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Abstract
A general formula with high generalization and accurate prediction power is highly desirable for science, technology
and engineering. In addition to human beings, artificial intelligence algorithms show great promise for the discov-
ery of formulas. In this study, we propose a domain knowledge-guided interpretive machine learning strategy and
demonstrate it by studying the oxidation behavior of ferritic-martensitic steels in supercritical water. The oxidation
Cr equivalent is, for the first time, proposed in the present work to represent all contributions of alloying elements to
oxidation, derived by our domain knowledge and interpretive machine learning algorithms. An open-source tree clas-
sifier for linear regression algorithm is also, for the first time, developed tomaterialize the formula with collected data.
This algorithm effectively captures the linear correlation between compositions, testing environments and oxidation
behaviors from the data. The sure independence screening and sparsifying operator algorithm finally assembles the
information derived from the tree classifier for linear regression algorithm, resulting in a general formula. The gen-
eral formula with the determined parameters has the power to predict, quantitatively and accurately, the oxidation
behavior of ferritic-martensitic steels with multiple alloying elements exposed to various supercritical water environ-
ments, thereby providing guidance for the design of anti-oxidation steels and hence promoting the development of
power plants with improved safety. The present work demonstrates the power of domain knowledge-guided interpre-
tive machine learning with respect to the data-driven discovery of physics-informed formulas and the acceleration of
materials informatics development.
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INTRODUCTION
The rapid development of materials informatics [1–5], artificial intelligence (AI) and machine learning (ML)
techniques has led to a new paradigm of data-driven discovery of novel materials, state-of-the-art experimen-
tal and computational methods and scientific laws and formulas. The number of publications on materials
informatics has increased exponentially in the past decade and materials informatics has achieved great suc-
cess in many areas [6–10]. For example, Xue et al. [11] proposed an adaptive design iteration strategy by tightly
coupling ML with experiments, which sequentially identifies the next experiments by using efficient global
optimization to balance the trade-off between exploitation and exploration. This adaptive design strategy, also
known as active learning, starts from an initial dataset of 22 alloys, runs nine feedback loops in the search
space of ∼800,000 alloys and successfully finds very low thermal hysteresis NiTi-based shape memory alloys.
With a dataset of electronic density of states (DOS) generated by high-throughput density functional theory-
based computations, Fung et al. [12] used a convolutional neural network-based ML model to automatically
obtain the key features for the accurate prediction of catalytic properties, such as adsorption energies. TheML
model yields a DOSnet, which has the capacity to provide physically meaningful predictions and insights by
predicting responses to external perturbations to the electronic structure without additional calculations.

Attia et al. [13] developed an ML methodology to efficiently optimize a parameter space specifying the current
and voltage profiles of six-step, 10-min fast-charging protocols for maximizing battery cycle life. They trained
an elastic netMLmodel to predict battery charging/discharging life using data only from the first few cycles and
employed a Bayesian optimization algorithm to reduce the number of experiments by balancing exploration
and exploitation to efficiently probe the parameter space of charging protocols. With such an approach, they
identified and validated high-cycle-life charging protocols among 224 candidates in 16 days. Saito et al. [14]
conducted an image process by using U-Net based on a convolutional encoder-decoder network to segment
and identify the thickness of atomic layer flakes from optical microscopy images, achieving a success rate of
70–80% in distinguishing monolayer and bilayer MoS2 and graphene.

ML is achieving remarkable success in materials science and engineering [15,16] and will achieve even greater
success if it can become more transparent and interpretive. Theoretically, AI and ML are based on statistics
without utilizing any other scientific laws, principles and (physical) equations and most AI andML algorithms
perform as “black-box” systems [17–23]. Considerable efforts, such as physics-informed neural networks [24],
symbolic regression and Shapley additive explanations (SHAP) [25], are being carried out to enhance the inter-
pretability of ML models. Obviously, significant further endeavors are required to make ML models interpre-
tive. The strategy proposed in the present work, i.e., domain knowledge-guided interpretive ML, might pave
the way for the discovery of mathematical formulas.

In the present work, we propose a domain knowledge-guided interpretive ML strategy to make ML models
interpretable and have more physical sense and apply this strategy to the data-driven discovery of formulas
regarding the oxidation of ferritic-martensitic (FM) steels in supercritical water (SCW). Although the use of
SCW in power plants can achieve enhanced thermal efficiency with simplified plant design and improved
safety, it requires high anti-oxidation materials because SCW is a strong oxidant [26] beyond the supercritical
point (at 374 ◦C and 22.1 MPa). FM steels are some of the most promising structural materials for use in SCW-
cooled power plants, owing to their high elevated temperature strength, high creep resistance, high thermal
conductivity, low swelling behavior under irradiation, low thermal expansion coefficient, and low susceptibility
to stress oxidation cracking up to 600 ◦C [27,28].
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The oxidation behavior of FM steels in SCW environments has been investigated extensively through exper-
imental approaches [29–34]. The current understanding of the corrosion occurring in high-temperature water
environments is associated with the chemistry and physics of the water (density and dielectric constant of the
medium). In high-temperature water with a low density/dielectric constant (< 0.1 g/cm3/ < 10), the direct
oxidation reaction occurs between materials and oxidants (oxygen and/or water), while in high-temperature
water with a high density/dielectric constant (> 0.1 g/cm3/ > 10), electrochemical oxidation proceeds via the
partial anodic and cathodic reactions [30]. The oxidation behavior of FM alloys in SCW depends on the alloy
composition and oxidation environment. Ampornrat and Was [29] experimentally investigated the corrosion
behavior of three FM alloys (T91, HCM12 A and HT-9) in SCW at temperatures ranging from 400 to 600 ◦C
with dissolved oxygen concentrations of < 10 ppb (deaerated conditions), 100 ppb and 300 ppb. Cr is con-
ducive to the formation of a continuous inner Cr-Fe oxide layer to block the transportation of Fe (outward)
and oxygen (inward); therefore, a higher concentration of Cr generally corresponds to a lower oxidation rate
of FM steels in SCW. Furthermore, Si facilitates the formability of Cr-rich areas in FM steels [35]. Dong et al. [36]
reported that with increasing Mn content, the oxide scale becomes discontinuous and thicker, and thus Mn
might be harmful to the oxidation of FM steels in SCW.

