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Abstract
Pulmonary hypertension is a serious disorder with a high morbidity and mortality rate. The juxtaposition of 
endothelial cells and smooth muscle cells maintains vascular homeostasis. Vascular injury results in endothelial 
dysfunction, leading to impaired vascular relaxation, cell proliferation, and altered immune and metabolic states. In 
addition, injury induces pulmonary arterial endothelium and other cells to release increased levels of extracellular 
vesicles, including exosomes and microparticles that may be involved in enhancing the proliferation of apoptosis-
resistant smooth muscle cells. These extracellular vesicles carry proteins, lipids, RNA, miRNA, chemokines 
cytokines and modulate immune function, inflammation, embryogenesis, regenerative processes, and serve as 
intercellular messengers. Importantly, mesenchymal stem cells-derived extracellular vesicles exert inhibitory 
effects on inflammation and restore homeostasis. This article reviews the pathophysiological role of extracellular 
vesicles in pulmonary hypertension.
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INTRODUCTION
Pulmonary hypertension (PH) is a serious complication of a number of systemic diseases including 
cardiovascular, respiratory and hematological disorders, autoimmune diseases, genetic mutations, and as 
yet unidentified causes. Based on the underlying disease, PH can be classified into five major groups. The 
term pulmonary arterial hypertension (PAH) is applied to diseases in group 1, which includes idiopathic 
and heritable PAH (IPAH, HPAH), and PAH associated with congenital heart defects, inflammation, 
autoimmune diseases and drug toxicity. A number of genetic mutations are also associated with PAH. 
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Pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis are assigned subcategory 
1′ and persistent PH of the newborn is designated as 1″. The remaining four groups are designated as 
PH. Group 2 includes PH associated with left ventricular diseases and pulmonary venous hypertension. 
Included in group 3 are chronic lung diseases, alveolar hypoventilation disorders and developmental lung 
diseases while group 4 includes chronic thromboembolic PH. Finally, group 5 includes PH associated with 
miscellaneous diseases such as myeloproliferative, hematological, thyroid and renal diseases[1] [Table 1]. 

During the sixth World Symposium on PH, the mean pulmonary artery pressure threshold was reduced 
to > 20 mmHg from ≥ 25 mmHg, and pulmonary vascular resistance maintained as > 3 Wood units[2]. This 
change is based on the evaluation of 47 studies from 13 countries that showed normal mean pulmonary 
artery pressure rarely exceeded 20 mmHg, irrespective of age[3]. The survival time for patients with PAH 
(Gr. 1) without treatment is reported to be 2.8 years[4]. Modern treatment has improved the quality of life 
and 3-year survival in these patients is now around 58%-67%[5,6]. 

Despite such treatment, the underlying vascular pathology continues to worsen[7]. Regardless of the 
underlying disease, pulmonary endothelial cell (EC) disruption/dysfunction plays a pivotal role in the 
pathogenesis of PH. ECs maintain vascular homeostasis and regulate vascular tone, cell permeability, 
inflammation, and coagulation through several mediators such as nitric oxide (NO), endothelium-
derived hyperpolarization factor, endothelin-1 (ET-1), cell adhesion molecules, cytokines and chemokines. 
Endothelial dysfunction, alterations in the expression of NO, ET-1, caveolin-1, serotonin, inflammatory 
cytokines and chemokines, and disordered proteolysis of the extracellular matrix all contribute to the 
pathogenesis of PAH[8,9]. The increased expression of cytokines such as interleukin-1 (IL-1) and IL-6[10,11] 
and chemokines such as CX(3)CL1 (fractalkine) and CCL5, also known as RANTES[12,13], have all been 
observed in both human and experimental PH. Furthermore, plexiform lesions contain perivascular 
infiltration with inflammatory T and B cells[14,15]. Disruption or dysfunction of endothelial caveolin-1 (a 
major protein constituent of caveolae) associated with the activation of proliferative molecules such as 
tyrosine tyrosine phosphorylated signal transducer and activator of transcription 3 (py-STAT3), B cell 
lymphoma-extra-large (Bcl-xL) and β-catenin leads to smooth muscle cell (SMC) proliferation, medial 
hypertrophy and PH[16,17]. 

