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Abstract
Head and neck cancer (HNC) is ranked as the sixth most common malignant tumor, and the overall survival rate 
with current treatment options remains concerning, primarily due to drug resistance that develops following 
antitumor therapy. Recent studies indicate that non-coding RNAs play a crucial role in drug resistance among HNC 
patients. This article systematically reviews the current research landscape, explores novel targets and treatment 
strategies related to non-coding RNAs and HNC resistance, raises some unresolved issues, and discusses five 
promising research directions in this field: ferroptosis, nanomedicine, exosomes, proteolysis-targeting chimeras 
(PROTACs), and artificial intelligence. We hope that our work will contribute to advancing research on overcoming 
HNC resistance through the regulation of non-coding RNAs.

Keywords: Head and neck cancer, non-coding RNA, microRNA, long non-coding RNA, circular RNA, drug 
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INTRODUCTION
Head and neck cancer (HNC) ranks as the sixth most prevalent malignant neoplasm, presenting significant 
challenges in terms of treatment[1]. It affects various anatomical sites including the lips, oral cavity, pharynx, 
larynx, nose, salivary glands, and thyroid. Squamous cell carcinoma (SCC) and its variants constitute more 
than 90% of the histopathological types[2]. Major risk factors associated with HNC include tobacco and 
alcohol use, as well as infections with human papillomavirus (HPV) and Epstein-Barr virus (EBV)[3]. 
Globally, the incidence of HNC has been gradually declining, primarily attributed to the reduction in 
tobacco use and lifestyle modifications[4,5].

Treatment decisions are guided by the precise location, stage, and pathologic characteristics of the disease. 
For around 30%-40% of patients diagnosed with early-stage disease (Stage I or II), the typical 
recommendation involves a single treatment modality such as surgery or radiotherapy. Conversely, roughly 
60% of patients presenting with locally or regionally advanced disease upon diagnosis typically receive a 
multidisciplinary approach encompassing a combination of treatments. These may involve surgery, 
radiotherapy, chemotherapy, and immunotherapy, as well as additional measures such as nutritional 
support, psychological counseling, supportive care, and rehabilitation[2]. Various studies have indicated that 
the overall 5-year survival rate for individuals with HNC falls below 50%, underscoring the persisting 
challenges in current treatment outcomes[2,6]. The inadequate response of patients to antitumor therapy, and 
in some cases, the development of drug resistance, contribute to unsatisfactory clinical outcomes and stand 
as significant factors leading to mortality[7].

Unfortunately, the key determinants underlying this resistance phenomenon remain largely elusive. 
Advances in molecular biology and gene sequencing have unveiled that approximately 98% of human DNA 
is designated non-protein coding[8]. Non-coding RNAs constitute a diverse group of RNA transcripts that 
lack protein-coding potential. Significant subtypes include microRNAs (miRNAs), circular RNAs 
(circRNAs), and long non-coding RNAs (lncRNAs)[9]. Emerging research has revealed the potential of non-
coding RNAs to modulate multiple facets of cellular functions, encompassing growth, proliferation, 
differentiation, development, metabolism, infection, immunity, cell death, organelle biogenesis, messenger 
signaling, DNA repair, and self-renewal[10-12]. Moreover, non-coding RNAs exhibit close associations with 
various common diseases, particularly cancer[9,13-15]. Additionally, non-coding RNAs function as widespread 
regulators of various cancer-related characteristics, including proliferation, apoptosis, invasion, metastasis, 
and genomic instability, thus playing a crucial role in mediating resistance to different cancer therapies[16,17]. 
Consequently, gaining a comprehensive understanding of the mechanisms underlying non-coding RNAs 
and drug resistance holds significant importance in the context of HNC treatment. In addition, the research 
on overcoming tumor drug resistance through the regulation of non-coding RNAs offers many 
advantages[16,18-28] [Table 1].

This review aims to provide a comprehensive summary of the intricate relationship between non-coding 
RNAs and drug resistance in HNC. It delves into the various types of non-coding RNAs and their potential 
roles in mediating resistance to different therapeutic approaches utilized in HNC treatment. Through an 
analysis of the current literature, this review seeks to enhance our understanding of the mechanisms 
underlying drug resistance in HNC and identify potential avenues for improving treatment outcomes.

miRNAs, approximately 22 nucleotides in length, constitute a class of endogenous non-coding RNAs. These 
molecules regulate diverse biological processes, including cell proliferation, differentiation, and apoptosis, 
through specific binding to the 3’-untranslated region (3’-UTR) of target gene mRNAs, thereby inducing 
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Table 1. Advantages of targeting non-coding RNAs to overcome tumor drug resistance

Aspect Summary Ref.

