, typically performed using quantitative analysis with liquid chromatography coupled to tandem 
mass spectrometry (LC-MS/MS).

If a sample is being analyzed using molecular microbiological methods, the sample will be filtered for solids 
and prepared via an appropriate DNA library preparation technique as described elsewhere[46]. These steps 
can vary depending on the specific technology being used (e.g., qPCR and/or metagenome sequencing) and 
the type of sample being analyzed, but some common steps include:

Sample collection and filtration: Depending on the source of the sample, it may need to be collected and 
filtered to remove any large solids or debris that could interfere with downstream processing.

DNA extraction: The DNA in the sample needs to be extracted and purified so that it can be used for 
downstream approaches, such as metagenome sequencing. Different extraction methods may be used 
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depending on the type of sample and the sequencing technology being used and are discussed in depth in 
other studies[99-101]. DNA quality and quantity is verified before progressing to:

Library preparation: The DNA needs to be fragmented and amplified using PCR to create a library of DNA 
fragments that can be sequenced. Different library preparation methods may be used depending on the 
sequencing technology being used.

Sequencing: The prepared library is then loaded onto the sequencing instrument, and the DNA fragments 
are sequenced using the appropriate sequencing chemistry.

After sequencing is complete, the resulting data is typically analyzed using specialized software and 
bioinformatics tools to identify and classify the different microbial species present in the sample, as well as 
their relative abundances, and functional capacity (such as relative abundance of AMR genes). 
Bioinformatics is needed for processing reads prior to assigning taxonomic rank in order to sort small 
species differences. This information can be used to gain insights into the microbial community structure 
and function, as well as potential links to human health or environmental processes.

Alternatively, samples may undergo qPCR to amplify specific gene targets of interest, or viable culturable 
bacteria in samples can be cultured[54].

Limitations and uncertainties of WBE
WBE has its own limitations that scientists and policy advisors need to be mindful of when describing data. 
Chemicals are not consistently stable under sewer conditions, as they may degrade or transform before 
entering the WWTP[102,103]. Therefore, sewer stability experiments may be required if data is not available in 
the literature. Another stability concern would be in-sample degradation, which can happen due to other 
compounds and microbes in the sample matrix. There are other concerns regarding the sampling mode (as 
explained above) and the flow measurement of the WWTP[68,104]. Furthermore, the matrix of wastewater can 
contain PCR inhibitors that can impair the accuracy of molecular-based methods of detecting AMR genes 
and microbes, particularly for qPCR[55]. In addition, population sizes in a catchment can normally only be 
estimated[105,106]. To apply Equation 1 (above) and determine the consumption of a compound, excretion 
data for the biomarker is needed. This information is not always readily available.

Even though WBE has its own set of limitations and uncertainties, technological advancements have 
improved the field. For example, one study advocates for biosensing techniques as a promising surveillance 
alternative. Another study showed improvement in qPCR methods for the detection of macrolide and 
tetracycline resistance[107]. Improvements in epidemiological modelling have also improved the field[108]. 
Although WBE has its own set of limitations and uncertainties, technological advancements in the field of 
biosensors[109], qPCR detection methods[107], and epidemiological modelling[108] have improved the field.

A benefit of WBE is that since WW samples are pooled samples from a community, the anonymity of the 
individual person is largely maintained. However, in some cases, it is necessary to manage the privacy of 
location data to prevent the stigmatization of certain groups of people. The ethical considerations of WBE 
for pharmaceuticals and drugs have been discussed elsewhere[65,110,111]. Generally, populations over > 10,000 
are large enough to give anonymity and there is little risk in characterizing smaller societal groups[55].

Using metagenomic data comes with the risk that the individual person can be identified using archived 
wastewater samples due to the fact that metagenomic sequencing sequences all the DNA in the sample. 
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However, it is unlikely that the data would actually be traced back to the individual as researchers are 
focused on mapping human pathogens in wastewater[112,113]

Wastewater-based epidemiology and antimicrobial resistance
WBE poses a unique and innovative way of monitoring AMR in a community because it would allow for 
the simultaneous measurement of antimicrobial compound concentrations and AMR microbes in a 
community. Table 1 highlights key methodologies for detecting AMR and antimicrobials using WBE and 
references several studies that have detected antimicrobials and AMR organisms in wastewater in different 
capacities[46,48,64,67,114-116] . The table highlights the use of LC-MS, sequencing technologies, and culture-based 
methods for detecting AMR and antimicrobials and illustrates the pros and cons of each method. 
Combining the aforementioned detection methods with WBE methods[74] can also provide useful and 
unique information on socioeconomic determinants and temporal trends in the use of antimicrobials. Since 
the usage of some antimicrobials is seasonal, there are potentially compelling opportunities for trends to be 
established via wastewater analysis. Some studies have shown periodic patterns for several antibiotics, 
including clarithromycin, erythromycin, and ciprofloxacin, with more use observed in winter[117,118]. In 
addition, in locations where prescription information is not made available or antimicrobial medications 
can be bought over the counter easily, WBE can be a way of monitoring antimicrobial use in a community.