SMCs are a heterogeneous cell population which exhibit different proliferative, inflammatory, and 
extracellular matrix production changes during vascular remodeling. In addition, the extension of pericytes 
into non-muscularized arteries has been documented in PH[18]. Pericytes are heterogeneous cells in 
origin. The close interactions between pericytes and ECs are important for paracrine signaling involved in 
vascular development and stability. In addition, pericytes modulate immune responses[19]. It has recently 
been shown that the dysfunctional EC in IPAH may partly contribute to the increased pericyte coverage 

Table 1. Pulmonary hypertension classification (based on Ref #1)

Gr. l PAH
Idiopathic and heritable PAH, PAH associated with CHD, inflammatory, autoimmune diseases, drug toxicity, genetic mutations, HIV, 
portal hypertension, Gr l’ - pulmonary capillary hemangiomatosis, pulmonary veno-occlusive disease, Gr l” - Persistent PH of the 
newborn

Gr. 2 PH
Left ventricular diseases (congenital and acquired)

Gr. 3 PH
Chronic lung diseases, hypoxia, developmental lung diseases

Gr. 4 PH
Chronic thromboembolic pulmonary hypertension

Gr. 5 PH
Miscellaneous systemic disorders including hematological, myeloproliferative, metabolic and thyroid diseases, and chronic renal failure

PAH: pulmonary arterial hypertension; PH: pulmonary hypertension
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in distal pulmonary arteries, through the EC-derived fibroblast growth factor 2 (FGF-2) and IL-6[20]. 
Pericyte-specific upregulation of CXCR (C-X-C chemokine receptor)-7 and transforming growth factor-β 
receptor II (TGF-β RII) in patients with PAH are considered critical for their proliferation/migration 
capacities and myogenic potentials. During the early phase, pericyte numbers increase in a CXCL (C-X-C 
motif chemokine ligand)-12-dependent manner and later, the activation of the TGF-β signaling pathway 
induces pericytes to differentiate into smooth muscle-like cells[21]. Furthermore, reduced endothelial-
pericyte interactions result in progressive loss of small vessels in PAH. Increased expression of pyruvate 
dehydrogenase kinase 4 (PDK4) gene and protein in PAH pericytes correlated with reduced mitochondrial 
metabolism, higher rates of glycolysis, and hyperproliferation. Reducing PDK4 levels improved endothelial-
pericyte interactions, restored mitochondrial metabolism, and reduced cell proliferation[22]. These studies 
underscore the importance of EC and pericyte interactions in maintaining vascular homeostasis. 

The disruption/apoptosis of ECs and accompanying endothelial caveolin-1 loss followed by enhanced 
expression of caveolin-1 in SMCs, proliferation of antiapoptotic ECs and neointima formation have all 
been reported in experimental PH and human PAH[23-26]. In a monocrotaline (MCT) + hypoxia model, 
the enhanced expression of caveolin-1 revealed the presence of tyrosine 14-phosphorylated caveolin-1 
(p-cav-1) and the loss of polymerase 1 and transcription factor also known as cavin-1[25]. Cavin-1 
maintains the shape of caveolae and stabilizes caveolin-1 in caveolae. The loss of cavin-1 is indicative 
of the flattening of caveolar structure. Cavin-1 knockout mice exhibit pathological lung changes such 
as remodeled pulmonary vessels, PH and right ventricular hypertrophy (RVH). In addition, these mice 
have an altered metabolic phenotype with insulin resistance[27]. It is worth noting here that in cancer, 
p-cav-1 has been shown to inactivate the growth inhibitory function of the caveolin-1 scaffolding domain 
and facilitate cell migration[28-30]. These studies indicate that the disruption of endothelial caveolin-1 and 
dysfunction of SMC caveolin-1 participate in the progression of PH. In addition, other factors such as 
vascular endothelial growth factor (VEGF), epidermal growth factor, transforming growth factor β (TGFβ), 
matrix metalloproteinases, bone morphogenic protein receptor type 2 (BMPR2) and Notch1 have all been 
implicated in the pathophysiology of PAH[31]. Thus, a large number of deregulated transcription factors and 
proliferative pathways participate in the pathobiology of PH. Recent studies have shown that extracellular 
vesicles (EVs) may have an important role in the pathogenesis of PH. 

EVs 
EVs have been isolated from body fluids such as blood, urine, saliva and cerebrospinal fluid. Initially EVs 
were thought to be a means for cells to get rid of unwanted components. Currently, they are identified as 
important mediators of intercellular communication. EVs participate in the exchange of lipids, proteins and 
genetic material between cells, modulate immune, inflammatory and regenerative processes, and maintain 
homeostasis. EVs are released from a variety of cells including platelets, erythrocytes, leukocytes, and ECs 
maintain their different compositions and function. Most cell types generate EVs that play important roles 
in various biological processes, including embryogenesis, tissue regeneration and immunomodulation. 
They regulate the transfer of biological information both locally as well as remotely[32-35]. EVs include 
exosomes (30-130 nm, in diameter), microparticles (MPs, also known as microvesicles, 100-1000 nm) 
and apoptotic bodies (50-4000 nm). Apoptotic bodies are generated following activation of the apoptotic 
pathway and cell death.

