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Abstract
Chlorinated paraffins (CPs) are industrial chemicals with broad use as plasticizers and components in paints, 
cutting and drilling oil additives. The research interest in CPs has recently increased, not least due to the progress 
in analytical techniques and the globally reported large production volumes of CPs. The adverse effects on CPs in 
biota and in man are being reported in an increasing number of articles and the mechanism of toxicity is being 
discussed. Whether the metabolism of CPs could increase their toxicity is, however, still an unsolved question. In 
this Perspective paper, CP metabolism is discussed and arguments pointing to the important role of metabolic 
enhancement in CP toxicity are highlighted.
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SHORT COMMON BACKGROUND
How come a globally used industrial chemical, produced in extensive volumes during at least 50 years and 
today found in biological samples often in higher amounts than of other environmental compounds, has 
only recently become a commonly recognized environmental and human health concern? There are, of 
course, several answers to why chlorinated paraffins (CPs) have just lately sparked a marked activity in 
terms of regulatory measures[1,2] and an increase in scientific publications[3,4]. For one thing, these 
chlorinated straight-chain alkanes, generally divided into short-, medium- and long-chain CPs (SCCPs, 
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MCCPs, LCCPs)[5], have created severe problems for analytical chemists, not least due to the vast number of 
isomers being present in each commercial CP product[6]. Recently, major advancements have been achieved 
in the chemical analysis of CPs, making it possible to quantitate CP levels in man and environment and to 
differentiate between different CP groups and isomers in biological samples[6]. Another fact that may have 
previously deterred the scientific community from showing interest in CPs is their moderate persistence 
compared to earlier studied persistent pollutants, such as polychlorinated biphenyls (PCBs) and 
polybrominated diphenyl ethers (PBDEs). In classical toxicological thinking, the metabolism of a persistent 
pollutant implies that the compound has decreased its harmful properties. Today, an increasing number of 
scientific studies present data on CP metabolism in different model systems, both animal and human[7-9]. If 
we consider the vast number of CP isomers present in commercial mixtures and the potential formation of 
various types of metabolites from these original compounds, it becomes evident that an immense array of 
CP metabolite structures could emerge, which considerably amplifies the complexity of the analysis. So, 
what will happen if the metabolism of CPs increases their toxicity rather than reducing it? The rest of this 
text will, therefore, focus on CP metabolism, as this could have important implications.

EARLY INDICATIONS OF CP METABOLISM
In the 1980s, I worked in a Swedish research team led by Drs Ingvar Brandt and Åke Bergman, which 
studied CP disposition in rodent and bird models with the aid of radioactively labeled CP compounds. We 
showed that CPs of low and medium chain length were retained for some time in the body and that this 
retention increased with the degree of chlorination[10,11]. Concomitantly, the CP carbon chain could be 
degraded with the formation of CO2, a degradation that was inverse to the degree of chlorination[11]. It was 
also noted that this carbon chain degradation had to be preceded by a dechlorination step, as the 14C-carbon 
was chlorinated, and that cytochrome 450 was involved in this degradation[12]. Additional studies reported 
biliary sulfur-containing CP metabolites, indicating phase II metabolism[13]. In short, it was concluded that 
CPs are metabolized and degraded in vivo in rodents and birds, and that phase I and II metabolites are 
indicated. Additionally, in bacteria, enzymatic degradation of CPs was shown in the 1980s by 
Omori et al.[14].

RECENT PROGRESS IN RESEARCH ON CP EFFECTS
Since these early works, the CP literature has greatly expanded, and during the last 10 years, there has been 
an exponential increase in scientific CP articles. Apart from the vast increase in analytical-chemical articles, 
mirroring the advantages in chemical identification and quantification of CPs in different matrices, an 
increasing number of articles have also been focused on CP effects in various biological models, some also 
including speculations on mechanisms of toxicity. Already in the early CP papers, histologically based 
findings identified the liver and kidney as targets of toxicity[15,16]. In addition, short-chain CPs (60%Cl) were 
classified as potentially carcinogenic (group 2B) by IARC[17]. Today, an increased number of CP-related 
findings are known, including effects on thyroid hormone and hormonal systems[18-21], disruption of 
metabolic systems[22,23], developmental effects[24], and immunomodulatory effects[25]. Interestingly, a few 
papers have identified that certain CP effect parameters could be modified by co-exposure to other 
compounds, opening for the possibility of synergistic effects (PBDEs and CPs - effects on TH levels and 
P450 activities[26,27]; PAHs and CPs - perturbation of metabolic activities[28]).