Complexity of 
regulatory networks

ncRNAs form intricate regulatory networks that influence various biological processes, including gene 
expression, signal transduction, and the cell cycle. Targeting these nodes can impact tumor growth and drug 
resistance

[18]

Specific role ncRNAs may be uniquely expressed in tumor cells or play critical roles in tumor development and drug 
resistance, enabling the development of targeted therapies

[19]

Multi-target 
intervention

ncRNAs can affect multiple signaling pathways and biological processes simultaneously, making them suitable 
for multi-target interventions to address multidrug resistance

[20]

Drug tolerance ncRNAs may have a lower risk of tolerance development compared to protein targets due to their distinct 
regulatory mechanisms

[21]

Diverse treatment 
strategies

ncRNAs can act as direct drug targets, carriers, or therapeutic agents, offering a range of treatment strategies [16]

New drug discovery Research on ncRNAs provides new molecular targets for drug development, aiding in the discovery of novel 
antitumor agents

[22]

Personalized medicine ncRNA-based biomarkers can guide personalized treatment plans, helping physicians select the most suitable 
therapy for individual patients

[23-
25]

Combination therapy ncRNAs can be combined with other therapies (e.g., chemotherapy, radiotherapy, immunotherapy) to improve 
efficacy and reduce drug resistance

[26]

Treatment monitoring 
and evaluation

ncRNA expression levels can be used as biomarkers to monitor treatment efficacy, tumor response, and drug 
resistance development

[27]

Gene editing 
applications

Gene editing technologies like CRISPR/Cas9 offer tools for targeting ncRNAs, enabling precise regulation of 
their expression and influencing drug resistance

[28]

ncRNAs: Non-coding RNAs.

mRNA degradation or inhibiting translation[29-31]. Numerous studies have demonstrated the involvement of 
miRNA dysregulation in the development and chemoresistance of HNC[32-34].

miRNAs dysregulation is closely related to chemoresistance in HNC
Research indicates a close association between miRNA dysregulation and chemoresistance in HNC. Zhang 
et al. observed the downregulation of miR-216a-5p and ZEB1 in laryngeal squamous cell carcinoma (LSCC) 
tissues. Moreover, they demonstrated that overexpression of miR-216a-5p could reverse the malignant 
phenotype and cisplatin (CDDP) resistance of LSCC cells by targeting ZEB1[35]. Gao et al. identified that 
circ_0109291 promoted CDDP resistance in oral squamous cell carcinoma (OSCC) cells. They elucidated its 
mechanism by showing that circ_0109291 sponged miR-188-3p, leading to upregulation of ABCB1 
expression[36]. Cao et al. revealed that HOTAIR induced CDDP resistance in nasopharyngeal carcinoma 
(NPC) by sponging miR-106a-5p, consequently upregulating SOX4 expression[37]. The miR-200 family 
constitutes a pivotal group of miRNAs implicated in the regulation of epithelial-mesenchymal transition 
(EMT). Their downregulation is closely linked to chemoresistance in HNC. For instance, reduced 
expression of Let-7, miR-200, and miR-203 correlates with docetaxel resistance in OSCC[38-42]. Moreover, the 
miR-200c/c-myc negative feedback loop orchestrates EMT, stemness, and chemoresistance in NPC[43,44]. 
Additionally, dysregulation of miR-138, miR-222, miR-101, miR-23a, miR-214, and various other miRNAs 
has been associated with chemoresistance in HNC[45-47]. In summary, the dysregulation of specific miRNAs 
plays a key role in the acquired chemoresistance of HNC.

miRNAs affect chemoresistance by regulating autophagy signaling pathways
Autophagy and miRNAs are intricately linked to chemoresistance in HNC. H19 induces CDDP resistance 
in LSCC cells by upregulating the expression of autophagy-related proteins Atg5 and Beclin1 through the 
miR-107/HMGB1 axis[48]. MiR-155 inhibitor-loaded exosomes reverse CDDP resistance in OSCC by 
inducing autophagy through the upregulation of FOXO3a[49]. Yang et al. found that upregulated miR-214 
expression could inhibit autophagy in OSCC cells by targeting autophagy-related genes ULK1 and ATG5, 
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consequently enhancing chemosensitivity[50]. CircAP1M2 promotes CDDP resistance and autophagy in 
OSCC by inhibiting miR-1249-3p to upregulate ATG9A expression[51]. MiR-1278 inhibits autophagy and 
CDDP resistance in NPC cells by targeting ATG2B[52]. Therefore, targeting autophagy pathways through the 
regulation of miRNAs may enhance the therapeutic sensitivity of HNC.

miRNAs affect chemoresistance by regulating the cell cycle and metabolism
miRNAs can also modulate the sensitivity of tumor cells to treatment by regulating energy metabolism and 
cell cycle. Fan et al. discovered that downregulation of mitochondrial miR-2392 expression could lead to 
impaired mitochondrial oxidative phosphorylation by inhibiting MT-CO3 translation, resulting in a shift of 
glucose metabolism from oxidative phosphorylation to anaerobic glycolysis, ultimately causing CDDP 
resistance in tongue squamous cell carcinoma (TSCC)[53]. Chen et al. discovered that miR-5787 contributes 
to CDDP resistance in TSCC by reprogramming glucose metabolism via inhibiting the translation of 
MT-CO3[54]. In another study, Mortezagholi et al. demonstrated that miR-34 could reverse paclitaxel 
resistance in OECM-1 oral cancer cells by inducing DNA damage and apoptosis in a p53-dependent 
manner[55]. HOXA11-AS enhances the proliferation, invasion, survival, and drug resistance of OSCC by 
sponging miR-494 to promote NQO1 expression and recruiting EZH2 to the NQO2 promoter to suppress 
NQO2 expression[56]. Kang et al. demonstrated that cancer-associated fibroblast (CAF)-derived extracellular 
vesicles carrying miR-876-3p can modulate CDDP resistance in OSCC by targeting insulin-like growth 
factor binding protein 3 (IGFBP3)[57]. Li et al. identified miR-194 as a tumor suppressor in LSCC that 
inhibits cell proliferation and enhances chemosensitivity by targeting Wee1[58].