Exosomes 
For exosome formation, endosomal membrane invagination captures cytosolic components within 
intraluminal vesicles. Early endosomes then mature into late endosomes and accumulate intraluminal 
vesicles, known as multivesicular bodies in their lumen. These multivesicular bodies either fuse with 
lysosomes for degradation or with the plasma membrane and are released into the extracellular space as 
exosomes[36,37] [Figure 1]. 



Reticulocytes were the first cells shown to release exosomes containing transferrin receptor during 
maturation[38]. The main components of exosome membranes are lipids and proteins enriched with 
lipid rafts. In addition, they contain mRNAs, microRNAs (miRNAs), and other non-coding RNAs. The 
interaction between the transmembrane proteins of exosomes and the signaling receptors of target cells 
could either be direct, or indirectly after fusion with the plasma membrane of recipient cells to deliver the 
content into the cytosol. In addition, exosomes internalized into recipient cells may merge into endosomes, 
undergo transcytosis, move across recipient cells and released into neighboring cells. Alternatively, 
endosomes fused with engulfed exosomes mature into lysosomes and undergo degradation[39]. EVs 
are engulfed into the cells via endocytosis. The lipid rafts, the known sites for endocytosis, are the 
specific microdomains within the plasma membrane that contain high concentrations of cholesterol 
and glycosphingolipids. Caveolins and flotillins are enriched with these lipid rafts. Interestingly, siRNA-
mediated knockdown of caveolin-1 and flotillin-1, but not clathrin heavy chain, results in the inhibition of 
EV internalization[40]. However, caveolin-1 localized in the plasma membrane negatively regulates exosome 
uptake, partly through the suppression of ERK1/2 signaling activation[41]. CAV1 gene knockout results 
in reduced caveolin-1 protein and impaired EV uptake. However, CAV1 knockout in mouse embryonic 
fibroblast cells resulted instead, in increased EV uptake[42]. Thus, EV uptake may depend on the cell type 
and its pathophysiological state. In addition, Rab proteins are essential regulators of EV transport[43]. 
Endothelial exosomes are also involved in vascular development as they incorporate and transfer Delta-
like 4 (Dll4) to neighboring ECs, resulting in inhibition of notch signaling and increased vascular branch 
formation[44]. 

MPs 
MPs are shed from various cell types as small fragments. In 1967, MPs shed during coagulation were 
regarded as platelet dust. Studies over the years have since shown that these MPs participate in cellular 
signaling, homeostasis, vascular injury and coagulation[45]. MPs are formed by the plasma membrane 
pinching off and encapsulating cytosolic components, and they maintain surface markers and receptors of 
the plasma membranes of the parent cells [Figure 2]. 

They efficiently exchange biological information between cells and thus, participate in intercellular 
communication. In the healthy state, circulating MPs originate mainly from platelets and, to a smaller 
extent, from leukocytes, erythrocytes, granulocytes, monocytes, lymphocytes and ECs. Increased 
circulating MPs are biomarkers of vascular injury and inflammation. Cells exposed to different stimuli 
such as shear stress, physical agonists, pro-apoptotic stimuli or injury release MPs contributing to EC 
dysfunction in cardiovascular diseases[46]. Stimulation of ECs by cytokines, reactive oxygen species, 
plasminogen activation inhibitor, thrombin or C-reactive protein leads to the formation of endothelial MPs. 

Figure 1. Early endosomes (Early Endo) mature into late endosomes (Late Endo) and accumulate intraluminal vesicles known as MVB. 
MVB release exosomes into the extra cellular space, or fuse with lysosome for degradation. These exosomes are then incorporated into 
recipient cells. MVB: multivesicular bodies
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MPs play an important role in inflammation, EC function and cellular survival[47]. Circulating MPs impair 
the atheroprotective function of ECs, in part, by decreasing NO synthesis. Increased levels of circulating 
MPs are useful biomarkers of vascular injury and a predictor of adverse cardiovascular events and mortality 
in patients with atherosclerotic disease. Atherosclerotic lesions contain a large number of MPs of leukocyte, 
SMC, EC and red blood cell origin[48], and even patients with subclinical atherosclerosis exhibit increased 
levels of circulating leukocyte-derived MPs[49]. 

