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Extracellular matrix (ECM) is an essential component of the tumor microenvironment. 
Cancer development and progression are associated with increased ECM deposition 
and crosslink. The chemical and physical signals elicited from ECM are necessary for 
cancer cell proliferation and invasion. It is well recognized that stromal cells are a major 
source of ECM proteins. However, recent studies showed that cancer cells are also an 
active and important component in ECM remodeling. Cancer cells deposit a significant 
amount of collagen, fibronectin, and tenascin C (TNC). Recent studies demonstrate that 
these cancer cell-derived ECM proteins enhance cancer cell survival and promote cancer 
cell colonization at distant sites. ECM-related enzymes and chaperone proteins, such as 
prolyl-4-hydroxylase, lysyl-hydroxylase, lysyl oxidase, and heat shock protein 47, are also 
highly expressed in cancer cells. Inhibition of these enzymes significantly reduces cancer 
growth, invasion, and metastasis. These factors suggest that the cancer cell-derived ECM 
is crucial for cancer progression and metastasis. Therefore, targeting these ECM proteins 
and ECM-related enzymes is a potential strategy for cancer treatment.
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INTRODUCTION

Cancer development and progression require 
extensive reorganization of extracellular matrix.[1,2] 
Extracellular matrix (ECM) is a complex mixture of 
structural proteins, glycoproteins, and proteoglycans, 
which provide not only essential physical scaffolds to 
maintain tissue structure but also various biochemical 
signals to modulate cellular function.[3-5] Altering the 
fine balance of ECM signal is sufficient in the long run 
to induce breast cancer development and progression. 
Increased deposition of collagen and other ECM 
molecules enhances the cancer tissue stiffness.[6-9]

Collagens are the most abundant protein in the 
ECM.[10,11] Collagen fibril has critical function for tumor 
cell growth, migration and metastasis.[12-14] Other ECM 
components, such as hyaluronan, TNC, and periostin 
(POSTN), are also highly expressed in metastatic 
tumor and play important roles in tumor metastasis 
niche.[8,15-18]

Fibroblasts are considered the major source for ECM 
in both normal and malignant tissue.[19] Surprisingly, 
recent studies showed that cancer cells also produce 
a significant quantity of ECM protein during cancer 
progression.[20,21] Dr. Hynes’s laboratory, utilizing an 
elegant proteomic experiment, demonstrated that ECM 
molecules in cancer tissue are deposited by both cancer 
cells and stromal cells.[20,21] ECM proteins, such as 
laminin 5, hyaluronan, and TNC, are highly expressed 
in invasive cancer cells.[22-27] Gene expression analysis 
has identified that ECM protein genes are upregulated 
in drug-resistant cancer cells.[28] Collagen modification 
enzymes, including prolyl-4-hydroxylase (P4H), lysyl-
hydroxylase (PLOD), and lysyl oxidase (LOX), as 
well as molecular chaperone heat shock protein 47 
(HSP47), are highly expressed in cancer cells and are 
associated with tumor metastasis.[29-33]

This review summarizes recent findings about ECM 
microenvironment in solid tumor. The primary focus 
is on the role of cancer cells in ECM synthesis and 
the function of cancer cell-derived ECM in tumor 
progression.

THE EXTRACELLULAR MATRIX

ECM can be classified into two groups: the interstitial 
matrix and the basement membrane.[34] Basement 
membranes are thin layers of ECM that form the 
supporting structure under epithelial and endothelial 
cells.[35] Basement membrane has a distinctive 
composition containing type IV collagen, laminins, 
entactins, and proteoglycans.[7,36] The interstitial matrix, 

which is primarily produced by stromal cells, fills in the 
interstitial space between cells. The interstitial matrix 
is rich in types I, III, V, VI, VII, and XII collagens, as 
well as proteoglycans and various glycoproteins such 
as TNC and fibronectin.[37]

Collagen is the most abundant protein in vivo. Forty-
four collagen genes have been identified in the human 
genome; they generate at least 28 different types of 
collagen. From precursor procollagen to final collagen 
fibril, collagen synthesis process involves several 
important modification enzymes.[10,38] Proline and lysine 
hydroxylation are well characterized modifications 
on procollagen, which are catalyzed by two different 
enzymes: P4H and PLOD. Collagen P4H catalyzes 
the formation of 4-hydroxyproline, which is essential 
to the proper folding of newly synthesized procollagen 
chains.[39,40] PLOD catalyzes the hydroxylation of lysyl 
residues in collagen-like peptides, which is critical for 
the formation of intermolecular crosslinks.[41,42] LOX is 
enzyme-catalyzing formation of aldehydes from lysine 
residues in collagen after collagen secretion, which 
is required for collagen fibril formation.[43,44] HSP47 
is a molecular chaperone that promotes maturation 
of collagen molecules by inhibiting the aggregation 
of collagen in endoplasmic reticulum (ER).[45-47] 
The expression of collagen-modification enzymes 
and molecular chaperone is often associated with 
increased collagen deposition in cancer tissue.[30-33,48-51] 
Enhanced enzyme activities are often associated with 
increased collagen deposition in cancer tissue.