Significant progress has been achieved in the investigation and understanding of FM steel oxidation in various
SCW environments [29,30,37–39], as evidenced by the Arrhenius equation of Δ𝑊 = 𝑘eff exp

(
− 𝑄
nRT

)
𝑡

1
𝑛 [29], where

Δ𝑊 per unit area (mg/dm2) denotes the oxidation weight gained, 𝑘eff (mg/dm2/h) is the effective oxidation
rate constant, 𝑄 is the activation energy of oxidation (J/mol), 𝑅 is the gas constant (8.314 J/mol·K), 𝑇 is the
absolute temperature (K), 𝑡 is time (h) and 1/𝑛 is the exponent over time.

Oxidation is clearly a thermally activated process, and the associated thermodynamics and kinetics are greatly
dependent on the material compositions and environmental variables. In experimental investigations, indi-
vidual researchers adjust only one or a few experimental conditions and the obtained result and formula are
valid only for the FM steels and SCW environments and periods tested. To the best of our knowledge, no
generalized formula has been established for the description and/or prediction of the oxidation of FM steels
with any given alloying elements exposed to various SCW environmental conditions. The present work adopts
domain knowledge-guided interpretive ML to discover a generalized formula for the oxidation of FM steels in
SCW, which will promote the development of green and safe power plants. In addition to exposure time, the
investigated FM steels cover 11 alloying elements, and the studied SCW environments include temperature,
dissolved oxygen concentration (DOC) and pressure.

Our domain knowledge of oxidation suggests a dimensionless Arrhenius equation of Δ𝑤
Δ𝑤00

= Δ𝑤0
Δ𝑤00

exp
(
− 𝑄

𝑅𝑇

)(
𝑡
𝑡0

)𝑚
𝑔

(
(DOC+𝑟)
(DOC)0

)
, where Δ𝑤00 = 1 mg/dm2 and is the reference weight gain, Δ𝑤0 is a prefactor, 𝑔

(
DOC+𝑟
(DOC)0

)
is

a function of the DOC, (DOC)0 = 1 ppb and is the reference DOC, 𝑟 is a parameter introduced to account for
the oxidation in deaerated SCW and𝑚 is the exponent of time. With this Arrhenius equation, the present work
integrates interpretive ML algorithms, including SHAP [25], extreme gradient boosting (Xgboost) [40] and the
sure independence screening and sparsifying operator (SISSO) [41], and more significantly, a newly developed
classifier model, the tree classifier for linear regression (TCLR) [42], to discover a generalized formula from
data for the oxidation of FM steels in SCW. Recently, the SHAP algorithm has been widely used to calculate
quantitatively the contribution of each feature to a particular task [5,21]. Xiong et al. [5] found that critical SHAP
values exist in some features when studying the hardness and ultimate tensile strength of complex concentrated
alloys (CCAs) by ML. The critical feature value separates the SHAP values into positive and negative regions.
This means that the feature values in the positive/negative SHAP value region improve/impair the mechanical
properties of CCAs, thereby providing a straightforward assessment of the design of CCAs with high hardness
and strength. Obviously, the application of SHAP, including pure and interaction SHAP values, will further
promote the development of materials informatics.
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Figure 1. Domain knowledge-guided interpretive ML strategy. A: Feature selection with ℜ𝜙 𝑗 and data screening through 3𝜎 criterion. B:
Novel oxidation Cr equivalent of FM steels derived from joint contributions of elements. C: A prototype “divide-and-conquer” algorithm,
TCLR, proposed for capturing the influences of features on time exponents and activation energy. D: Formulas of crucial terms derived by
the SISSO under the constraint of prior domain knowledge.

The generalized formula established in this study accurately predicts the oxidation behavior of experimental
FM steels with different alloying elements in various SCW testing conditions. Figure 1 outlines the domain
knowledge-guided interpretive ML strategy, where the hub is the domain knowledge suggested Arrhenius
equation. The feature importance of SHAP ℜ𝜙 𝑗 = |𝜙 𝑗 | is applied in feature selection effectively. Outliers are
screened out based on a calculated 99.7% confidence interval [Figure 1 A] of the ML model. The oxidation
Cr equivalent concentration is introduced based on the interactive decomposition of SHAP values to interpret
the joint contributions of alloying elements to the oxidation behavior [Figure 1B]. The TCLR algorithm is an
efficient classifier to locate samples to leaves with each sharing the same activation energy and/or time exponent
[Figure 1C].The SISSO [41] assembles the information from TCLR into a generalized formula [Figure 1D].The
Arrhenius equation is the starting point of the domain knowledge-guided interpretive ML strategy, which is
a prior suggested based on our knowledge. The Arrhenius equation is also the posterior after the mining and
evaluation of the ML algorithms with the experimental data, and thus transfers to a generalized formula.

METHODS
Dataset
A total of 184 oxidation data of FM steels in SCW are collected from the literature and given at the online
Supplementary Information. Every datum in the FM steel oxidation (FMO) dataset includes oxidation caused
weight gain in units of mg/dm2, testing conditions, exposure time and steel chemical compositions, with a
total of four testing features and 11 alloying element features (the balance element Fe is not accounted for), as
shown in Table 1.

Xgboost and SHAP values
Xgboost [40] is a powerful tree-based boosting ensemble algorithm. The present work employs the Xgboost
algorithm to regress the oxidation data of FM steels in SCW, and the values of hyperparameters involved are
optimized by cross-validation and/or a grid search in the hyperparameter space with the open python library
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Table 1. Fifteen features of FM steel oxidation data

Category Feature name Description
Alloying elements Cr Chromium (wt.%)

Si Silicon (wt.%)
Mn Manganese (wt.%)
C Carbon (wt.%)
Ni Nickel (wt.%)
Mo Molybdenum (wt.%)
Nb Niobium (wt.%)
W Tungsten (wt.%)
V Vanadium (wt.%)
P Phosphorus (wt.%)
Cu Copper (wt.%)

Testing conditions T Absolute temperature (K)
Pressure SCW pressure (MPa)

t Exposure time (h)
DOC Dissolved oxygen concentration (ppb)

scikit-learn [43]. Table S1 at Section 2.1 of the Supplementary Information lists all optimized values of the
hyperparameters.