miRNAs affect chemoresistance via exosome-mediated mechanisms
Exosomes, as an important mediator of intercellular communication, can carry functional molecules such as 
miRNAs to mediate information exchange between tumor cells and the microenvironment, playing a key 
role in tumor progression and chemoresistance[59-61]. Qin et al. found that CAF-derived exosomal miR-196a 
could confer CDDP resistance to head and neck squamous carcinoma cells by targeting CDKN1B and 
ING5[62]. Li et al. discovered that exosomal miR-106a-5p derived from CDDP-resistant cells could promote 
NPC cell proliferation and suppress apoptosis by targeting ARNT2 and activating AKT phosphorylation, 
thereby regulating tumorigenesis[63]. This study revealed that tumor cells could remodel the tumor 
microenvironment through exosomal miRNAs to acquire a chemoresistant phenotype.

miRNAs affect chemoresistance by regulating cancer stem cells
Cancer stem cells play a key role in tumor development, metastasis, and chemoresistance[64-66]. MiRNAs are 
involved in the chemoresistance process of HNC by regulating cancer stemness. Recent studies have shown 
that miRNA-485-5p can regulate the stemness and chemotherapy resistance of OSCC by targeting keratin 
17 (KRT17)[67]. MiR-21-3p overexpression maintained the stemness of this subpopulation. Lin et al. 
discovered that activation of the miR-371/372/373 cluster could enhance the tumorigenicity and drug 
tolerance of OSCC cells[68]. Cai et al. found that EBV-encoded miR-BART7-3p enhanced the stemness and 
chemotherapy resistance of NPC by inhibiting SMAD7 to activate the TGF-β pathway[69].

miRNAs affect chemoresistance by regulating other signaling pathways
In addition, miRNAs are also involved in chemoresistance of HNC by regulating multiple signaling 
pathways. Zhang et al. found that miR-205-5p could induce EMT and CDDP resistance in NPC by targeting 
PTEN to activate the PI3K/Akt pathway[70]. Gu et al. discovered that miR-552 could promote the 
proliferation and metastasis of laryngeal cancer cells by targeting p53[71]. Sheng et al. discovered that miR-21 
enhances proliferation, apoptosis inhibition, and CDDP resistance in head and neck squamous cell 
carcinoma (HNSCC) through the PTEN/PI3K/AKT pathway[72]. Wu et al. found that the miR-577/EIF5A2 
axis suppresses the proliferation of CDDP-resistant NPC by blocking the TGF-β signaling pathway and 
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inhibiting EMT[73]. In a study by Chen et al., miR-132 was shown to inhibit proliferation and invasion while 
enhancing CDDP chemosensitivity in OSCC cells via the TGF-β1/Smad2/3 signaling pathway[74]. 
Furthermore, miRNA-296-5p was found to increase the sensitivity of NPC cells to CDDP by targeting and 
suppressing the STAT3/KLF4 signaling axis[75]. These results highlight specific miRNAs play a key role in 
the acquired chemoresistance of HNC by fine-tuning multiple signaling pathways.

miRNAs regulate chemoresistance in HNC by competitively binding to upstream lncRNAs
miRNAs also regulate chemoresistance in HNC by competitively binding to upstream lncRNAs. FOXD1 
promotes OSCC chemoresistance by upregulating LPP expression via sponging miR-1252-5p and miR-3148 
through CYTOR[76]. PVT1 promotes cetuximab resistance in head and neck squamous carcinoma by 
inhibiting miR-124-3p[77]. KCNQ1OT1 promotes CDDP resistance in NPC through the miR-454/USP47 
axis[78]. NEAT1 promotes CDDP resistance in thyroid cancer(TC) through the miR-9-5p/SPAG9 axis[79]. 
CircRNAs also regulate chemoresistance in HNC by sponging miRNAs, such as circCRIM1 promoting 
docetaxel resistance in NPC through the miR-422a/FOXQ1 axis[80].

Furthermore, miRNAs can also be involved in the chemoresistance of HNC by affecting drug resistance-
related enzymes, membrane transporters, angiogenesis, and other factors. Yuan et al. found that LINC-
PINT could reverse laryngeal cancer stemness and chemotherapy resistance through the miR-425-5p/
PTCH1/SHH axis[81]. MiR-340 reverses multidrug resistance in NPC by inhibiting P-gp and BCRP[82]. 
Docetaxel can induce IL-8 secretion in OSCC cells, thereby promoting angiogenesis.