ECM PLAYS IMPORTANT ROLES IN 
TUMOR PROGRESSION

ECM is a major component of tumor microenvironment 
and plays critical roles in cancer development and 
progression. Increased ECM proteins deposition 
and crosslink provide necessary biochemical and 
biophysical cues to promote cancer cell proliferation, 
migration, and invasion.[12,52-54] Laminin-322 is 
specifically localized in the dense fibrotic zone around 
invasive ductal carcinoma, providing a specialized 
microenvironment for guiding tumor invasion.[52] 
Gamma 2 chain of laminin 5 (laminin 5 γ2) is highly 
expressed in invasive mammary, colon, melanoma, 
and sarcoma cancer cells. Laminin 5 plays a role 
in establishing focal adhesions of cancer cells and 
contributes to cancer dissemination.[24-26]

ECM molecules, such as POSTN, fibronectin, 
and hyaluronan, are important components of the 
metastatic niche.[7] POSTN is a secreted extracellular 
matrix protein originally identified from mesenchymal 
cells.[8,16,17] Deletion of POSTN has little effect on normal 
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Table 1: Stroma cells and cancer cells-derived ECM proteins and ECM regulators

Stroma cells References Cancer cells References

Collagens Collagen I

Collagen II

Collagen III

Collagen IV

Collagen V

Collagen VI

Collagen VII

Collagen X

Collagen XI

Collagen XII

Collagen XIV

Collagen XV

Collagen XVI

Collagen XVIII

Collagen XVIIII

Collagen XXIV

Collagen XXVIII

[20,21,66]

[20,21]

[20,21,66,67]

[20,21]

[20,21,53,66,67]

[20,21,66]

[21]

[20,21,66]

[20,21,66]

[20]

[20,21,66]

[20,21]

[20]

[20,21]

[21]

[20,21]

[20]

Collagen I

Collagen II

Collagen III

Collagen IV

Collagen V

Collagen VI

Collagen VII

Collagen VIII

Collagen IX

Collagen X

Collagen XI

Collagen XII

Collagen XV

Collagen XVI

Collagen XVIII

Collagen XIX

Collagen XXII

Collagen XXIV

[20,21,53,65]

[20,21]

[20,21,53]

[20,21,28,65,68]

[20,21,53,63]

[20,21,28,53,68]

[20,21,68]

[20,53,63]

[20,68]

[20,21,53,63]

[20,21,53,63,68]

[20,21,31,63,65]

[20,21,65,68]

[20,21,28,65]

[20,21,65]

[20,21]

[20,21,63]

[20,21,68]

Other ECM glycoproteins Fibrinogen

Dermatopontin

Elastin

Fibronectin1

Laminin α2

Laminin β2

Nidogen-1

Nidogen-2

ECM 1

Fibulin 2

LTBP2

Tenascin N

EMILIN2

TNC

POSTN

Hyaluronan

Thrombospondin-1

SPARC

Vitronectin

[20,21]

[20,21]

[20,21]

[20,21,66]

[20,67]

[20,21]

[20,67]

[21,66]

[21]

[20,21]

[20,21]

[20]

[20,21,66]

[20,66,67]

[21,66]

[21]

[20]

[21,66,68]

[20,21]

Laminin α4

Laminin β1

Laminin β2

Laminin γ2

Fibronectin1

Elastin

LTBP1

LTBP4

Nidogen-1

Nidogen-2

ECM 1

Peroxidasin

TINAGL1

TNC

Hyaluronan

Thrombospondin-1

SPARC

[20,21,28,65]

[20,21,28,65,68]

[20,68]

[20,21,66,68]

[20,21,28,65,68]

[20,21]

[20,21,68]

[20,21]

[20,21]

[20,21]

[20,21,28,68]

[20,21]

[20,21]

[20,21,66]

[20]

[20,21]

[20,53,65,68]

Proteoglycan Asporin

Biglycan

Decorin

[20,21]

[20,66]

[20,21,67]

Biglycan

HAPLN1

Decorin

[20,21,28]

[20,65]

[20,21,53,65,68]
                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                        Continued...
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tissue development and primary tumor growth, but it 
significantly suppresses breast cancer metastasis.[8,17] 
POSTN promotes cancer stem cell maintenance and 
lung metastasis by enhancing the WNT signaling 
pathway.[8,17] Fibronectin, a marker of epithelial-
mesenchymal transition, enhances cancer metastasis 
through Src kinase and extracellular signal-regulated 
kinase/mitogen-activated protein kinase pathway.[55] 
Hyaluronan expression is upregulated in breast 
cancer, lung cancer, pancreatic cancer, melanoma 
cancer, and myeloma cancer.[22,23,27] Upregulation of 
hyaluronan is also associated with tumor progression 
and poor prognosis.[15,56,57] Hyaluronan receptor CD44 
promotes survival of disseminated cancer cells during 
metastasis.[58] TNC is an oligomeric glycoprotein 
composed of individual polypeptides with molecular 
weights ranging from 180 kDa to 300 kDa. Expression 
of TNC in breast tumor is associated with lung 
metastasis.[8,16,18] Recent studies reveal that TNC is a 
critical component of metastatic niche and supports 
survival of disseminated cancer cells at secondary 
organs.[8,16,18]