The SHAP algorithm is developed based on game theory [25]. A SHAP value, whether positive or negative,
reflects the contribution of a feature to a predicted response in one datum, and the predicted response is given
by anMLmodel. In the present work, SHAP values are calculated with Xgboost models. If there are𝑚 features
of (𝑥1, · · · , 𝑥𝑚) and one predicted response �̂� = 𝑓 (𝑥1, · · · , 𝑥𝑚), the predicted response can be expressed by the
SHAP values in an additive manner as

�̂� = 𝜙0 +
𝑚∑
𝑗=1

𝜙 𝑗 , (1a)

where 𝜙0 denotes the SHAP value of the tree root in the tree-based Xgboost algorithm and 𝜙 𝑗 is the SHAP
value of feature 𝑥 𝑗 ( 𝑗 = 1, · · · , 𝑚). The SHAP value 𝜙 𝑗 can be decomposed into

𝜙 𝑗 = 𝜙 𝑗 , 𝑗 +
𝑚∑

𝑘≠ 𝑗 ,𝑘=1
𝜙 𝑗 ,𝑘 for ( 𝑗 = 1, · · · , 𝑚), (1b)

where the SHAP value 𝜙 𝑗 , 𝑗 denotes the pure contribution of feature 𝑥 𝑗 itself and 𝜙 𝑗 ,𝑘 is known as the interaction
between features 𝑥 𝑗 and 𝑥𝑘 , and accordingly, 𝜙 𝑗 , 𝑗 and 𝜙 𝑗 ,𝑘 are deemed the pure and interaction SHAP values,
respectively. Equation (1b) indicates that the contribution from feature 𝑥 𝑗 to the predicted response is the sum
of its pure contribution plus its joint contributions with other features. Therefore, a comprehensive study of
SHAP values will provide insights into the mechanisms of the oxidation of FM steels in SCW.

Integration of SHAP values with domain knowledge
The game theory-based SHAP value is an additive feature attribution method, where the output is a sum of
contributions of each input feature [44]. If the contributions of variables to a function are not additive in the
original variable space, but additive in a mapped space, the SHAP value will be calculated in the mapped space.
For the oxidation of FM steels in SCW, there are 15 features and each feature contributes to the oxidation
weight gain Δ𝑤 = 𝑓 (𝑥1, · · · , 𝑥15), where 𝑥 𝑗 ( 𝑗 = 1, · · · , 15) represent the 15 features.

It might be inaccurate to calculate the reasonable SHAP values in the original space. Based on the domain
knowledge of oxidation, we take a dimensionlessArrhenius equation of Δ𝑤

Δ𝑤00
= Δ𝑤0

Δ𝑤00
exp

(
− 𝑄

𝑅𝑇

) (
𝑡
𝑡0

)𝑚
𝑔

(
(DOC+𝑟)
(DCO)0

)
.

Obviously, the features 𝑇 and 𝑡 are explicitly shown in the Arrhenius equation. The contributions from the
other features to the oxidation weight gain are via the three parameters of Δ𝑤0, 𝑄 and 𝑚. Although the con-
tributions of features to the oxidation weight gain are not additive in the original Arrhenius equation, the
logarithmic form of ln Δ𝑤

Δ𝑤00
= ln Δ𝑤0

Δ𝑤00
+ ln

(
𝑔

(
DOC+𝑟
(DOC)0

))
− 𝑄

𝑅𝑇 + 𝑚 ln 𝑡
𝑡0
exhibits the additive behavior and is
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coherently integrated with SHAP values in the present study to explore the oxidation mechanism of FM steels
in SCW. For simplicity, we let 𝑦 = ln Δ𝑤

Δ𝑤00
, 𝑦0 = ln Δ𝑤0

Δ𝑤00
, 𝑥1 = 1

𝑅𝑇 , 𝑥2 = ln 𝑡
𝑡0
, 𝑥3 = DOC and other features

𝑥 𝑗 ( 𝑗 = 4, · · · , 15).

Feature ranking, selection and data screening
An Xgboost model is first developed with all features via ten-fold cross-validation (10-CV) and is used to
calculate all SHAP values 𝜙𝑖 𝑗 , where subscripts “𝑖” and “ 𝑗” denote sample 𝑖(𝑖 = 1, · · · , 𝑛) and feature 𝑥 𝑗 ( 𝑗 =
1, · · · , 𝑚), respectively. The mean |𝜙 𝑗 | of the absolute SHAP values for each feature 𝑥 𝑗 ( 𝑗 = 1, · · · , 𝑚) is then
calculated from

ℜ𝜙 𝑗 = |𝜙 𝑗 | =
1
𝑛

n∑
𝑖=1

|𝜙𝑖 𝑗 |, (2)

where 𝑛 = 184 and 𝑚 = 15 are the numbers of data and features, respectively. The feature importance ℜ𝜙 𝑗

indicates that the higher the mean of the absolute SHAP values of a feature, the greater the contribution of the
feature to the response will be.

The data screening is carried out by evaluating the errors 𝜀𝑖 between the response 𝑦𝑖 and the predicted response
�̂�𝑖 , viz., 𝜀𝑖 = 𝑦𝑖 − �̂�𝑖 (𝑖 = 1, · · · , 𝑛). The errors should follow a normal distribution 𝜀 ∼ 𝑁 (0, 𝜎). If the errors
exhibit a nonzero mean, the prediction from an ML model deviates systematically from the real values. In
this case, the ML model should be improved. If the errors show a normal distribution with a zero mean and
few errors of data located far away from the mean, the 3𝜎 criterion is usually taken as the threshold to gauge
whether a datum is an outlier. Cautionmust be used in handling outliers. Repeated tests are strongly suggested
to verify the reliability of the outliers and reliable outliers imply a new mechanism.