In recent years, strategies targeting miRNAs to reverse chemoresistance have received widespread attention. 
Li et al. found that miR-101-3p mimics could inhibit the proliferation and CDDP resistance of NPC cells 
through ZIC5[47]. Song et al. discovered that miR-619-5p inhibitors could enhance the CDDP sensitivity of 
OSCC cells by activating ATXN3[83] [Table 2 and Figure 1]. Although miRNAs have shown good antitumor 
and chemoresistance reversal effects at the animal level, their clinical application still faces many challenges, 
such as the construction of miRNA delivery systems, in vivo stability, and off-target effects[84-87]. In addition, 
the role of circRNAs and lncRNAs as endogenous miRNA sponges in reversing chemoresistance requires 
further in-depth research.

LncRNAs are extensively expressed and have specific interactions with DNA, RNA, and proteins, allowing 
them to regulate chromatin function, modulate the assembly and function of membraneless nucleosomes, 
influence the stability and translation of cytoplasmic mRNA, and participate in the regulation of signaling 
pathways[88,89]. Moreover, lncRNAs play a crucial role in regulating processes such as apoptosis, drug efflux, 
drug metabolism, DNA repair, EMT, autophagy, and ferroptosis. Consequently, they emerge as pivotal 
mediators of tumor drug resistance[90-93]. In recent years, there has been a notable increase in the number of 
lncRNAs associated with cancer development and progression. These lncRNAs can be explored and 
investigated in meticulously curated databases like Lnc2Cancer3.0[94] or Cancer LncRNA Census[95].

CDDP resistance
CDDP stands as a highly extensively employed drug in the treatment of diverse solid tumors[96]. Its principal 
mode of action involves disrupting DNA repair mechanisms, leading to DNA damage and consequently 
triggering apoptosis in cancer cells[97,98]. Nonetheless, drug resistance poses an inherent challenge in the 
clinical utilization of CDDP, primarily stemming from three molecular mechanisms: heightened DNA 
repair, modified cellular accumulation, and augmented drug inactivation[99].In 2014, Galluzzi et al. 
Systematically categorized CDDP resistance into four distinct stages: Pre-Target, On-Target, Post-Target, 
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Table 2. HNC cell drug resistance-related microRNAs

Tumor 
type MiRNAs Cell line Expression 

level Target Functions Corresponding
drugs Ref.

NPC miR-106a-5p C666-1, CNE2 Down SOX4 Enhance DDP resistance in NPC 
cells

CDDP [37]

NPC miR-200c CNE1, CNE2, 5-8F Up c-Myc Promising approach to overcome 
the oncogenic role of c-Myc in NPC

Cisplatin [43]

NPC miR-101-3p HNE-1/DDP, 
C666-1/DDP

Up SOX2 Inhibit cisplatin resistance through 
miR-101-3p/SOX2/ZIC5 axis

CDDP [47]

NPC miR-1278 CNE-1, CNE-2, 
C666-1, 5-8F, 
HONE-1

Up ATG2B Sensitize NPC cells to DDP and 
reduce autophagy

CDDP [52]

NPC miR-106a-5p CNE1 Down ARNT2 Improve recipient cell proliferation, 
metastasis, and chemoresistance

CDDP [63]

NPC miR-205-5p HNE1/DDP Down PTEN Restrain EMT progression of 
HNE1/DDP cells

CDDP [70]

NPC miR-454 5-8F, SUNE-1 Down USP47 Suppress NPC cell viability and DDP 
resistance

CDDP [78]

NPC miR-422a S18, S26 Down FOXQ1 Promote NPC cell metastasis and 
EMT

CDDP [80]

NPC miR-181a C666-1, SUNE1 Up KDM5C Delay NPC cell progression / [82]

LSCC miR-216a-5p Tu-686, SNU899, 
SNU46, Tu-177

Up ZEB1 Downregulate the cell proliferation 
and migration and invasive ability

/ [35]

LSCC miR-107 TU-177, AMC-HN-
8

Down HMGB1 Increase cisplatin resistance CDDP [48]

LSCC miR-425-5p Hep-2 Up PTCH1 Regulate laryngeal carcinoma cells 
through miR�425�5p/PTCH1

CDDP [81]

OSCC miR-188-3p SCC-4, SCC-9, 
CAL-27, UM1, 
UM2

Down ABCB1 Promote cisplatin resistance of Oral 
Squamous Cell Carcinoma

CDDP [36]

OSCC miR-155 UPCI-SCC-131, 
UPCI-SCC-131R

Down FOXO3a Suppress the stem-cell-like property 
and drug efflux transporter protein 
expression

CDDP [49]

OSCC miR-1249-3p CAL27, SCC15 Down ATG9A Promote autophagy and induce 
cisplatin resistance

CDDP [51]

OSCC miR-34 OECM-1/PTX Up p53 Increase DNA damage and 
apoptosis in a p53-depended 
manner

Paclitaxel [55]

OSCC miR-494 HSC3, HSC4 Down NQO1 Induce drug resistance and increase 
stemness

CDDP [56]

OSCC miR-
371/372/373

SAS subclones Up AKT, 
β-catenin 
and Src

Increase both oncogenicity and drug 
resistance

CDDP [68]