NEW FINDINGS ON CP METABOLISM
Recently published data from studies on various biological levels give an improved scientific base for 
understanding CP metabolism. In bacteria, CPs could be degraded to chlorinated olefins by LinA2 enzymes 
via a HCl elimination reaction, and CPs could be divided into reactive and persistent congeners, possibly 
depending on the degree and position of chlorines on the CP molecule[29]. Mono- and dehydroxylated CP 
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products were also formed in bacterial systems (LinB enzyme)[30]. In pumpkins and soybeans, plant 
biotransformation of CPs was observed, and dechlorination, chlorine rearrangement, and carbon chain 
decomposition were proposed as the major metabolic pathways for SCCPs[31,32]. In rice cell suspension, 
another plant-based system, the metabolism of SCCPs and MCCPs resulted in 25 and 40 metabolic 
products, respectively, including hydroxylated, dechlorinated, HCl-eliminated compounds, and conjugated 
products[33]. In vertebrates, studies were performed in chicken and human microsomes. In chicken 
microsomes, after incubations with several CPs, Huang et al. found an extensive metabolism resulting in 
mainly monohydroxylated metabolites and, in smaller amounts, dihydroxylated[34]. In another study on 
chicken liver microsomes, Lin et al. found only one CP metabolite, namely a monohydroxylated 
hexachlorodecane (after incubation of a heptachlorodecane)[35]. The latter authors also studied human liver 
microsomes in a similar model and using the same CP isomer. In this case, two metabolites were detected 
(monohydroxy-hexachlorodecane, and -heptachlorodecane, respectively). As compared to chicken 
microsomes, the observed average biotransformation rate of the heptachlorodecane was much faster for 
human liver microsomes[35]. Another study on human liver microsomes underlined results from the 
previous one and suggested that rapid metabolic processes take place upon incubation with CPs[36]. Several 
tentative CP metabolites, including alcohols, ketones, and carboxylic acids, were suggested. C-C bond 
cleavage was also shown, giving rise to shortened CP forms and, eventually, very short chain chlorinated 
paraffins. The ketone products may have longer metabolic half-life, and therefore, according to the authors, 
they could be considered suitable as exposure biomarkers.

Whereas previous indications of CP metabolism have been indicated by carbon chain degradation to CO2, 
sulfur-containing fecal biliary metabolites, and conclusions drawn from mass balance calculations in feeding 
experiments, the recent progress in CP metabolism studies in different experimental systems clearly 
manifests that CPs are subjected to metabolic transformation, and that both phase I and II reactions occur. 
Schematic figures to summarize possible basic metabolic steps starting from the parent CP molecule have 
been shown by Darnerud and Bergman[8] and by Chen et al.[3], and several different initial metabolic 
reactions are postulated: hydrolysis, to form primary or secondary alcohols; dehydrochlorination, with 
emission of HCl; reductive dechlorination, with loss of Cl; vicinal halogen reduction, with loss of Cl2; and 
oxidative dehalogenation, replacing a carbon chlorine with an aldehyde or a ketone [Figure 1]. However, 
most of the proposed CP metabolites await structural identification.

IS CP METABOLISM A KEY TO UNDERSTANDING CP EFFECTS IN ANIMALS AND 
HUMANS?
While the extensive metabolism of CPs gives several metabolites with different chemical properties, it is still 
largely unknown how these transformation products interact with biological systems. There are several 
reports claiming that CPs exert their adverse effects through the production of reactive oxygen species 
(ROS) and perturbation of metabolic processes, e.g., fatty acid metabolism[37]. Notably, Wang et al. claim 
that CP metabolites are responsible for the production of ROS, with potential effects on enzyme activities, 
dysregulation of signaling pathways, and damage of cellular components and DNA, thereby resulting in 
various toxic effects[38-41]. Oxidative stress could also induce the formation of chlorinated fatty lipids, such as 
chloro fatty aldehydes and chlorohydrins, which have potent pro-inflammatory effects[42]. Thus, evidence is 
building for the role of chlorinated lipids in inflammatory disease, and CP metabolites may have a near 
resemblance to these lipids.