As mentioned before, WBE has been excellent at monitoring drug usage and has the potential to assist in 
the surveillance of AMR[46,51,55]. Using and developing a standardized methodology for characterizing AMR 
in wastewater will be important in quantifying AMR prevalence in communities. Recent literature on 
detecting antimicrobial residues in wastewater using analytical chemistry[119-121] is similar to how WBE has 
already been used to detect other drugs (as described in the previous section).

Another potential biological marker in wastewater for AMR is DNA fragments from bacteria. Most recently, 
wastewater has been used to monitor the prevalence and spread of COVID-19 (SARS-CoV-2 virus) in 
Australia[83] and around the world[122,123]. Government health authorities such as Queensland Health have 
been able to use this data to inform public health policy with respect to the pandemic[124]. Next-generation 
sequencing of wastewater samples can provide much data on the microbial communities in samples, 
including identification of the wide range of pathogens and resistance genes present. Analysis of the 
resistance genes present has been shown to provide key information on novel pathogens, as well as re-
emerging infectious diseases and AMR[19,88,125]. Several studies have been published recently on the 
surveillance of AMR using WBE[46,64,126-128].

While standardization of protocols for sequencing remains a challenge, the improvements in technology 
combined with decreasing sequencing costs have the potential to improve both pathogen and resistance 
surveillance in wastewater.

WBE for AMR research: addressing gaps in the literature
Most surveillance systems for AMR focus on key pathogens and use passive laboratory reporting[46,51]. 
Integrating the power of WBE with the clinical and veterinary surveillance of AMR will help create a more 
informed understanding of the prevalence and diversity of AMR in microbial populations[5,19,51,55,129].

WBE could aid in providing this population-wide information on the prevalence of AMR in human 
populations. A large range of antimicrobial resistance genes (ARGs) have been studied and analyzed in 
wastewater, typically through qPCR[34,41,128,130-133]. Only a couple of studies have analyzed relationships 
between the levels of antimicrobials and the abundance of ARGs in wastewater. There have been some 



Page 11 of Clarke et al. J Environ Expo Assess 2024;3:7 https://dx.doi.org/10.20517/jeea.2023.29 18

Table 1. Methodology of using WBE to quantify AMR

Methodology Description Pros. Cons. Refs.

LC-MS Liquid chromatography coupled with mass spectrometry 
(LC-MS) to elucidate antimicrobial compound 
concentrations in wastewater

By combining HPLC and MS, the 
strengths of both techniques can be used 

Initial costs, requires skilled personnel to set up [139]

Sequencing using 
Illumina

Next-generation sequencing of microbial genetic material in 
a wastewater sample using the Illumina platform

Technology used widely, lowest cost, 
wide range of instruments, lowest error 
rates

Long sequence runs, shortest read lengths, no real-time data access [140,141]

Sequencing using 
Oxford Nanopore 
technology

Next-generation sequencing of microbial genetic material in 
a wastewater sample using the Oxford Nanopore platform

Fast sequencing, longest confirmed 
reads, small instrument footprint, lowest 
instrument and consumable cost, real-
time data access

Highest error rate of all the platforms [142]

Sequencing using Ion 
Torrent technology

Next-generation sequencing of microbial genetic material in 
a wastewater sample using the Ion Torrent platform

Fast run time, comparatively cheap, long 
reads possible

High error rate, lower overall data output [143]

Sequencing using 
Pacific Biosciences 
technology

Next-generation sequencing of microbial genetic material in 
a wastewater sample using the Pacific Biosciences platform

Fast sequencing runs, long reads, real-
time measurement of base incorporation

Largest instrument footprint, lower output per run, higher error 
rates

[144,145]

Metagenomic 
sequencing

Can be defined as the sequencing of all genomes in a 
sample

Gathers information on all genomes in a 
sample, discovery of novel organisms, no 
a priori data needed