OSCC miR-1252-5p CAL-27 and SCC4 Down FOXD1 Upregulate LPP expression CDDP [76]

OSCC miR-3148 CAL-27 and SCC4 Down FOXD1 Upregulate LPP expression CDDP [76]

OSCC miR-619-5p HN6 and CAL27 Up ATXN3 Inhibit proliferation and arrest cell 
cycle progression

CDDP [84]

TC miR-9-5p Nthy-ori 3-1, 
SW1736, 8505C

Up SPAG9 Sensitize ATC cells to DDP CDDP [79]

TSCC miR-200c HSC-3 Down TUBB3 and 
PPP2R1B

Increase resistance to DTX, 
migration, and invasion and 
decrease apoptosis

Paclitaxel [38]

TSCC miR-214 CAL-27 and CP-
H203

Up ULK1 Antagonize antitumor effect CDDP, paclitaxel [50]

TSCC miR-2392 CAL-27 and SCC-
9

Up AGO2 Inhibit apoptosis and cisplatin 
sensitivity

CDDP [53]

TSCC miR-5787 Cal27 Down MT-CO3 Inhibit the translation of MT-CO3 to 
regulate cisplatin resistance

CDDP [54]

HNC: Head and neck cancer; NPC: nasopharyngeal carcinoma; DDP: cisplatin; CDDP: cisplatin; LSCC: laryngeal squamous cell carcinoma; OSCC: 
oral squamous cell carcinoma; TC: thyroid cancer; TSCC: tongue squamous cell carcinoma; DTX: docetaxel.
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Figure 1. Overview of the main molecular mechanisms of microRNAs in HNC drug resistance. HNC: Head and neck cancer.

and Off-Target[100]. In recent years, the advancement of molecular biology and multi-omics approaches has 
unveiled additional molecules and mechanisms associated with CDDP resistance in non-NHC. These 
include epigenetic mechanisms, as well as regulators such as HNRNPU, CHD4, TRPV1, MAFG-AS, and 
MAST1, among others[101-106]. Furthermore, a study demonstrated that in non-small cell lung cancer, MEK 
inhibitors successfully surmounted resistance to combination immunotherapy with CDDP by inducing 
CXCL10 expression in cancer cells[107].

lncRNAs mediate drug resistance of NPC
NPC represents an EBV-associated malignancy that is particularly common in southern China, Southeast 
Asia, and North Africa. The age-standardized incidence rate in these regions ranges from 4 to 25 cases per 
100,000 individuals, as reported by GLOBOCAN[5,108]. Patients diagnosed with NPC generally exhibit a 
favorable prognosis, with a minimum 5-year survival rate of 80% in cases of locally advanced NPC. 
However, the 5-year survival rate drops to approximately 20% in recurrent or distant metastatic NPC[109,110]. 
The study found that CDDP-resistant NPC exhibits a high expression of lncRNA TINCR, which 
contributes to the development of chemoresistance via the TINCR/ACLY/PADI1/MAPK/MMP2/9 axis[111]. 
Another study identified elevated expression of LncRNA NEAT1 in NPC cells resistant to histone 
deacetylase inhibitors (HDACis). This upregulation is mediated by the NEAT1/miR-129/Bcl-2 axis, which 
plays a role in NPC's resistance to HDACis[112]. Consequently, an epigenetic therapeutic approach involving 
the use of HDACis in combination with other targeted agents holds promise as a novel strategy for future 
NPC treatment[113,114].

lncRNAs mediate drug resistance of HNC
The majority of HNCs originate from the mucosal epithelium of the oral cavity, pharynx, and larynx, 
making them the most prevalent malignant tumors in the head and neck region[115]. In head and neck 
squamous cell carcinoma (HNSCC), STAT3 promotes the transcription of lncRNA HOTAIR and its 
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interaction with pEZH2-S21, which contributes to resistance against both CDDP and cetuximab[116]. 
Another study demonstrated that VN1R5 upregulates lncRNA POP1-1, leading to the promotion of CDDP 
resistance in HNSCC through its interaction with MCM5[117]. LSCC represents a highly prevalent subtype of 
laryngeal cancer, ranking second in incidence among respiratory tumors. Chemotherapy is regarded as the 
established first-line treatment for patients with advanced LSCC[118]. A study reported that the activation of 
the STAT3 signaling pathway by lncRNA FOXD2-AS1 enhances CDDP resistance in LSCC[119]. OSCC is the 
prevailing malignant tumor of the oral mucosa, with 57.5% of global oral cancer cases being reported in 
Asia, particularly in India[120]. FOXD1 upregulates the expression of lncRNA CYTOR, promoting EMT and 
conferring CDDP resistance in OSCC[76]. Additionally, it has been reported that in OSCC, HOXA11-AS 
upregulates the expression of NQO1 by sponging microRNA-494 while downregulating the expression of 
NQO2. This regulatory mechanism promotes tumor progression and contributes to drug resistance[56]. 
TSCC is characterized by a significant upregulation in the expression of miRNA processing-related lncRNA 
(MPRL), which disrupts pre-miRNA processing. This disruption promotes mitochondrial fission and 
enhances CDDP chemosensitivity in TSCC[121]. TC is a prevalent endocrine malignancy, comprising 
approximately 1% of all malignant tumors. Moreover, its incidence is consistently rising on a global 
scale[122]. Papillary thyroid cancer (PTC) is the most common histological subtype of TC, accounting for 
89.1% of cases. Studies have shown that the LncRNA Glycolysis-Associated Regulator of LDHA post-
transcriptional modification (GLTC) is significantly upregulated in PTC tissues and correlates with more 
extensive distant metastasis, increased tumor size, and poorer prognosis. GLTC facilitates the succinylation-
dependent activation of LDHA, thus promoting resistance to radioiodine therapy. These findings provide a 
theoretical foundation for considering the GLTC-LDHA pathway a potential target for therapeutic 
intervention in PTC[123].