In addition, MPs promote coagulation, inflammation and alter angiogenesis and apoptosis in ECs. 
Studies indicate that MPs induce EC dysfunction by disrupting NO release. Endogenous NO inhibits 
the release of endothelial MPs upon stimulation with C-reactive protein through a tetrahydrobiopterin-
dependent mechanism[50]. Endothelial MPs deliver C-reactive protein and participate in inflammation and 
coagulation[51]. MPs from T- lymphocytes depress endothelial nitric oxide synthase (eNOS) activity and 
increase oxidative stress in ECs; however, T-lymphocytes carrying morphogen sonic hedgehog increase 
NO production[46]. Furthermore, the release of MPs carrying lytic complement C5b-9 complex protects 
ECs from complement-induced lysis. MPs from leukocytes stimulate pro-inflammatory genes in ECs 
in vitro, resulting in the release of cytokines and leukocyte-EC adhesion molecules. On the other hand, 
MPs from polymorphonuclear leukocytes contain annexin-1, a functionally active anti-inflammatory 
protein. In vivo, annexin-1 inhibits the interaction between leukocytes and ECs[52]. In in vitro studies, 
the inhibition of endothelial MP release has been shown to induce caspase-3 accumulation, leading to 
cellular apoptosis. Thus, endothelial MP release could protect EC apoptosis by reducing caspase-3 levels[53]. 
Pulmonary microvascular ECs have higher levels of basal cAMP and pulmonary ECs release cAMP 
containing EVs. These EVs are thought to facilitate compartmentalized cAMP signals and thus, may 
strengthen the endothelial barrier[54]. In vitro studies have shown that MPs derived from platelets stimulate 
cell proliferation, migration, and tube formation in ECs. In addition, metalloproteinases contained in 
endothelial MPs regulate proteolytic activity on the matrix and elicit angiogenesis. Furthermore, MPs 
derived from endothelial progenitor cells may induce apoptosis-resistant cell proliferation[55]. MPs contain 
the cell surface protein and cyotoplasmic components of the original cell, and exhibit phosphatidylserine 
on the surface that accounts for their procoagulant character. MPs from T cells induce EC dysfunction by 
altering NO and prostacyclin pathways. T-lymphocyte-derived MPs reduce eNOS expression and vascular 
relaxation, and exhibit increased expression of caveolin-1[56].

EVs participate in physiological as well as pathological conditions depending on their cargo. EV biogenesis 
is dysregulated in pathological conditions. Release of EVs can induce inflammation, angiogenesis and 
thrombosis, and are implicated in many diseases such as cancer, chronic obstructive pulmonary disease, 
atherosclerosis and PH. During degranulation, activated polymorphonuclear leukocyte-derived exosomes 
(CD63+/CD66b+) acquire surface-bound neutrophil elastase that is resistant to α1-antitrypsin (α1AT). 
In chronic obstructive pulmonary disease and bronchopulmonary dysplasia (BPD), polymorphonuclear 

Figure 2. MPs are formed by the plasma membrane pinching off and encapsulating cytosolic components. MPs: microparticles

Mathew et al. Vessel Plus 2020;4:11  I  http://dx.doi.org/10.20517/2574-1209.2019.35                                                  Page 5 of 15



leukocyte-derived exosomes acquire surface-bound elastase that degrade extracellular matrix[57]. In sickle 
cell disease, inflammasome-dependent shedding of platelet EVs carrying IL-1β and caspase-1 activate 
neutrophils and other vascular cells to form large platelet-neutrophil aggregates that occlude pulmonary 
arteries. The level of circulating platelet EVs correlate with disease severity. Increased circulating platelets 
and erythroid MPs were observed in untreated children with sickle cell disease; hydroxyurea therapy, 
however, normalized MP levels[58,59]. In vitro studies have shown that high arterial stress results in platelet 
activation and release of prothrombogenic EVs in the blood[60]. In cell culture studies, platelet MPs have 
been shown to induce SMC proliferation in a platelet derived growth factor-independent manner[61]. In 
addition, circulating platelet-derived EVs induced increased production of cytokines (IL-1, IL-6, and IL-8), 
leading to immune modulation, endothelial dysfunction and remodeling. In contrast, neutrophil-derived 
EVs enhance the biosynthesis of specialized pro-resolving mediators[62]. MPs from patients with metabolic 
syndrome decrease NO production in ECs in culture, independent of oxidative stress. Furthermore, 
injection of MPs in mice resulted in reduced eNOS synthesis and impaired vascular relaxation[63]. In 
addition, tissue factor containing MPs are proinflammatory mediators between increased glucose levels and 
diabetic vasculopathy[64]. In cancer, EVs promote tumor growth, metastasis and resistance to therapy; and 
the activation of oncogene signaling pathway can increase EV production. These EVs transfer oncoproteins 
and facilitate tumor angiogenesis, immunosuppression and metastasis[65,66]. In vitro studies have shown large 
EVs carrying caveolin-1 in cancer cells to be involved in metastasis[67]. Thus, the function of MPs depends 
on the cell types that they originate from and their pathophysiological state.

