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Abstract
Described here is the first deracemization of triaryl-substituted carbon stereocenters, which is in contrast to the 
well-established processes to deracemize monoaryl- and diaryl-substituted ones. This one-pot redox process 
involves in situ generation of a para-quinone methide intermediate followed by asymmetric reduction by chiral 
phosphoric acid catalysis. A wide range of highly enantioenriched triarylmethanes could be generated with high 
efficiency under mild conditions.
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INTRODUCTION
Deracemization is an attractive strategy to provide access to enantioenriched organic molecules[1-8]. 
However, direct conversion of the racemic form of a chiral compound to its enantioenriched form is a 
thermodynamically unfavorable transformation due to the positive Gibbs free energy change as a result of 
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the increased entropy of the reaction system as well as the principle of microscopic reversibility under 
thermal conditions[9,10]. To overcome this hurdle, various strategies have been devised to achieve successful 
deracemization[1-8], including the use of excited states (via photochemical condition)[1,2,11-14], reversal of 
thermodynamics by extrusion of small gas molecules[15,16], and the design of multistep reaction sequence 
(e.g., kinetic resolution or dynamic kinetic resolution)[17-21]. However, there are limited examples of 
successful implementation of these strategies, and more efficient methods for this purpose remain in high 
demand.

Enantioenriched organic molecules with benzylic chirality show broad applications in various fields, 
including organic synthesis, medicinal chemistry, and materials science[22,23]. In particular, a stereogenic 
carbon center attached to multiple aryl groups represents an important substructure widely observed in 
natural products and biologically active molecules[24-28]. In contrast to the well-documented diverse strategies 
to construct benzylic stereogenic centers, the exploitation of the deracemization approach for this purpose 
has been underdeveloped in general. Among these limited examples, the majority have dealt with those 
bearing one aryl group at the benzylic position [Scheme 1a][29-33]. Instead, only very few deracemization 
protocols have been developed for access to enantioenriched 1,1-diarylalkanes with a diaryl-substituted 
stereogenic center[34-36]. More disappointingly, to the best of our knowledge, there has been no 
demonstration of deracemization of triaryl-substituted stereogenic centers, despite the fact that 1,1,1-
triarylalkanes are versatile structures in medicinal chemistry. In this context, here we report the first 
example of this type employing para-quinone methides as the key intermediate.

Recently, Liu and co-workers have reported a series of elegant organocatalytic redox racemization examples 
with outstanding performance for the access to enantioenriched chiral molecules bearing benzylic 
stereogenic centers[34-39]. Inspired by this strategy as well as our previous efforts in the study of asymmetric 
processes involving para-quinone methides (p-QMs)[40-56], we envisioned that the deracemization of 
triarylmethane 1 could be potentially achieved by a similar strategy. Specifically, initial oxidation is expected 
to form the p-QM intermediate. Next, in the same pot, a reductant, as well as a chiral catalyst, would affect 
the asymmetric reduction of this key intermediate, thereby representing a formal deracemization 
[Scheme 1d]. The challenges associated with this strategy include not only stereo control which requires 
discrimination between two aryl groups (Ar2 and Ar3), but also the compatibility of the two steps which 
involve mutually destructive oxidant and reductant.

EXPERIMENTAL
At room temperature, a solution of the triarylmethane  1 (0.4 mmol) and DDQ (99.0 mg, 0.44 mmol, 1.1 
equiv) in CHCl3 (1.44 mL) was charged into an oven dried 4 mL vial. The mixture was stirred for 5 h and 
then cooled. The catalyst (R)-A3 and the hydrogen source (0.6 mmol, 1.5 equiv) were added to a lower 
temperature as specified in each case. The mixture was stirred for 96 h. Upon completion, as monitored by 
TLC, it was concentrated under reduced pressure. The residue was purified by silica gel column 
chromatography to afford the desired product 2.

RESULTS AND DISCUSSION
The racemic triarylmethane 1a was chosen as the model substrate for the initial study [Figure 1]. The phenol 
ring serves as the precursor to the p-QM structure. To distinguish the remaining two aryl groups, one of 
them was substituted with an ortho-methoxy group to provide additional interaction with the catalyst[51-56]. 
DDQ was used as an oxidant for the first step. Based on TLC analysis, this step could be achieved cleanly in 
DCE at room temperature within 4 h. Notably, other oxidants, including Ag2O, TEMPO, Mn(acac)3, and 
O2, could not work as effectively as DDQ. Next, the search for a suitable reductant and a chiral catalyst 
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Scheme 1. Introduction and Reaction Design. p-QMs: para-quinone methides; Ar2 and Ar3: two aryl groups.

constituted the key to success. Chiral phosphoric acids were employed as catalysts owing to their well-
known performance in such nucleophilic addition reactions[43-66]. Inspired by Akiyama’s pioneering study of 
using benzothiazoline for CPA-catalyzed asymmetric reduction[57,58], the 2-naphthyl-substituted one H1 was 
initially used as a reductant[65]. To our delight, this one-pot redox process proceeded smoothly to afford the 
desired enantioenriched product 2a, essentially in quantitative yields in all the cases. Among all the CPAs 
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Figure 1. Optimization of Reaction Conditions[a].