DNA of environmental microorganisms cannot be extracted 
completely, the sequencing may miss low-abundance 
microorganisms,  there is no “gold standard” for bioinformatic 
software

[146,147]

Sequencing using 16S 
region of microbial 
DNA

Sequencing of the microbial 16S rRNA region of genetic 
material using a sequencing technology 

Targets and reads a region of the 16S 
rRNA gene which is found in all Bacteria 
and Archaea, relatively cheap, lots of 
computational pipelines available

Can only identify organisms that have a 16S rRNA gene, multicopy 
variation of the 16S rRNA gene, 16S rRNA gene variable regions 
cannot typically resolve species

[148,149]

Whole-genome 
sequencing

Sequencing of the genetic material of a single organism 
using sequencing technology. Can identify all the genes in a 
genome including ARGs, and contribute to high-resolution 
genome assembly and identification of bacterial 
species/strains

Provides a high-resolution, base-by-base 
view of the genome, lots of 
computational pipelines available 

The processing involves a few extra steps compared to 16S rRNA 
sequencing, is more expensive, computationally intense

[46,150]

Measuring resistance 
genes using qPCR

Using quantitative polymerase chain reaction (qPCR) to 
quantify the quantity of AMR genes

Comparatively cheap (compared to most 
sequencing technologies), fast method of 
measuring resistance genes

Need prior sequence data of the specific target gene of interest, 
needs standard curve analysis, susceptible to impurities present in 
the sample

[151,152]

Using droplet digital 
PCR

Using droplet digital PCR (ddPCR) to quantify the quantity 
of AMR genes

Accurate absolute quantification of 
pathogens, less contamination, no need 
for standard curves, more resilient to 
inhibitory substances

Clinical application of ddPCR is still not popular, there are fewer 
references available

[144,153,154]

Culture-based 
methods

With or without antibiotic or selective media, allows for the 
identification of specific taxa

Relatively quick, cheap Lacks resolution (number of taxa studied), ignores "unculturable" 
bacteria, low sensitivity (compared to molecular methods), works 
best for bacteria that replicate efficiently in rich media within 24 h, 
slow growing and viable but not culturable (VBNC) bacteria are not 
detected.

[54]
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correlations observed between antimicrobials and respective resistance gene levels that have been 
antimicrobial dependent[48,133,134-136]. For example, Elder et al. observed positive correlations between 
fluoroquinolones and qnrS quantity between different locations (r = 0.997, P < 0.004)[137]. Further research is 
needed to elucidate the relationship (if any) between antimicrobial concentrations and AMR in wastewater. 
These data can be used to inform on the prevalence and risk of AMR in human populations, wastewater, 
and receiving environments.

CONCLUSIONS
WBE has emerged as a promising tool for the surveillance of AMR in human populations. WWTPs are a 
major point of entry for antimicrobial agents and resistant bacteria into the environment, making them an 
ideal site for monitoring AMR introduced to aquatic environments. This review discusses the potential of 
WBE for AMR surveillance, as well as the challenges and limitations associated with this approach. We 
highlight the importance of selecting appropriate sampling strategies and analytical methods to ensure the 
accuracy and reliability of the data.

One of the main advantages of WBE is that it provides a population-wide snapshot and trend analysis of 
AMR trends, as it captures wastewater from multiple sources, including households, hospitals, and 
industrial sites. This can help to identify hotspots of AMR and inform targeted interventions. WBE can help 
identify the changepoints in target concentrations after targeted interventions. This review also discusses the 
potential of WBE for monitoring the use of antimicrobial agents in different populations and settings. By 
analyzing the concentration and distribution of specific antimicrobials and their metabolites in wastewater, 
it is possible to estimate the consumption of these drugs in the population. We would like to highlight the 
importance of collecting and archiving representative samples now so that we can establish baseline data 
retrospectively, particularly as the costs of analyses are decreasing and the accuracy and scope of analyses 
are only improving.

However, there are also several challenges associated with WBE, such as variability in wastewater 
composition, dilution effects, and the presence of confounding factors such as environmental stressors, co-
selective pressures, and developing models for fecal/urine shedding. In addition, the interpretation of WBE 
data requires a deep understanding of the local context and the factors that may influence AMR trends.

Overall, this review highlights the potential of WBE for AMR surveillance and calls for further research to 
optimize sampling and analytical methods, develop standardized protocols, and validate the data against 
clinical and environmental data.
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