Mesenchymal stem cells (MSC) are the best cell types for tissue regenerative therapies. They can be 
readily derived, propagated and differentiated into a variety of cell types. They modulate several biological 
functions such as tissue repair, downregulation of inflammatory responses, and modulation of the immune 
system. MSC-derived exosomes have protective effects on ischemia-reperfusion injury via inhibition 
of cell apoptosis and inflammatory responses[68,69]. Furthermore, treatment with multipotent stem cells 
showed strong regenerative capabilities in animal models of myocardial ischemia[70], stroke[71], and 
diabetes[72]. Recent studies have suggested that MSC-derived EVs containing miRNAs might promote cell 
and tissue repair, and regeneration[73]. Similar to the biological activities of MSC, MSC-derived exosomes 
recover and regenerate the damaged tissues and restore homeostasis[74]. MSC-exosomes reduce oxidative 
stress and prevent adverse remodeling in hearts subjected to ischemia-perfusion[75]; and placental MSC-
derived exosomes promote new blood vessel formation and angiogenesis within the placenta under 
low oxygen conditions[76]. Interestingly, female bone marrow derived MSCs exhibit higher therapeutic 
efficacy compared with male MSCs in reducing neonatal hyperoxia-induced lung inflammation, vascular 
remodeling and PH in a rat model of BPD. Female MSCs express higher levels of VEGF and IL-10, and are 
better in attenuating PH and improving pulmonary vascular remodeling. The effects on angiogenesis and 
alveolarization however, were similar in female and male MSC treatment[77]. In an ischemia-reperfusion 
injury model, female MSC infusion revealed a greater degree of myocardial recovery compared to male 
MSC. The protective effect of female MSCs appears to be related to lower levels of TNFR1[78]. In addition, 
17β-estradiol-treated cardiac stem cells increased the expression of VEGF and SDF-1, and decreased 
caspase3 resulting in improved myocyte survival after acute ischemia perfusion injury[79]. These studies 
suggest that the superior cell survival effect of female MSCs may be dependent on estrogen levels. In 
contrast, male muscle-derived stem cells display better cartilage regeneration potential compared with their 
female counterparts[80]. Thus, these gender differences may be tissue-specific and female MSCs appear to 
provide better protection in cardiovascular and lung diseases.

PULMONARY HYPERTENSION AND EXTRACELLULAR VESICLES
Altered immunity, platelet activation, vascular inflammation, endothelial dysfunction and thrombo-
embolic complications are well known features of PH. Platelet MPs have been shown to roll over ECs to 
deliver CCL5[81]. Importantly, CCL5 is a chemo-attractant for monocytes and T cells. In severe PAH, ECs 
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were found to be the major source of CCL5[13]. Circulating MPs have also been shown to stimulate ICAM 
expression in pulmonary arterial ECs during the late stage in a Sugen + hypoxia model of PH[82]. Increased 
levels of platelet-derived MPs, defined as CD31+/CD41+, and endothelium-derived MPs as CD31+/CD41-