The carcinogenicity of CPs in animal models is well established and SCCPs are defined as carcinogenic 
according to IARC[17]. Assuming that CP binding to macromolecules is a prerequisite for tumor formation 
and likely for exerting other toxic effects, CPs must be metabolically activated, possibly via 
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Figure 1. Proposed initial metabolic steps starting from a thought CP congener, 2,4,5,8,10,14-hexachlorotetradecane. The postulated 
metabolic reactions are: hydrolysis, to form primary (I a) or secondary alcohols (I b); dehydrochlorination, with emission of HCl (II); 
reductive dechlorination, with loss of Cl (III); vicinal halogen reduction, with loss of Cl2; and oxidative dehalogenation, replacing a 
carbon chlorine with an aldehyde (V a) or ketone (V b). This simplified figure does not show the subsequent metabolic reactions that 
will likely take place; however, a more detailed metabolic scheme has been proposed by Darnerud and Bergman[8].

dehydrochlorination and subsequent steps as outlined in Figure 1 and earlier presented by Darnerud and 
Bergman[8]. Regarding a monochlorinated alkane, 1-chlorodecane, an interesting theoretical metabolism 
study suggested that the metabolites, 10-chloro-decan-5-ol and 1-chlorodecanol, might be more easily 
bioaccumulated, more carcinogenic, and induce more cardiovascular damage than the parent SCCP 
isomer[43].

When it comes to the hormonal effects of CPs, the effects on plasma thyroxine (T4) and thyroid-stimulating 
hormone (TSH) levels are documented, and mechanistically, CPs probably interact with ligand binding to 
the constitutive androstane receptor (CAR) in the liver and to the transport protein transthyretin 
(TTR)[18,19]. Another example of ligand binding is that of SCCPs to the peroxisome proliferator-activated 
receptor alpha (PPARα), studied by, e.g., Gong et al.[44]. If molecular docking to active ligand sites requires 
the parent CPs, the role of CP metabolism is more questionable, and metabolic transformation of the CP 
molecule would possibly decrease these hormonal effects. However, a new group of compounds has been 
found in commercial CP mixtures, namely chlorinated fatty acid methyl esters (CFAMEs). These 
compounds have been found to be ubiquitous in environmental matrices and have also been detected in 
blood samples from the general population[45]. CFAMEs can compete with T4 for binding TTR with higher 
potencies than the CPs and may lead to disruption of thyroid hormone homeostasis. Whether these 
CFAMEs could also be formed in vivo as metabolites from CPs is not yet shown but could be assumed 
according to the suggested metabolic scheme for CPs.

SUGGESTIONS IN FUTURE CP RESEARCH
In this paper, CP metabolites are suggested to be important in producing adverse biological effects following 
CP administration in animals and humans. However, data is still scarce, and the theory must be confirmed 
in future studies. The following questions are important to discuss and possibly clarify in future CP 
research:

● Are there metabolic differences between different CP isomers, and could the degree of chlorination, 
carbon length, and molecular Cl positions on the carbon chain explain these differences? It is notable that in 
the studies of Knobloch et al.[30], a difference in persistence to bacterial CP metabolizing enzymes is 
suggested, with two groups of CPs being either reactive or persistent to bacterial enzymatic dehalogenation.
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● What types of different CP metabolites are formed and in which proportions are they formed? Could 
certain CP metabolites be defined as especially “toxic”, and what factors decide the formation of these 
potentially harmful metabolites?

● Could external factors, e.g., nutritional status and concomitant exposure to other substances, influence CP 
metabolism and, consequently, CP toxicity? Perhaps the perturbation of metabolic enzyme activities, e.g., by 
knock-down techniques, could be fruitful in future studies.

● Are there distinct species differences in CP metabolism, and if so, to what extent could metabolism results 
from animal studies be applicable to man?

The knowledge on the disposition of CPs in animals and humans has today reached an exciting level, where 
analytical techniques make it possible to evaluate levels of different CP isomers in biological samples and to 
begin to follow the formation of different CP metabolites. Studies on the potential correlation between toxic 
effects and specific CP metabolites could give important information in future risk assessments.
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