RESULTS AND DISCUSSION
Feature selection and data screening
A total of 184 data on FM steel oxidation in SCW are collected from the literature and provided in the Supple-
mentary Information. Fifteen features are employed here and categorized into two groups, namely, alloying
elements and testing conditions. The feature analysis is carried out within each of the groups. The SHAP values
𝜙𝑖 𝑗 (𝑖 = 1, · · · , 184)( 𝑗 = 1, · · · , 15) of all features and errors 𝜀𝑖 = 𝑦𝑖 − �̂�𝑖 (𝑖 = 1, · · · , 184) are calculated with
the Xgboost model evaluated by 10-CV. Figure 2(A)-(D) shows the SHAP values of the four testing condition
features, while Figure 2(E)-(I) illustrates the SHAP values of the five alloying elements of V, Si, Cr, Ni and Mn.
The SHAP values of the other six alloying elements are shown in Figure S1 in Section 2.2 of the Supplementary
Information, where the blue points are calculated SHAP values and the red dashed lines indicate the SHAP
value of 𝜙0 = 5.45, which serves as a reference baseline through the origin of the vertical SHAP value axis.

As expected, Figure 2A shows that the lower the value of 1
𝑅𝑇 , the higher the SHAP value of 𝜙 1

𝑅𝑇
, meaning that

in general, the oxidation of FM steels is severer at higher temperatures. In contrast, Figure 2A also shows that
at a given temperature, the SHAP value of 𝜙 1

𝑅𝑇
varies greatly, e.g., the SHAP value of 𝜙 1

𝑅𝑇
varies from 0.31 to

1.22 at 1
𝑅𝑇 = 0.13029, from 0.93 to 1.22 at 1

𝑅𝑇 = 0.13775 and from −2.04 to −1.52 at 1
𝑅𝑇 = 0.17868. The variation

in 𝜙 1
𝑅𝑇

at a certain temperature is caused by other features, which will be analyzed later. The SHAP value of

𝜙
ln

(
𝑡
𝑡0

) also exhibits the anticipated trend, as illustratedin Figure 2B, where the larger the value of ln
(
𝑡
𝑡0

)
, the

higher the SHAP value of 𝜙
ln

(
𝑡
𝑡0

) . This result is logical because a longer exposure time increases the oxidation

weight gain. Furthermore, the variation in 𝜙
ln

(
𝑡
𝑡0

) at a given value of ln
(
𝑡
𝑡0

)
is induced by other features and

will be studied later.

The SHAP value of 𝜙DOC behaves interestingly, as shown in Figure 2C, where at the deaerated condition (DOC
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Figure 2. SHAP analysis of features. A-D: SHAP values of testing conditions, i.e., temperature, time, DOC and pressure. E-I: SHAP values
of alloy compositions, i.e., V, Si, Cr, Ni and Mn. J: Feature importance ranking by ℜ𝜙 𝑗 . K: Fitting effect of Xgboost model with selected eight
features for 10-CV.

< 10 ppb), the SHAP value of 𝜙DOC changes greatly from −0.84 to 0.17. Once DOC > 10 ppb, the higher
the DOC, the larger the SHAP value of 𝜙DOC. The shape of the SHAP values of 𝜙DOC suggests a logarithm
function of 𝑔

(
(DOC+𝑟)
(DCO)0

)
. The result is rational in thermodynamics and kinetics because a higher DOC results
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in a stronger driving force for oxidation. Figure 2D indicates that the magnitude of the SHAP values of 𝜙pressure
is one or two orders smaller in comparisonwith 𝜙 1

𝑅𝑇
, 𝜙

ln
(
𝑡
𝑡0

) and 𝜙DOC, ranging from−0.013 to 0.009 except for
one point at −0.03 with a pressure of 30 MPa. This indicates that between the pressure range of 20.7–31 MPa,
the pressure of SCW has a negligible contribution to the oxidation of FM steels in SCW.

It is somewhat surprising that vanadium plays the most important role among the studied 11 alloying elements
in the oxidation of FM steels in SCW, as shown in Figure 2E, where the SHAP value of 𝜙V statistically decreases
from 0.22 to −0.15 as the V content increases from 0 to 0.3 wt.%. When the V content is higher than 0.19 wt.%,
the SHAP values of 𝜙V are all negative regardless of the great variation, thereby indicating that the V content
should be higher than the critical value in anti-oxidation FM steels in SCW.The performance of silicon in the
oxidation of FM steels in SCW is similar to that of vanadium. Figure 2F shows that the critical Si concentration
is 0.38 wt.%, beyond which the SHAP values of 𝜙Si are all negative. However, for 0.5 wt.% Si, a few SHAP
values of 𝜙Si appear as outliers, which will be analyzed later. Although chromium is the basic element of FM
steel against oxidation, its anti-oxidation performance is unsatisfactory with a SHAP value of 𝜙Cr > 0 if its
content is less than 9.5 wt.%, as shown in Figure 2G. Nickel has high corrosion resistance to acids and alkalis
at higher temperatures [45] and thus alloying Ni with a content higher than 0.13 wt.% into FM steels enhances
the oxidation resistance of FM steels in SCW, as shown in Figure 2H. Manganese might be detrimental to the
oxidation of FM steels in SCW when its content is high. Figure 2I indicates that the SHAP value of 𝜙Mn > 0 if
the Mn concentration is higher than 0.9 wt.%.

The feature importance defined in the SHAP method (see Methods), ℜ𝜙 𝑗 , is calculated for all 15 features and
plotted in Figure 2J. The three features of the testing conditions, 1

𝑅𝑇 , ln
(
𝑡
𝑡0

)
and DOC, rank as the top three in

the feature importance, indicating that the oxidation environment and time play the most important roles in
the oxidation of FM steels in SCW. In contrast, the influence of SCW pressure in the range of 20.7–31 MPa on
the oxidation of FM steels is trivial. In general, the feature importance of alloying elements is lower than the
three features of the testing conditions, as shown in Figure 2J.