,were observed in IPAH, HPAH and “associated” PAH compared to controls[83]. Recent studies have shown 
increased levels of circulating MPs of platelet (CD31+/61+), leukocyte (CD11b+) and endothelial (CD62E+) 
origin in patients with PH. Furthermore, significantly increased endothelial MP levels were detected in 
patients with thrombo-embolic PH compared to non-embolic patients, indicating increased endothelial 
dysfunction in the former[84]. In addition, elevated levels of endothelial MPs, but not leukocyte MPs, prior 
to treatment are associated with adverse clinical events. Increased CD62e+ levels are associated with an 
inflammatory state[85]. EVs from animals with PH induce endothelial dysfunction. MPs from hypoxic 
rats impair EC-dependent relaxation in pulmonary arteries and aorta via reducing NO production and 
increasing oxidative stress[86]. MPs bearing active tissue factor and CD105 (endoglin) were reported to 
be elevated in patients with PAH. Interestingly, in patients with PAH, a further increase in endothelium-
derived CD105 MPs was observed in pulmonary arterial blood compared with venous blood. Furthermore, 
patients in functional class III and IV were found to have higher levels of MPs bearing active tissue 
factor[87]. In addition, increased levels of circulating endothelial (CD62E-E-selectin) and CD3 (T cell)-
derived EVs were observed in patients with different forms of PH[88]. Interestingly, in vitro studies have 
revealed that upon exposure to injury, pulmonary arterial ECs release increased amounts of exosomes that 
induce apoptosis-resistant pulmonary arterial SMC proliferation[89]. 

Disturbed blood flow has been shown to acutely induce both endothelial activation and apoptosis, resulting 
in the release of MPs from activated (CD62E+) and apoptotic (CD31+/CD42b-) ECs[90]. Increased endothelial 
MPs have been reported in adult patients with congenital heart defects (atrial and ventricular septal 
defects) especially with ‘associated’ PAH. These endothelial MPs may contribute to inflammation, leading 
to endothelial dysfunction, impaired vasodilatation and inhibit angiogenesis via p39 MAPK[91]. However, 
no differences in endothelial MP expression were observed in children with congenital heart defects with 
or without associated PAH[92]. 

Apoptotic ECs release exosomes containing tumor susceptibility gene 101 and translationally controlled 
tumor protein (TCTP) with antiapoptotic function. Vascular SMCs, upon exposure to these nanovesicles, 
exhibit increased resistance to apoptosis and ERK1/2 activation. Silencing TCTP blocks the resistance 
to apoptosis and ERK1/2 activation[93]. TCTP is also a potent mediator of inflammation. In patients with 
IPAH, HPAH and in a Sugen + hypoxia model, increased levels of TCTP were found in blood outgrowth 
EC. Knockdown of TCTP resulted in increased apoptosis in these cells in in vitro studies. These authors 
have further shown increased levels of blood outgrowth EC-derived exosomes and MPs in patients with 
PAH associated with BMPR2 mutation[94,95]. Upregulation of miR143-5p has been reported in pulmonary 
arterial SMCs from experimental PH and human PAH. Pulmonary arterial SMC-derived exosomes 
exhibited enhanced expression of miR143-5p, which induced pro-migratory and pro-angiogenic effects on 
ECs[96]. 

CD39, an ectonucleoside triphosphate diphosphohydrolase, is expressed in the lipid raft domain in plasma 
membranes of cells including ECs, monocytes and lymphocytes, and functions as an anti-inflammatory 
and thromboregulatory factor. The absence of CD39 on ECs results in increased susceptibility of ECs to 
stimulation[97]. Importantly, ECs in IPAH exhibit downregulation of CD39. Furthermore, suppression 
of CD39 in in vitro studies results in apoptosis resistant pulmonary arterial ECs, and an increased ATP 
niche that stimulates SMC proliferation and migration[98]. Visovatti et al.[99] reported the presence of 
increased circulating endothelial and platelet MPs with CD39 on the surface in patients with IPAH. In 
addition, ATPase and ADPase activities were increased. In PAH, endothelial dysfunction/disruption and/
or apoptosis is the underlying pathological event. Therefore, it is likely that CD39 is lost from ECs, which 
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could then facilitate proliferation of anti-apoptotic ECs. The loss of endothelial caveolin-1, PECAM-1, vWF 
and vascular endothelial cadherin, which is indicative of endothelial disruption, has been described in 
experimental and human PAH[16,24,100]. Furthermore, increased levels of endothelial MPs carrying vascular 
endothelial cadherin and PECAM-1 were shown to be associated with hemodynamic severity of PAH[101]. 
In addition, BMPR2 loss has been reported in experimental PH and in patients with IPAH without the 
BMPR2 mutation, and to a lesser degree, in patients with “associated” PAH[102,103]. Interestingly, the loss 
of endothelial caveolin-1 and oxidative stress leads to reduced BMPR2 expression, increased TGFß-
derived Smad 2/3 signaling and pulmonary vascular remodeling[104]. Oliveira et al.[105] recently showed that 
in the Sugen + hypoxia model of PH in rats and human PAH, endothelial caveolin-1 loss accompanied 
by increased plasma levels of caveolin-1 EVs and TGFβ, indicating that the endothelial caveolin-1 loss 
contributes to increased TGFβ signaling, leads to EC proliferation, vascular remodeling and PAH. 
Caveolin-1 appears to be a plasma biomarker of vascular injury and a key determinant of TGFβ-induced 
vascular remodeling. It is possible then that the increased levels of EVs containing caveolin-1 in plasma 
could, in part, be responsible for enhanced expression of caveolin-1 in SMCs observed in IPAH, HPAH and 
PAH associated with drug toxicity and congenital heart defects[23,24,100,106]. 

