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INTRODUCTION
The generation of new organic molecules relies on the formation of new bonds. Primary amines, as general 
and useful feedstocks, are generally used in constructing C−N bonds in organo-metallic chemistry and 
biochemistry [Scheme 1A][1,2]. If primary aliphatic amino groups are converted into leaving groups, they will 
be considered versatile alkyl sources, expanding the synthetic value of amines. Alkyl ammonium salts and 
alkyl pyridinium salts, prepared from primary amines, have been treated as versatile alkyl precursors. 
Especially, there is significant progress in deaminative functionalization of pyridinium salts through polar 
and radical processes. Commonly, alkyl radicals are accessible via metal reduction, photoredox catalysis, 
electron donor-acceptor complex, Lewis base catalysis, and electrochemical reduction[3-6]. The generated 
carbon radical could participate in subsequent transformation, establishing secondary and tertiary centers.

The formation of C(sp3)  C(sp3) bonds has received continuous attention in organic synthesis, and the focus on
versatile alkyl precursors remains constant. In our work, prevalent amines and carboxylic acids successfully serve
as alkyl sources to construct C(sp3)  C(sp3) bonds via decarboxylative deamination. The catalyst-free
decarboxylative alkylation reaction provides alternative access to the quaternary center. Primary mechanistic
experiments suggest that it undergoes a polar mechanism.
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Scheme 1. (A) Amidation reaction between amines and carboxylic acids; (B) esterification reaction between carboxylic acids and 
amine-derived pyridinium salts; (C) this work: decarboxylative alkylation reaction. TPT: 2,4,6-triphenylpyrylium; DMSO: Dimethyl 
sulfoxide; RT: room temperature.

In 1979, Katritzky found that alkylpyridinium salts reacted with diverse nucleophiles to form C−hetero 
bonds[7]. Recently, McGrath et al. disclosed esterification reactions between carboxylic acids and amine-
derived Katritzky salts. In this work, second and tertiary alkyl carboxylic acids participated in the formation 
of C−O bonds [Scheme 1B][8]. To the best of our knowledge, decarboxylative deamination has rarely been 
studied. In consideration of the significance of quaternary centers[9-11], we report nucleophilic substitution 
reactions of alkyl pyridinium salts with alkyl carboxylic acids to form C(sp3)−C(sp3) bonds containing these 
specialized centers [Scheme 1C].

It is well known that alkyl carboxylic acids could undergo radical decarboxylation via single electron 
oxidation to generate alkyl radicals[12-14]. When treated with base, the nucleophilic C(sp3) intermediates can 
be generated by ionic decarboxylation[15-20]. Based on the previous work, a plausible mechanistic pathway is 
proposed in Scheme 2. In the presence of a base, alkyl carboxylate is generated. After decarboxylation, 
carbon anion II attacks Katritzky salts I, giving the final target products. The key step is ionic 
decarboxylation, which could give relatively stable tertiary carbon anion II under mild conditions.

EXPERIMENTAL
To a mixture of pyridinium salt 1 (0.1 mmol), 2,2,2-triphenylacetic acid 2a (0.1 mmol), KHCO3 (0.1 mmol) 
was added Dimethyl sulfoxide (DMSO) (0.5 mL) under N2 atmosphere. Next, the reaction mixture was 
replaced Magnetic Stirrer at room temperature for 6 h. When the reaction finished, the mixture was purified 
by flash column chromatography on silica gel (petroleum ether: ethyl acetate = 50/1).

RESULTS AND DISCUSSION
To verify our proposal presented in Scheme 2, 1-benzyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate and 
2,2,2-triphenylacetic acid were selected as the model substrate [Table 1]. In the presence of KHCO3, the 
reaction proceeded smoothly in MeCN, giving the desired product in 43% yield, without esterification 
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aReaction conditions: 1a (0.1 mmol, 1.0 equiv), 2a (0.1 mmol, 1.0 equiv), base (0.1 mmol, 1.0 equiv), DMSO (2.0 mL), room temperature, 6 h; 
bDetermined by GCMS using biphenyl as the internal standard. The number in parentheses is the isolated yield; cDMSO (0.5 mL); dKHCO3 
(0.02 mmol, 0.2 equiv); eAir; fDark conditions. DMSO: Dimethyl sulfoxide; GCMS: gas chromatography mass spectrum.

Scheme 2. The proposed mechanism. TPT: 2,4,6-triphenylpyrylium.

product (entry 1). The screening of solvents showed that DMSO resulted in the best yield (entries 1-5). 
These results suggested that aprotic solvent was beneficial to decarboxylation for the carboxylate. When 
inducing the amount of DMSO (0.5 mL), a similar yield was obtained (84% isolated yield, entry 6). 
Inorganic base performed better than organic base (entries 6-9). When using 20% equiv of KHCO3, a lower 
yield was given (21%, entry 10). Exposure to air adversely affects the polar reaction (entry 11). The carbon 
anion intermediate may be oxidized by O2, delivering triphenylmethanol, detected by gas chromatography 
mass spectrum (GCMS). Hence, 1.0 equiv of KHCO3 and inert gas atmosphere were crucial for this 
decarboxylative alkylation reaction (entries 10-12). The possibility of formation of electron donor-acceptor 
(EDA) could be excluded (entry 13).