The feature selection is then conducted by the sequential backward selector wrapped with Xgboost and 10-
CV, which yields the three testing features of 1

𝑅𝑇 , ln
(
𝑡
𝑡0

)
and DOC, and five alloying elements of V, Si, Ni,

Cr and Mn, i.e., the top eight in the feature importance order. It seems that the elements of V, Si and Ni
play more important roles than Cr based on the feature importance ranking. As described later in the pure
SHAP value analysis, Cr is the major element when its concentration is higher than 11 wt.% against FM steel
oxidation in SCW. Furthermore, the errors 𝜀𝑖 between the response 𝑦𝑖 and the predicted response �̂�𝑖 , i.e.,
𝜀𝑖 = 𝑦𝑖 − �̂�𝑖 (𝑖 = 1, · · · , 𝑛), are calculated for the original 184 data and follow a normal distribution with
a zero mean and standard deviation of 𝜎 = 0.35, as shown in Figure S2 in Section 2.3 of the Supplementary
Information. However, there are six errors located outside of±3𝜎 of 𝜀𝑖 , meaning that the associated six data are
outside the 99.7% confidence interval. These six data are removed from the following analysis and highlighted
in the FMO dataset, and hereafter, only the surviving 178 data are used to explore analytic formulas for the
oxidation of FM steels in SCW (the details regarding the outliers are given in Section 2.4 of the Supplementary
Information). With the selected eight features, the Xgboost model predicts the values of ln Δ𝑤

Δ𝑤00
for the 178

data. The predicted values are plotted against the real values in Figure 2(K), showing an excellent prediction
with a Pearson correlation value of 𝜌 = 0.988, representing a slight enhancement from the original 𝜌 = 0.986
with all features.

Pure SHAP values and oxidation Cr equivalent
The SHAP value of each feature is decomposed into its pure SHAP value and the interaction SHAP values, as
stated in Eq. (1b). Figure 3A-H shows the pure SHAP values of the selected eight features and there are 178
pure SHAP values in each figure. A comparison of Figure 3A-H to the corresponding Figure 2A-C and Figure
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Figure 3. Pure SHAP value analysis of important features. A-C: Pure SHAP values of testing conditions, i.e., temperature, time and DOC.
D-H: Pure SHAP values of alloy compositions, i.e., V, Ni, Cr, Si and Mn.

E-I indicates that for a certain feature value, the pure SHAP value scattering is much smaller than the SHAP
values. This is an expected result because a pure SHAP value eliminates all interaction SHAP values from its
parent SHAP value. If pure SHAP values are calculated from a perfect model of a single function of variables,
the pure SHAP value of a feature will correspond to the feature value one-to-one, i.e., for one feature value,
there is only one pure SHAP value.

Figure 3A shows almost ideal pure SHAP values of feature 1
𝑅𝑇 . There are [0.90, 0.93], [0.83, 0.93], [1.06, 1.11],

[0.12, 0.18], [−0.12, −0.09], [−0.40, −0.38] and [−1.84, −1.76] pure SHAP values at 1
𝑅𝑇 = 0.123598, 0.130292,

0.137753, 0.14612, 0.15557, 0.166327 and 0.178681, respectively, and the pure SHAP values at a given value
of 1

𝑅𝑇 are almost the same such that the data are condensed to one point, as shown in Figure 3A. The near
perfect result implies that the oxidation of FM steels in SCW is indeed a thermally active process and the
pure SHAP value of feature 1

𝑅𝑇 catches the oxidation mechanism. Figure 3B illustrates the pure SHAP values
of feature ln

(
𝑡
𝑡0

)
, where there are 36 values of ln

(
𝑡
𝑡0

)
and the maximum of the pure SHAP values is 0.41 at

ln
(
𝑡
𝑡0

)
= 7.600902.

There are a few reasons causing multiple pure SHAP values at a given feature. The first reason might be exper-
imental errors, which measure the degree of the experimental scattering of repeated tests. The second reason
might be attributed to the Xgboost model, which approximately estimates the response from the input feature
data rather than a perfect function. The third reason might be the method used to calculate the SHAP val-
ues from a tree-based algorithm (Tree-Explainer model). Figure 3C shows that the pure SHAP values of the
DOC feature can be expressed by a logarithm function of 0.0682 ln

(
(DOC+1)
(DCO)0

)
− 0.267, which is plotted by the

dashed curve. The logarithm function of pure SHAP requires its argument to be larger than zero but beyond
the restriction of a specific 𝑟 value; hence 𝑟 = 1 is arbitrarily assigned in the figure, and the real value of 𝑟 for
the oxidation in the deaerated SCW is determined in the following analysis. A similar trend is exhibited in the
pure SHAP values of the element features. The outlier suspected points at 0.5 wt.% Si disappear in the pure
SHAP values of the Si feature, thereby indicating they are caused by the interaction SHAP values. As expected,
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the critical values of 0.19 wt.% V, 0.38 wt.% Si, 9.5 wt.% Cr, 0.13 wt.% Ni and 0.9 wt.% Mn remain unchanged
in the pure SHAP values. Figure 3D shows that the minimum pure SHAP value of V is −0.122 at its highest
concentration (0.3 wt.%) in the dataset, while Figure 3F indicates that the minimum pure SHAP value of Cr
is −0.186 at its highest concentration of 12 wt.%. The pure SHAP values based on the available data illustrate
that Cr is still the basic alloying element for anti-oxidation FM steels in SCW.

From the pure SHAP value of an individual feature, we defined the joint SHAP value of two features as

𝜙 𝑗 𝑘 = 𝜙 𝑗 , 𝑗 + 2𝜙 𝑗 ,𝑘 + 𝜙𝑘,𝑘 for ( 𝑗 , 𝑘 = 1, · · · , 𝑚), (3a)

which measures the joint contribution of two features. In general, 𝜙 𝑗 𝑘 is a function of features 𝑥 𝑗 and 𝑥𝑘 . As
described above, the present industrial practice still employs Cr as the basic alloying element in manufactur-
ing anti-oxidation FM steels in SCW. Therefore, Cr is taken as the basic feature 𝑥 𝑗 and V, Si, Ni and Mn are
treated as the partner features 𝑥𝑘 in the calculation of the joint SHAP value. A linear function is proposed to
approximately estimate the interaction function, i.e., 𝜙 𝑗 𝑘 (𝑥 𝑗 , 𝑥𝑘 ) ≈ 𝜙 𝑗 𝑘0 + 𝑎0

𝑗𝑥 𝑗 + 𝑎0
𝑘𝑥𝑘 . The two coefficients

𝑎0
𝑗 and 𝑎0

𝑘 represent the contribution weights of features 𝑥 𝑗 and 𝑥𝑘 , respectively, to their interaction function.
Then letting 𝑎0