Recent studies have shown that human pulmonary arterial ECs can efficiently incorporate EVs transmitted 
by human pulmonary arterial SMCs and translate their mRNA cargo. These EVs enriched in Zeb1 and 
TGF-β superfamily ligands contribute to endothelial mesenchymal transition (EndMT), thus facilitating 
disease progression[107]. However, partial EndMT is a physiological process necessary for angiogenesis. In 
partial EndMT, ECs do not separate from their neighboring cells[108]. Figure 3 (as shown on page 9) depicts 
the inter-relationship between ECs and SMCs, and the role played by EVs in PH.

Interestingly, cigarette smoking results in the release of endothelial EVs with spermine enrichment 
both on the surface as well as in the cytosol and activates a Ca2+-sensing receptor leading to pulmonary 
vasoconstriction, SMC proliferation and PH[109]. These results strongly support endothelial injury and 
disruption underlying the release of EVs. Depending on the cargo, EVs participate in EC-SMC crosstalk in 
physiological or pathological conditions. 

PH, MSC AND MESENCHYMAL EVS 
A number of studies have shown the beneficial effects of MSC therapy in experimental models of PH. 
Intravenous treatment with adipose-derived MSCs improved MCT-induced PH in rats. In addition, 
adipose-derived MSCs in co-culture with MCT-treated human pulmonary arterial ECs exhibit increased 
cell proliferation and expression of VEGF[110]. Bone marrow-derived MSCs over-expressing eNOS 
attenuated MCT-induced PH in rats[111], and MSCs expressing increased hemoxygenase (HO)-1 reversed 
hypoxia-induced PH in mice[112]. In addition, transplantation with bone marrow-derived MSCs transduced 
with prostacyclin synthase, and therapy with adiponectin gene modified adipose MSCs significantly 
attenuated MCT-induced PH, RVH, pulmonary vascular thickening and survival in rats. In in vitro 
studies, the inhibitory effect of adiponectin on the proliferation of pulmonary arterial SMCs obtained 
from rats with MCT-induced PH was shown to be dependent on the regulation of the AMPK/BMP/Smad 
pathway[113,114]. Interestingly, intravenous administration of bone marrow-derived MSCs from donor rats 
with MCT-induced PH to the recipient rat with MCT-induced PH resulted in attenuation of PH and RVH, 
and normalization of right ventricular function. Bone marrow-derived MSCs from MCT rats produced 
more VEGF compared to controls[115]. In addition, adipose tissue-derived MSC therapy in rats with shunt 
flow-induced hyperkinetic PAH was attenuated via increased expression of hepatocyte growth factor and 
eNOS promoting angiogenesis in the injured lungs[116]. 

Importantly, female bone marrow-derived MSCs were found to attenuate MCT-induced PH and RVH 
in mice better than male MSCs. Female MSCs had increased expression of glyceraldehyde-3-phospahte 
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dehydrogenase that regulates (Ca2+)i signal associated function, which might be responsible for the superior 
function of female bone marrow-derived MSCs[117]. Furthermore, in an ischemia-reperfusion model, rat 
hearts treated with female MSCs demonstrated significantly greater recovery of left ventricular pressure 
compared to male MSC treated hearts. Importantly, male MSCs produced higher levels of TNFα and less 
VEGF than female MSCs[118]. 