With the optimal reaction conditions in hand, we evaluated the scope of the reaction, as summarized in 
Scheme 3. Generally, the reaction occurred in good to excellent yield with benzylic pyridinium salts. 
Benzylic amines with donating groups on the phenyl ring at para-position performed well in this 

Table 1. The optimization of reactiona

Entry Solvent Base Yield (%)b

1 CH3CN KHCO3 43

2 Toluene KHCO3 0

3 CHCl3 KHCO3 29

4 Acetone KHCO3 79

5 DMSO KHCO3 95

6c DMSO KHCO3 91 (84)

7c DMSO K2HPO4 82

8c DMSO KH2PO4 13

9c DMSO 2,4,6-Collidine 18

10c,d DMSO KHCO3 21

11c,e DMSO KHCO3 20

12c DMSO - 17

13c,f DMSO KHCO3 92
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Scheme 3. The scope of pyridinium salts. aReaction conditions: 1a (0.1 mmol, 1.0 equiv), 2a (0.1 mmol, 1.0 equiv), KHCO3 (0.1 mmol, 
1.0 equiv), DMSO (0.5 mL), room temperature, 6 h; b24 h; c1x (0.2 mmol, 2.0 equiv), DMSO (2.0 mL), 48 h. DMSO: Dimethyl sulfoxide; 
RT: room temperature.

decarboxylative alkylation (3b-3c, 70%-80%). Moreover, strong electron-deficient (CN, CF3, OCF3) benzylic 
pyridinium salts were tolerated and isolated in acceptable yields (3e-3g, 51%-55%), while (4-
chlorophenyl)methanamine gave a better result (3d, 80%). The substituent groups at ortho-position and 
meta-position were both compatible (3h-3l). Under the reaction conditions, substrates could bear bis-
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Scheme 4. Gram-scale reaction. DMSO: Dimethyl sulfoxide; RT: room temperature.

Scheme 5. Mechanistic studies. DMSO: Dimethyl sulfoxide; RT: room temperature; TEMPO: 2,2,6,6-tetramethylpiperidinyloxy; BHT: 
2,6-di-tert-butyl-4-methylphenol; PBN: N-tert-Butyl-α-phenylnitrone.

substituted methyl, methoxy groups, and halogen (3m-3q). Heteroaromatic rings, given their importance in 
numerous pharmaceuticals, were next examined. To our delight, the pyridinium salts, such as those 
containing functionalized thiophenes, pyridines, pyrimidines, and pyrazines, were successfully treated as 
alkyl sources to construct quaternary centers (3r-3u). Generally, secondary pyridinium salts show larger 
steric hindrance than primary pyridinium salts. As expected, 1x resulted in a low yield, even extended to 
48 h. Surprisingly, allylic carbon cations may be more stable and suitable for this type of nucleophilic 
substitution, leading to the desired product in an excellent yield (3w, 85%). Unfortunately, other carboxylic 
acids are incompatible with the reaction [Supplementary Materials].

To clarify the practice of this method, a gram-scale reaction between 1-(but-3-en-2-yl)-2,4,6-
triphenylpyridin-1-ium tetrafluoroborate (1w) and 2,2,2-triphenylacetic acid (2a) was performed 
[Scheme 4]. The desired coupling product (3w), a kind of terminal olefine with a quaternary carbon center, 
was afforded as a white solid in 61% yield.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202401/cs3057-SupplementaryMaterials.pdf
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When monitoring the reaction, it was shown that most of the reactants transferred into 3a in a short time 
(59% in 0.5 h), and the reaction rate decreased as time increased due to a decrease in reactant concentration 
[Scheme 5A]. To further clarify the possible reaction mechanism, radical inhibiting experiments were first 
conducted [Scheme 5B]. Under the standard condition, three kinds of radical inhibitors were added. It is 
clear that reductive inhibitors, such as 2,6-di-tert-butyl-4-methylphenol (BHT) and N-tert-Butyl-α-
phenylnitrone (PBN), make no difference. When adding 2,2,6,6-tetramethylpiperidinyloxy (TEMPO), the 
reaction was inhibited, probably due to its strong oxidation. These results suggest that the present 
decarboxylative alkylation may be a polar reaction. We assume that pyridinium salts might act as 
electrophiles, and 2,2,2-triphenylacetic acid undergoes ionic decarboxylation to give nucleophilic alkyl 
carbon anion intermediates. In the presence of D2O, we found that the prepared potassium 2,2,2-
triphenylacetate directly proceeded with decarboxylation and gave D-triphenylmethane in 98% yield 
[Scheme 5C]. Next, anhydrous DMSO was used as the solvent. The desired decarboxylative alkylation 
product was afforded in a compatible yield (88%), accompanying a trace amount of triphenylmethane. As 
shown in Scheme 2, in the presence of KHCO3, tertiary carboxylate was formed. When finishing 
decarboxylation, the generated carbon anion (II) acted as a nucleophile. Followed by the cleavage of C−N 
bonds, the desired product 3 was delivered.

CONCLUSIONS
In conclusion, a catalyst-free decarboxylative alkylation has been developed. Versatile pyridinium salts, 
prepared from primary amines, acted as an effective electrophile and reacted with tertiary carboxylic acids 
to afford quaternary centers under mild conditions without excess reagents. Radical-inhibiting and 
deuteration-labeled experiments suggest that the reaction may proceed via a polar mechanism.
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