evaluated, the BINOL-derived one bearing two 2,4,6-tricyclohexylphenyl substituents at the 3,3’-positions 
provided the best enantioselectivity (96% ee, entry 3). Other backbones, such as [H8]BINOL and spirocyclic 
bis(indane)-based SPINOL, did not result in better results (entries 4 and 5). Next, we also compared 
different hydride sources, including 2-phenyl-substituted benzothiazoline H2, catechol borane H3, and 
Hantzsch ester H4. Unfortunately, they proved inferior in terms of enantioselectivity (entries 6-8). We next 
screened other solvents, which indicated that chlorinated solvents are in general good for this reaction. 
Among them, CHCl3 provided the best enantioselectivity (entry 9). Finally, a lower catalyst loading was also 
evaluated. With only 0.5 mol% of catalyst A3, the reaction efficiency and enantioselectivity remained 
excellent (entry 12). Furthermore, a scale-up reaction at a lower temperature (-10 oC) provided the best 
overall outcome (entry 13).

With the optimized conditions [Figure 1, entry 13], we examined the generality of this one-pot 
deracemization protocol [Figure 2]. Different substituted triarylmethane substrates all participated in this 
reaction to provide the enantioenriched products with both good yield and excellent enantioselectivity 
[Scheme 2]. Electron-donating groups and electron-withdrawing groups (e.g., nitro, cyano, halogen, and 
trifluoromethyl) did not affect the excellent outcome. However, it was found that those electron-poor 
substrates typically required a higher catalyst loading and/or higher temperature for the reaction to go 
completion. Thiophene-substituted triarylmethanes [2m and 2o] were also obtained in high enantiomeric 
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Figure 2. Reaction Scope[a]. [a] Reaction conditions:1a (0.05 mmol), DDQ (0.55 mmol), H1 (0.075 mmol), catalyst (10 mol%), solvent 
(1.0 mL). The yield was determined to be > 95% in all the cases by 1H NMR and TLC analyses of the crude reaction mixture; ee value 
was determined by chiral HPLC analysis. [b] Run with 0.5 mol% of catalyst. Solvent (0.18 mL, c = 0.28 M). [c] Run for 36 h. [d] Run at -
10 oC, 1a (0.4 mmol), DDQ (0.44 mmol), H1 (0.6 mmol), solvent (1.44 mL), 96 h.

excess, demonstrating the compatibility of this mild protocol to heterocycles. In these examples, an ortho-
methoxy group was present in one of the aryl rings to provide differentiation between the other arene. It is 
worth noting that other directing groups, such as fluorine and benzyl ether, could also serve the same 
purpose[55]. More drastically, discrimination of these two arenes by steric hindrance is also possible. For 
example, a methyl or ethyl group at the ortho-position also led to good enantioselectivity. Ortho-halogen (Cl 
or Br) also provided good levels of differentiation. This is noteworthy since these halide groups can be easily 
converted to many other functionalities. Interestingly, if both ortho-OMe and ortho-F are present in the two 
arenes, effective discrimination was also observed. Notably, the absolute stereochemistry of product 2f was 
confirmed by X-ray crystallography.

To further demonstrate the robustness of this process, we carried out a gram-scale reaction of 1a. Under the 
standard conditions, the desired deracemization product was obtained in 96% yield and 98% ee [Scheme 2]. 
The ortho-methoxy group in product 2a could also be deprotected to form a free hydroxyl group without 
erosion in enantiomeric excess. Based on our previous work[65], this bis(phenol) 3a could be further 
converted to spirocyclic dienone 4 in the presence of PhI(OAc)2 without erosion in its ee value.

CONCLUSIONS
In summary, we have developed the first deracemization approach for efficient access to enantioenriched 
triarylmethanes, a type of useful structure in medicinal chemistry. In contrast to the well-established 
deracemization processes for monoaryl- and diaryl-substituted carbon stereogenic centers, limited success 
has been achieved previously for triaryl-substituted ones. Specifically, herein a redox strategy involving the 
initial oxidation of racemic triarylmethanes followed by asymmetric reduction has been achieved in a one-
pot fashion. With suitable substitution on the arenes, this process proceeds through the key para-quinone 
methide intermediate. Chiral phosphoric acids have shown excellent capability in catalyzing this process. 
The reaction features mild conditions and low catalyst loading. This process provided a diverse set of highly 
enantioenriched triarylmethanes with high efficiency and excellent enantioselectivity. Notably, diverse ortho
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Scheme 2. Gram-scale Reaction and Product Derivatization. [a] Reaction conditions:1 (0.4 mmol), DDQ (0.44 mmol), H1 (0.6 mmol). 
Ee was determined by chiral HPLC analysis. Isolated yield. The specified temperature for each example is for the second step 
(reduction). [b] Run with 0.5 mol% of catalyst. [c] Run with 1 mol% of catalyst. [d] Run with 2 mol% of catalyst. [e] Run with 5 mol% 
of catalyst.
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-substituents on one of the arenes have been demonstrated to be powerful for providing asymmetric 
discrimination. Further extension of this strategy for more broad applications is expected.
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