Several lncRNAs have been found to have close associations with the malignant biology of tumors. In LSCC, 
HCP5 exhibits high expression levels. The knockdown of HCP5 has been shown to inhibit malignant 
biological functions through the regulation of miR-216a-5p/ZEB1 signaling pathway[35]. In OSCC, 
lnc-p23154 is believed to play a significant role in glut1-mediated glycolysis and promote tumor metastasis 
by suppressing the transcription of miR-378a-3p[124]. Additionally, the mitochondria-localized lncRNA 
growth-arrest-specific 5 (GAS5) has been identified as a tumor suppressor that plays a critical role in 
maintaining cellular energy homeostasis[125]. The targeting of epidermal growth factor receptor (EGFR) has 
proven to be an effective therapeutic strategy for the treatment of SCCs. Notably, studies have indicated that 
lnc-EGFR-AS1 is involved in mediating EGFR addiction and influencing treatment responses in SCCs[126] 
[Table 3 and Figure 2].

Substantial evidence supports the dependence of cellular homeostasis on lncRNAs[125,127]. However, despite a 
small fraction of the thousands of expressed lncRNAs potentially having functional roles in cancer cells, the 
extent of their involvement remains inadequately studied[128]. Further research is warranted to explore the 
role of lncRNAs in various aspects concerning tumor chemotherapy, targeted therapy, and immunotherapy, 
as well as their impact on the tumor microenvironment[129,130].

The discovery of single-stranded covalently closed circular RNA dates back to 1976, with subsequent 
findings revealing their common presence in both viruses and mammals[131]. circRNAs exhibit a diverse 
range of functions, encompassing their role as protein scaffolds or miRNA sponges, and their capacity for 
translation into polypeptides[132]. The unique structure of circRNAs grants them a longer half-life compared 
to linear RNA and provides resistance against RNase R degradation[133]. Consequently, circRNAs have 
garnered significant attention as reliable diagnostic and prognostic biomarkers in cancer diagnosis, 
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treatment, and prevention[13,16,134-137].
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Table 3. HNC cell drug resistance-related lncRNAs

Tumor 
type lncRNA Cell line Expression 

level Target Functions Corresponding
drugs Ref.

NPC TINCR NP69 N2Tert 
CNE-1, HK-1

Up ACLY Activate TINCR-ACLY-PADI1-
MAPK-MMP2/9 axis

CDDP [111]

NPC NEAT1 C666-1, CNE-1, 
CNE-2

Up miR-129 Modulate the miR-129/Bcl-2 axis HDACis [112]

HNSCC HOTAI SCC25, Cal27, 
UM1

Up EZH2 Promote the growth of HNSCC 
cells.

CDDP/cetuximab [116]

HNSCC POP1-1 HN4, HN30 Up MCM5 Facilitate the repair of DNA damage CDDP [117]

LSCC FOXD2-
AS1

Hep2, TU-212 Up STAT3 Promote STAT3 transcriptional 
activity

CDDP [119]

OSCC CYTOR CAL-27, SCC4 Up ceRNA Activate CYTOR/LPP axis CDDP [76]

OSCC HOXA11-
AS

HSC3, HSC4 Up microRNA-
494

Facilitate tumor growth Dicoumarol [56]

OSCC EGFR-AS1 primary cell 
cultures

Up / Resistance to EGFR TKIs TKIs [126]

PTC GLTC BCPAP, TPC-1,
KTC-1

Up LDHA Resistance to RAI RAI [123]

HNC: Head and neck cancer; NPC: nasopharyngeal carcinoma; CDDP: cisplatin; HNSCC: head and neck squamous cell carcinoma; LSCC: laryngeal 
squamous cell carcinoma; OSCC: oral squamous cell carcinoma; EGFR: epidermal growth factor receptor; TKIs: tyrosine kinase inhibitors; PTC: 
papillary thyroid cancer; GLTC: glycolysis-associated regulator of LDHA post-transcriptional modification; LDHA: lactate dehydrogenase A; RAI: 
radioiodine.