𝑗 ≡ 1 introduces an equivalent coefficient 𝑎𝑘 = 𝑎0
𝑘/𝑎

0
𝑗 for feature 𝑥𝑘 and named it 𝑥 𝑗 equivalent

coefficient of 𝑥𝑘 . With the approach, we calculate the Cr equivalent coefficient for each of V, Si, Ni and Mn
and then sum up the four Cr equivalent coefficients to yield the oxidation Cr equivalent concentration, [C̃r],

[𝐶𝑟] = [Cr] + 𝑎V [V] + 𝑎Si [Si] + 𝑎Ni [Ni] + 𝑎Mn [Mn] (3b)

where [·] represents the real concentration in wt.% of an element. Figure 4A-D shows the joint SHAP values
of two features, 𝜙CrSi, 𝜙CrMn, 𝜙CrNi and 𝜙CrV, respectively, and each of the joint SHAP values of two features
contains 178 data. Using the linear approximation and the approach mentioned above, we can then obtain the
oxidation Cr equivalent concentration

[𝐶𝑟] = [Cr] + 40.3[V] + 2.3[Si] + 10.7[Ni] − 1.5[Mn] (3c)

Hereafter, we use one feature of the oxidation Cr equivalent concentration to replace the five element features.
Thus, the total number of features is reduced to four, one chemical composition feature and three testing
condition features. With the four features, the Xgboost model is retrained with 10-CV. The predictions on
the 178 data are plotted in Figure 4E, showing a perfect fitting with 𝜌 = 0.985. With the Xgboost model, we
calculate the pure SHAP value of the oxidation Cr equivalent concentration, 𝜙[𝐶𝑟],[𝐶𝑟] and plot it in Figure 4F.
The pure SHAP value 𝜙[𝐶𝑟],[𝐶𝑟] is almost linearly proportional to the oxidation Cr equivalent concentration
[C̃r] with a correlation of 𝜌 = −0.97. Figure 4F shows that when [C̃r] > 19.29 wt.%, the pure SHAP values
𝜙[𝐶𝑟],[𝐶𝑟] are all negative. It is important to consider that the oxidation behavior of FM steels in SCW depends
on both the composition and microstructure of the steels. The oxidation chromium equivalent concentration
is based only on the chemical composition and therefore [C̃r] is a purely compositional representative, which
will provide guidance in the design of anti-oxidation FM steels.

Activation energy and time exponents
The oxidation mechanism of FM steels in SCW is embodied in the activation energy and time exponent [29,46],
which are the coefficients of ln Δ𝑤

Δ𝑤00
versus features 1

𝑅𝑇 and ln
(
𝑡
𝑡0

)
, respectively. Figure S3 in Section 2.5 of

the Supplementary Information shows the plots of ln Δ𝑤
Δ𝑤00

versus 1
𝑅𝑇 and ln Δ𝑤

Δ𝑤00
versus ln

(
𝑡
𝑡0

)
, respectively,

indicating multiple values of ln Δ𝑤
Δ𝑤00

for a given value of 1
𝑅𝑇 or ln

(
𝑡
𝑡0

)
due to the contributions of other fea-

tures. To investigate the effects of other features on the activation energy and time exponent, a novel “divide-
and-conquer” approach is developed based on a tree model and hence named TCLR. Maximizing the in-
formation gain in conventional tree classifiers determines the splitting feature and the associated splitting
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Figure 4. Joint SHAP value of two features and the derived oxidation Cr equivalent concentration. A-D: Joint SHAP value of two features, i.e.,
Cr with Si, Mn, Ni and V, respectively. E: Predicted values of Xgboost model versus experimental values with the transferred four features.
F: Pure SHAP analysis of oxidation Cr equivalent concentration feature.

value. TCLR is developed based on that the response 𝑦 = 𝑓 (𝑥1, · · · , 𝑥𝑚) is a linear function of features 𝑥 𝑗
( 𝑗 = 1, · · · , �̂�) �̂� ≤ 𝑚, where features 𝑥 𝑗 ( 𝑗 = 1, · · · , �̂�) are called the linear-features. The linear-feature
set is a subset of the feature set (𝑥1, · · · , 𝑥𝑚). A TCLR tree is a binary classification tree, where only the lin-
ear relationship between the response and one linear-feature is classified by using all features (𝑥1, · · · , 𝑥𝑚) in
splitting. In the present work, there are two linear-features of 𝑥 𝑗=1 = 1

𝑅𝑇 and 𝑥 𝑗=2 = ln
(
𝑡
𝑡0

)
and one response

𝑦 = ln 𝑤
𝑤00

= 𝑓
(

1
𝑅𝑇 , ln

(
𝑡
𝑡0

)
,DOC, [C̃r]

)
with four features. Thus, two TCLR trees are developed and in each

of TCLR trees, the absolute change in Pearson correlation coefficient (Other metrics are embedded for non-
linear functions, as demonstrated in section 1 of SI), called the Linearity Goodness (LG), between function
𝑦 = 𝑓 (𝑥1, · · · , 𝑥𝑚) and a linear-feature 𝑥 𝑗 ( 𝑗 = 1, · · · , �̂�) on nodes is taken as a generalized loss function. The
split feature and split value are determined, from n data with m features {𝑥𝑖 𝑗 }(𝑖 = 1, · · · , 𝑛)( 𝑗 = 1, · · · , 𝑚),
by maximizing the gain of average LG in the consequent nodes. For example, if the correlation coefficients
in a parent node and two child nodes are denoted by 𝜌𝑝 , 𝜌𝑐1 and 𝜌𝑐2, respectively, the gain of average LG is
defined by Δ|𝜌 | = 1

2 |𝜌𝑐1 + 𝜌𝑐2 | − |𝜌𝑝 | and the split feature and split value 𝑥𝐼𝐽 are determined from
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𝑥𝐼𝐽 = arg max
𝑥𝑖 𝑗

Δ|𝜌 | (𝑖 = 1, · · · , 𝑛)( 𝑗 = 1, · · · , 𝑚) (4)

The TCLR tree must be pruned, otherwise, many leaves contain only two data per leaf, which destroys the
model generalization considerably. A threshold of data number might also be introduced to prune the tree,
i.e., the amount of data in a leaf should not be smaller than a pre-set threshold (default minsize = 3). Another
threshold for the LG is introduced to pre-prune the tree. When the LG in a node is equal to or higher than a
pre-set threshold, the node will become a leaf. In general, as the value of the LG threshold increases, the model
complexity of our procedure tends to improve and the tree tends to overfit. The opposite behavior occurs as
the LG threshold decreases. In the bias-variance trade-off, a lower value of the LG threshold corresponds to
a larger value of the number threshold of data. Thus, TCLR has the function of data screening by discarding
data, which cannot be described linearly (functionally) for some of the resulting leaves in such a framework.
In the present work, the LG threshold is pre-set to be 0.90 for both ln Δ𝑤

Δ𝑤00
versus 1

𝑅𝑇 and ln Δ𝑤
Δ𝑤00

versus ln
(
𝑡
𝑡0

)
.