EVs from plasma and lung homogenates from mice with MCT-induced PH have been shown to induce 
PH and RVH in healthy mice. Interestingly, exosomes but not microvesicles from MCT-mice injured 
wild type mice; MSC-induced exosomes also prevented and reversed MCT-induced PH. Furthermore, 
exosomes from MCT-treated mice and patients with IPAH revealed increased expression of miRs-19b, 
-20a, -20b, and -145. In contrast, MSC-exosomes exhibited increased levels of anti-proliferative and anti-
inflammatory miRs (-34a, -122. -124, -127)[119]. Chen et al.[120] have shown that both bone marrow-derived 
MSCs and MSC-EVs ameliorated MCT-induced PH and RVH, indicating that a cell free approach to stem 
cell therapy is effective. In addition, adipose-derived exosomes have been shown to transfer miR125a to 
ECs to promote angiogenesis by suppressing angiogenic inhibitor Dll4 and facilitate repair[121]. Renin-
angiotensin involvement in the pathogenesis of PH is well documented. Liu et al.[122] have reported that 
bone marrow-derived MSC-microvesicles attenuated MCT-induced PH and RVH in rats accompanied 
by increased levels of ACE2 mRNA in lung tissue, increased plasma levels of Ang-(1-7) and decreased 
ACE compared with controls. Interestingly, the administration of adipose-derived MSC-EVs was shown 
to inhibit neointima formation in the vein graft model, accompanied by a significant decrease in the 
expression of IL-6, monocyte chemoattractant protein-1 and phosphorylation of Akt, Erk1/2[123]. In mice 
with hypoxia-induced PH, intravenous treatment with MSC-derived exosomes attenuated PH and RVH, 
reduced STAT3 activation and upregulated the miR-17 superfamily of miRNAs. In addition, treatment with 
MSC exosomes increased the level of miR204. It is worth noting here that the expression of miR204 in the 
lungs is low in patients with PAH. These authors have further shown in in vitro studies that the activation 
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Figure 3. This figure depicts the possible mechanism of injury resulting in dysregulation of a number of vascular and inflammatory cells. 
Injury (inflammatory, oxidant, drug toxicity, increased pulmonary flow) activates Plt, Leuk and EC to produce increased amounts of EVs. 
EVs from platelets and leukocytes induce EC dysfunction. Endothelial EVs contain inflammatory and proliferative factors, and miRNAs are 
incorporated in SMCs, leading to hypertrophy, proliferation and phenotype change. These SMCs produce EVs containing TGFβ, miRNAs 
and other factors that are incorporated into ECs, leading to EndMT. EC: endothelial cell; EVs: extracellular vesicles; SMCs: smooth muscle 
cells; EndMT: endothelial mesenchymal transition; Plt: platelets; Leuk: leukocytes; TGFβ: transforming growth factor β 



of py-STAT3 in human pulmonary arterial SMCs in response to hypoxia is inhibited by exosomes derived 
from the human umbilical cord[124]. Klinger et al.[125] have recently reported the prevention and reversal 
of the Sugen+ hypoxia model of PH in rats by MSC EVs. Similar to the cancer phenotype, in PAH, cells 
undergo a metabolic shift towards glycolysis and lactic acid formation which enables sustained ATP 
production and uncontrolled cell growth. MSC exosomes increase glucose oxidation and prevent a shift to 
glycolysis and mitochondrial damage. In addition, exosomes inhibit SIRT4 expression upstream of pyruvate 
dehydrogenase and glutamate dehydrogenase that contribute to the improvement of mitochondrial 
function[126]. Thus, MSC-derived EVs can have beneficial effects on the pathophysiology of PH and 
mitochondrial function.

PH is a frequent and serious complication in preterm infants with BPD, a chronic lung disease. Treatment 
with conditioned media from cultured mouse bone marrow-derived MSCs showed significant improvement 
in hyperoxia-induced BPD in mice. It reversed hyperoxia-induced lung parenchymal pathological changes 
and PH[127]. Chang et al.[128] treated nine preterm infants (gestational age 25.3 ± 0.9 weeks) with intra-
tracheal transplantation of human umbilical cord blood-derived MSCs. At 7 days after treatment, these 
infants had no adverse effects, and the severity of BPD was observed to be low. In addition, tracheal 
aspirates revealed lower levels of IL-6, IL-8, metalloproteinase-9, TNFα and TGFβ1. These studies showed 
the beneficial effects of MSCs on lung development. 

In summary, EVs play a significant role in the pathophysiology of PH. Under normal conditions, EVs 
produced by different cells modulate immune responses, participate in intercellular communication and 
maintain homeostasis. Increased levels of EVs observed in PH are indicative of endothelial injury. These 
EVs facilitate cell proliferation, inflammation, and progression of the disease. MSCs and MSC-derived EVs 
are capable of modulating immune responses, repairing injured tissues and have regenerative properties. 
The beneficial effects of MSCs and MSC-EVs, including some genetically modified MSCs have been 
reported in several experimental models of PH. Treatment with MSC-EVs (naïve or genetically modified) 
may have an advantage over cell therapy. 
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