Figure 2. Overview of the main molecular mechanisms of lncRNAs in HNC drug resistance. HNC: Head and neck cancer.
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circRNAs mediate drug resistance of NPC
Patients with distant metastases of NPC exhibit specific overexpression of circIPO7, and its knockdown
enhances sensitivity to CDDP treatment by inhibiting YBX1 nuclear localization[138]. Furthermore, studies
have reported an association between aging and tumor metastasis and chemoresistance. Notably,
circWDR37 facilitates the activation of PKR, leading to the initiation of SASP transcription through NF-κB,
thereby promoting metastasis and chemoresistance in NPC[139]. A separate study demonstrated the role of
circCRIM1 as a ceRNA in promoting metastasis and conferring docetaxel chemoresistance in NPC through
the upregulation of FOXQ1. Additionally, the study successfully developed a prognostic model based on
circCRIM1 expression and TMN staging to assess the risk of NPC metastasis[80].

circRNAs mediate drug resistance of HNC
CDDP resistance in HNC is strongly linked to autophagy, a process essential for maintaining protein
homeostasis, organelle integrity, cellular homeostasis, cell viability, and the degradation/recirculation of
various cellular components to the lysosome[140,141]. In OSCC, significant upregulation of circAP1M2 leads to
the induction of autophagy-associated CDDP resistance via the miR-1249-3p/ATG9A axis[51]. In LSCC,
circPARD3 hinders autophagy by serving as a sponge for miR-145-5p, which activates the PRKCI/Akt/
mTOR pathway, thereby promoting tumor progression and contributing to CDDP resistance[142]. TC is
characterized by the promotion of autophagy and increased CDDP resistance due to the regulatory effects
of circEIF6 on the miR-144-3p/TGF-α axis[143] [Table 4 and Figure 3]. Interestingly, autophagy exhibits
dynamic tumor-suppressive or tumor-promoting roles in diverse contexts and stages of cancer
development[144]. Therefore, further research is needed to better define the specific roles of autophagy in
various types and stages of cancer, and to gain a deeper understanding of how tumors rely on autophagy.
Furthermore, several studies have demonstrated the reciprocal regulation between circRNAs and
N6-methyladenosine (m6A) modifications in HNC, highlighting their potential impact on cancer
progression and treatment response[145-148]. Additionally, there have been reports indicating the upregulation
of circCUX1 expression in radiotherapy-resistant hypopharyngeal SCC patients, and the knockdown of
circCUX1 has been shown to enhance the sensitivity of hypopharyngeal cancer cells to radiotherapy[149].

FUTURE PERSPECTIVES
Based on our persistent dedication to this field and thorough literature research, we firmly assert that the 
following areas of research exhibit dynamism and merit sustained attention.

Ferroptosis
Ferroptosis, also known as iron-induced apoptosis, is a type of intracellular cell death that relies on iron and 
is distinguished by the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation. It is 
distinct from apoptosis, necrosis, and autophagy[150,151]. Numerous studies have reported that tumor cells can 
enhance their defense mechanisms against oxidative stress by inhibiting ferroptosis, ultimately promoting 
their survival and drug resistance[152,153]. Studies have demonstrated that in NPC, infection with EBV leads to 
the upregulation of GPX4 expression, resulting in the inhibition of ferroptosis. Consequently, the elevated 
levels of GPX4 contribute to the progression of NPC and its resistance to chemotherapy through the 
activation of the TAK1-JNK and IKK/NF-κB signaling pathways. Moreover, clearance of the EBV genome 
has been shown to enhance the sensitivity of NPC cells to ferroptosis[154]. Artesunate exhibits selective 
cytotoxicity against HNC cells. In specific cases of CDDP-resistant HNC, inhibiting the Nrf2-ARE pathway 
enhances the sensitivity of these cells to artesunate and reverses their resistance to ferroptosis[155,156]. 
Additional studies have further demonstrated that inhibiting GLRX5 renders CDDP-resistant HNC cells 
more susceptible to ferroptosis[157]. Furthermore, the upregulation of HMGA1 in ESCC serves as a crucial 
factor responsible for CDDP resistance by suppressing ferroptosis. This effect is achieved through 
HMGA1’s role in maintaining intracellular redox homeostasis via its assistance to ATF4 in activating 
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NPC IPO7 CNE2, HNE1, HONE1, 
SUNE1, HK1, C666-1

Up YBX1 Promote cell migration, 
invasion, and cisplatin 
resistance

CDDP [138]

NPC WDR37 S18, S26 Up PKR CCND1 CDDP, gemcitabine [139]

NPC CRIM1 S18, S26 Up miR-422a Promote metastasis and 
EMT

Docetaxel [80]

OSCC AP1M2 CAL27/CDDP Up miR-1249-3p modulate miR-1249-3p-
ATG9A axis

CDDP [51]

LSCC PARD3 Tu 177, HOK, FD-LSC-1 Up miR-145-5p w Activate the Akt-mTOR 
axis

CDDP [142]

ATC EIF6 TPC1, BHT101 Up miR-144-3p Regulate miR144-
3p/TGF-α axis

CDDP [143]

HNC: Head and neck cancer; NPC: nasopharyngeal carcinoma; CDDP: cisplatin; CCND1: stimulate cyclin D1; EMT: epithelial-mesenchymal 
transition; OSCC: oral squamous cell carcinoma; LSCC: laryngeal squamous cell carcinoma; ATC: anaplastic thyroid carcinoma.