The details of the TCLR algorithm are given in Supplementary Information.

The entire feature space is estimated from the regions of the four features, i.e., [C̃r] ∈ [10.38, 30.319] wt.%,
𝑇 ∈ [673.15, 973.15] K, 𝑡 ∈ [30, 2000] h and DOC ∈ [0, 8000] ppb. The TCLR separates the entire feature
space intomany subdomains and each subdomain corresponds to one leaf, as shown in Figure S4, Table S2 and
Table S3 in Supplementary Information. For ln Δ𝑤

Δ𝑤00
versus 1/𝑅𝑇 , the results indicate that 17 leaves pass the LG

threshold and two fail, while for ln Δ𝑤
Δ𝑤00

versus ln
(
𝑡
𝑡0

)
, the leaves that pass and fail are 28 and 7, respectively. The

amount of data in each passed leaf ranges from 3 to 30 for ln Δ𝑤
Δ𝑤00

versus 1/𝑅𝑇 and from 3 to 10 for ln Δ𝑤
Δ𝑤00

vs.
ln

(
𝑡
𝑡0

)
, indicating that reliable values of activation energy Q and time exponent 𝑚 will be statistically obtained

by TCLR. The ideal case for the measurement of activation energy Q (or time exponent 𝑚) is that the tests
are carried out at various temperatures (or times) for a certain FM steel under other fixed testing conditions.
The TCLR realizes such ideal cases from the complex data by partitioning the whole feature space of FM steels
into many small rectangle domains, with one domain for a passed leaf. The samples on each passed leaf may
have the same feature or varied feature values, but the variation must be too small to influence the measured
activation energy Q (or time exponent m). On each of the failed leaves, the feature values of samples vary
greatly so that they will not follow the same mechanism of oxidation, or it is too narrow to cover enough
data subject to the capacity of the FMO dataset. One passed leaf and one failed leaf are taken as examples to
illustrate the typical cases, as shown in Figure 5A-D.

Figure 5A shows one passed leaf for ln Δ𝑤
Δ𝑤00

versus 1/𝑅𝑇 and the feature values, where four data all have the
same DOC = 8 ppb, three data have [C̃r] = 17.27 wt.% and one datum with [C̃r] = 18.27 wt.%, two data
with 𝑡 = 40 h and two data with 𝑡 = 50 h. The linear fitting yields the statistically reasonable activation energy
𝑄 = 47.38 kJ/mol. Figure 5C shows one completely ideal passed leaf for the linear fitting of ln Δ𝑤

Δ𝑤00
versus

ln
(
𝑡
𝑡0

)
, yielding time exponent 𝑚 = 0.412, where all five data have the same values of [C̃r] = 12.95 wt.%,

DOC = 200 ppb and 𝑇 = 823.15 K.There are four data on the failed leaf shown in Figure 5B, where the datum
with 𝑡 = 2000 h makes the LG not qualified. Although there are two data in Figure 5B that share the same
feature values except for temperature, the two data do not allow to stay in a leaf because the threshold of data
number is three. Figure 5D shows a failed leaf, where except for time, two data share the same feature values
and another shares the same feature values. For the same reason that two data do not allow to stay in one leaf,
the four data are restricted on a leaf with a low LG value.

The TCLR yields the values of activation energy Q and time exponent 𝑚 as functions of the four features. The
activation energy Q varies from 43.38 to 139.18 kJ/mol in the region 𝑅Q = {[C̃r] ∈ [10.38, 30.319] wt.%,
DOC ∈ [0, 8000] ppb, 𝑇 ∈ [673.15, 973.15] K and 𝑡 ∈ [30, 2000] h}, where region 𝑅Q is the union set
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Figure 5. Data located on the leaf of TCLR. (A), (B) One passed leaf and one failed leaf on TCLR of activation energy. (C), (D) One passed
leaf and one failed leaf on TCLR of time exponents.

of all leaf domains in the TCLR on ln Δ𝑤
Δ𝑤00

versus 1/RT withholds the inner interval it covers, containing all
178 data, including seven failed data. Similarly, the time exponent 𝑚 varies from 0.112 to 0.71 in the region
𝑅𝑚 = {[C̃r] ∈ [10.38, 30.319] wt.%, DOC ∈ [0, 8000] ppb, 𝑇 ∈ [673.15, 923.15] K, and 𝑡 ∈ [30, 2000] h},
containing 176 data including 27 failed data after removing an outlier highlighted on the red leaf of three data
in Figure S4 in the Supplementary Information. The outlier gives 𝑚 = 6.49, which is too larger than other 𝑚
values. Two data on the red leaf share the same feature values except for time, which yields an unreasonable
𝑚 of 15.398. This outlier should be carefully examined by experiments. The datasets contain data with four
determinate features, and their corresponding activation energies and time exponents are extracted from the
original FMO dataset by TCLR.

The SISSO algorithm [41], with minimization of mean absolute percentage error (MAPE, see Supplementary
Information) is carried out to find analytic expressions of activation energyQ and time exponent𝑚 as functions
of the four features of 𝑇 , 𝑡, DOC and [C̃r], which yields

𝑄SISSO(kJ/mol) = 0.084
[C̃r]2 − [C̃r] +DOC

exp(DOC/𝑇) + 45.09 (5a)

𝑚SISSO = 0.323 − 0.061
exp(DOC/𝑇)

[C̃r] −
√
[C̃r] −DOC

(5b)

Note that [C̃r],𝑇 andDOC are all dimensionless as pre-divided by the reference values of 1 wt.%, 1 K and 1 ppb,
respectively, and the MAPE = 12.97% for𝑄SISSO and MAPE = 39.13% for 𝑚SISSO. It is interesting that feature 𝑡
does not show up in both𝑄SISSO and 𝑚SISSO, meaning that time does not statistically play an important role in
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activation energy Q and time exponent 𝑚. As expected, the higher the oxidation Cr equivalent concentration
[C̃r], the larger the activation energy and the smaller the time exponent. The effects of DOC and 𝑇 on Q and
𝑚 are not completely clear in Eqs. (5a) and (5b) and deserve more systematic investigations.

Oxidation kinetic equations
Asmentioned above, the pure SHAP values of theDOC feature suggest that the oxidation kinetic in logarithmic
space yield in the form of ln

(
Δ𝑤
Δ𝑤00

)
= ln Δ𝑤0

Δ𝑤00
+ ln

(
DOC+𝑟
(DCO)0

)
− 𝑄

𝑅𝑇 + 𝑚 ln
(
𝑡
𝑡0

)
. The intersection of region

𝑅Q and region 𝑅𝑚 , 𝑅𝑄𝑚 = 𝑅Q
⋂

𝑅𝑚 , covers 𝑅𝑄𝑚 = [C̃r] ∈ [10.38, 30.319] wt.%, 𝑇 ∈ [673.15, 923.15] K,
𝑡 ∈ [30, 2000] h and DOC ∈ [0, 8000] ppb , which contained 176 data in the FMO dataset. Two data in
[C̃r] = 17.0882 wt.% are excluded in the following analysis due to their high testing temperature 𝑇 = 973.15 K,
which are out of the region 𝑅𝑚 . With Eqs. (5a) and (5b), the values of − 𝑄

𝑅𝑇 and 𝑚 ln
(
𝑡
𝑡0

)
are estimated on

the whole region 𝑅𝑄𝑚 and consequently, the values of ln Δ𝑤0
Δ𝑤00

+ ln
(
DOC+𝑟
(DCO)0

)
are obtained on the entire region

𝑅𝑄𝑚 by using the experimental data ln
(

Δ𝑤
Δ𝑤00

)
. Letting 𝛼 = Δ𝑤0

Δ𝑤00
( DOC+𝑟(DCO)0 ) and plotting 𝛼 versus DOC under the

condition of DOC → 0 yield slope Δ𝑤0
Δ𝑤00

and intersection Δ𝑤0
Δ𝑤00

𝑟
(DCO)0 , and hence the estimated value of 𝑟

(DCO)0
equal to 2.17. The calculation details are given in Section 2.8 of the Supplementary Information.

To have an analytic expression of ln
(
Δ𝑤0
Δ𝑤00

)
, the SISSO algorithm is conducted again, which yields

ln
(
Δ𝑤0

Δ𝑤00

)SISSO
= 0.084

(
[C̃r]3

𝑇 −DOC
−
√
𝑇 +DOC

)
+

0.98( [C̃r] − DOC
𝑇 )

ln([C̃r] +DOC)
+ 8.543. (6c)

Putting all the analytic expressions together gives

ln
(
Δ𝑤
Δ𝑤00

)FMO
= ln

(
Δ𝑤0

Δ𝑤00

)SISSO
+ ln

(
DOC + 2.17
(DCO)0

)
− 𝑄SISSO

𝑅𝑇
+ 𝑚SISSO ln

(
𝑡

𝑡0

)
. (6d)

The analytic formula of Eq. (5d) has strong predictive power, as shown in Figure 6, with a fitting performance
of 𝜌 = 0.91 andMAPE = 6.17%. There are three data that cannot be accurately predicted by the formula, which
fall outside of the 3𝜎 error range, and the fitting performance will be improved to 𝜌 = 0.94 andMAPE = 5.65%
if these three data are excluded. The three steels share the same [C̃r] = 24.255 wt.%, DOC = 10 ppb, testing to
600, 1000 and 1500 h and coincidentally arrive at the upbound of testing temperature (923.15 K) on domain
𝑅𝑄𝑚 . This may lead to the slightly underfitting of Eq. (5d) on them. In addition, the graphical user interfaces
of the Xgboost prediction model were developed and are available at the end of this manuscript.

CONCLUDING REMARKS
In this study, we develop a domain knowledge-guided interpretive ML strategy and demonstrate it by the
discovery of the generalized formula for FM steel oxidation in SCW. The domain knowledge suggests the
generalized Arrhenius oxidation formula of Δ𝑤

Δ𝑤00
= Δ𝑤0

Δ𝑤00
exp

(
− 𝑄

𝑅𝑇

) (
𝑡
𝑡0

)𝑚
𝑔

(
(DOC+𝑟)
(DCO)0

)
, based on the fact that

the oxidation is a thermally active process and the collected data are conducted at various temperatures. The
generalized Arrhenius formula also includes a power law of exposure time to generalize all potential time
dependences in the complicated oxidation process including diffusion and phase transformation.

The oxidation chromium equivalent concentration [𝐶𝑟] = [Cr] + 40.3[V] + 2.3[Si] + 10.7[Ni] − 1.5[Mn] is,
for the first time, developed to quantitatively represent the contributions of alloying elements of Cr, V, Si, Ni
and Mn to the oxidation of FM steels in SCW.
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Figure 6. Predicted values of Eq. 5(d) versus experimentally measured values. Each dot represents an FM sample, and the dots on the
dotted line indicate the equation predicted values are consistent with experimental observations. The light blue region covers 3𝜎 error
range, where Eq. (5d) fitted extremely well on.

The developed TCLR algorithm is scientifically significant to materials informatics because it captures linear
relationships between tasks and features. It is expected that when an original feature space is mapped to a
high-dimensional space, the TCLR algorithm is able to capture linear relationships in the high-dimensional
space. More affords are needed to further develop the TCLR algorithm.

The generalized Arrhenius oxidation formula has very high prediction accuracy with a Pearson correlation
coefficient 𝜌 of 0.91 and a MAPE of 6.17% validated by the 176 experimental data. It is expected that more
experiments will be conducted and verify the generalized Arrhenius oxidation formula for oxidation of FM
steels in SCW.
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