Figure 3. Overview of the main molecular mechanisms of circRNAs in HNC drug resistance. HNC: Head and neck cancer.

SLC7A11 transcription. Inhibition of HMGA1 has been shown to enhance the sensitivity of ESCC to 
ferroptosis[158]. Multiple studies have now established that regulating ferroptosis can impact the effectiveness 
of cancer treatment and potentially overcome resistance to chemotherapy, targeted therapy, and 
immunotherapy[159-164]. Several non-coding RNAs, including miR-324-3p, miR-375, miR-144-3p, 
miR-27a-3p, miR-3173-5p, circRNA-101093, and lncRNA-PMAN, have been implicated in the regulation of 
tumor ferroptosis[165-168]. Currently, there are no relevant studies investigating the role of non-coding RNAs 
in tumor drug resistance through the regulation of ferroptosis specifically in HNC.

Table 4. HNC cell drug resistance-related circRNAs

Tumor 
type circRNA Cell line Expression

level Target             Functions Corresponding
drugs Ref.
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Nanodrugs
CDDP, carboplatin, and oxaliplatin are commonly employed in tumor therapy. Nevertheless, their clinical 
utility is severely restricted due to the side effects associated with platinum drugs, including poor selectivity, 
high systemic toxicity, and drug resistance[169]. A novel CDDP nanocarrier system with dual targeting 
properties has been developed. This system selectively attaches to the A54 receptor, which is highly 
expressed on the cell surface of hepatocellular carcinoma (HCC) cells. Additionally, it utilizes the drug-
resistance gene NOR1 shRNA as a piggyback mechanism to enable precise tumor-targeted therapy and 
overcome drug resistance[170]. Numerous studies have also highlighted the effectiveness of platinum 
nanocarriers in reducing systemic toxicity and overcoming drug resistance[171-174]. Currently, there is 
considerable research focus on strategies involving nanomedicines for regulating ferroptosis, as well as 
nanomedicines utilizing non-coding RNAs as carriers to target tumors[85,175-179].

Exosomes
Exosomes are nanovesicles derived from cells, ranging in size from 30 to 150 nm. They are released when 
multivesicular bodies fuse with the cell surface and play a crucial role in intercellular communication by 
transporting nucleic acids, proteins, and lipids. Furthermore, exosomes can activate signaling pathways in 
target cells[180,181]. In recent years, there has been significant interest in the role of exosomes carrying non-
coding RNA in tumor drug resistance[93,163,182-185]. Several studies have reported that intervention with RNA 
carried by exosomes can potentially overcome tumor chemoresistance[61,186,187]. For instance, CAFs emerge as 
crucial regulators of CDDP resistance in HNC. They achieve this by transporting functional miR-196a from 
CAFs to tumor cells through exosomes[62]. Although our understanding of the role of RNAs carried within 
exosomes in the mechanisms of drug resistance in HNC is still in the early stages, exosomal circRNAs have 
emerged as innovative genetic information carriers. These molecules enable communication between tumor 
cells and cells in the microenvironment, thereby regulating critical aspects of cancer progression. As a result, 
they contribute significantly to chemotherapeutic drug resistance across different types of cancer. Based on 
this, synthetic exosomal circRNA holds the potential to introduce new avenues for cancer therapy[188,189].

Proteolysis-targeting chimeras
Proteolysis-targeting chimeras (PROTACs) are emerging as promising therapeutic modalities for the 
degradation of disease-causing proteins. They are composed of a ligand that binds to a protein of interest 
(POI) and another ligand that recruits the E3 ubiquitin ligase. This recruitment induces chemical proximity 
between the POI and the E3 ligase, resulting in ubiquitination and subsequent degradation of the POI 
through the ubiquitin-proteasome system[190-193].PROTACs have been developed to target several proteins, 
including PD-L1, BTK, STAT3, EGFR, MEK1/2, VEGFR2, FLT-3, and SHP2[194]. These compounds offer 
advantages such as high enzymatic reaction efficiency, overall degradation of target proteins, and the ability 
to target small-molecule non-druggable proteins. Several studies have reported the successful inhibition of 
HNSCC growth and metastasis using PROTAC technology[195,196]. This finding highlights the importance of 
continued attention to PROTAC and related technologies due to their ability to specifically degrade 
oncogenic proteins or RNAs[194,197,198].

CONCLUSION
In summary, chemotherapy, targeted therapy, and immunotherapy are crucial components of integrated 
tumor therapy. However, drug resistance significantly limits the effectiveness of clinical drug therapy for 
HNC. Non-coding RNA dysregulation plays a critical role in the known mechanisms of drug resistance in 
HNC. It is essential to continually focus on new technologies and theories to address the challenges in HNC 
drug resistance research. This includes the construction or utilization of clinical databases similar to UK 
biobank[199], and integrating clinical information with multi-omics sequencing data. These approaches aim 
to establish a robust foundation for further research on integrative oncology treatment[200]. Additionally, 
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leveraging ChatGPT automated development and analysis (ADA) technology to build machine learning 
models based on real clinical trial data[201] can facilitate efficient research on cancer precision treatment, 
prognosis, and drug resistance markers.
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