Collagen is the major structural ECM protein in 
tumor tissue. It has been shown that women with 
dense breasts have a four- to six-fold increased risk 
of developing breast cancer, and the dense breast 
correlates with increased collagen deposition and 
crosslink. In addition, the crosslinked and orientated 
collagen in cancer tissue is a reliable marker associated 
with poor survival, regardless of tumor grade and size, 
tumor subtype, ER or PR status, and node status.[12,59] 

The abnormal deposition of collagen in tumor stroma 
promotes cancer progression. Increased collagen VI 
deposition stimulates cancer cell proliferation.[59-61] 
Col5A2 and Col11A1 are highly expressed in invasive 
ductal carcinoma compared to ductal carcinoma in situ. 
Both of them are involved in triggering cancer cells to 
disseminate.[62,63]

Collagen production and deposition is regulated by a 
variety of enzymes, including P4Hs, PLODs, and LOXs. 
Collagen deposition is regulated by hypoxia in tumor 
tissue.[47,48,61] Collagen modification enzymes, P4Hs, 
PLOD, and LOX, are activated by HIF-1α in cancer 
cells.[27,28,40,48] Expression of collagen P4H is significantly 
upregulated in breast cancer. Knockdown of P4HA 
inhibits mammary tumor growth and metastasis to 
lungs, and decreased P4HA activity depresses cancer 
cell alignment along collagen fibers.[31,32,50] PLOD2 
expression is also associated with increased risk of 
mortality in breast cancer patient. PLOD2 is critical 
for breast cancer cell metastasis to lymph nodes and 
lungs because it increases fibril collagen formation 
and increases tumor stiffness.[30] In sarcoma cancer, 
inhibition of PLOD enzymatic activity suppresses 
metastases.[64] Secretion of LOX by metastatic breast 
cancer cells is upregulated in metastasis niche. 
Increased activity of LOX recruits bone marrow-
derived cells (BMDCs) to metastasis niche. BMDCs are 
important in creating a microenvironment for metastatic 
cancer-cell invasion and growth.[43] Increased LOX 
expression results in increased ECM stiffening, which 
is essential for cancer cell expansion.[7] Inhibition 

Stroma cells References Cancer cells References

ECM regulators Cathepsin B

ITIH1

ITIH2

Plasminogen

P4HA1

P4HA2

PLOD2

PLOD3

HSP50

LOXL1

[20,21]

[20,21]

[20,21]

[20,21]

[50]

[50]

[50]

[20,21]

[20,21]

[21]

Cathepsin B

Osteonectin

P4HA1

PLOD1

PLOD2

PLOD3

LOX

LOXL2

LOXL4

HSP50

[20]

[20,68]

[20,21,31,32]

[20,21]

[20,21,30]

[20,21]

[20,21,65]

[20,21]

[20]

[20,21,33]

Secret factors TGFβ1

S100-A9

[20,21,66]

[21]

S100-A13

S100-A4

S100-A6

TGFβ1

[20]

[20,21]

[20,21]

[20,21,65]
ECM1: extracellular matrix protein 1; EMILIN2: elastin microfibril interfacer 2; LTBP1: latent transforming growth factor beta binding 
protein 1; LTBP2: latent transforming growth factor beta binding protein 2; LTBP4: latent transforming growth factor beta binding protein 
4; ITIH1: inter-alpha-trypsin inhibitor heavy chain H1; TINAGL1: tubulointerstitial nephritis antigen-like 1; HAPLN1: hyaluronan and 
proteoglycan link protein 1
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LOX activation reduces collagen fibril formation and 
ECM stiffness, which depresses focal adhesions and 
PI3K activity, and consequently suppresses cancer 
cell invasion.[54] These results indicate that collagen 
modification enzymes P4Hs, PLODs, and LOXs play 
critical roles in cancer cell metastasis.

CANCER CELLS ARE CRITICAL SOURCES 
OF TUMOR ECM

The cellular components of tumor stroma include 
fibroblasts, endothelial cells, fat cells, and immune 
cells. It has been shown that cancer-associated 
fibroblasts produce and regulate the ECM remodeling 
in cancer tissue, and the roles of cancer cells in ECM 
deposition have not been appreciated until recently. Dr. 
Hynes’s laboratory investigated matrisome (ECM and 
ECM-associated proteins) in colon tumor tissues, lung 
tumor tissues, and human breast cancer tissue.[20,21] 
They found that ECM components in tumor matrix 
are derived from cancer cells and stromal cells, 
and many of them are only expressed by cancer 
cells, including Col19A1, Col22A1, Col7A1, LAMA4, 
LAMB1, LTBP1, LTBP3, LTBP4, TINAGL1, and ECM 
regulators galectin 1 (LGALS1) and PLOD1.[20,21] Gene 
expression analysis of drug-resistant breast cancer 
cells has found that 25 ECM components’ genes 
(including collagen, fibronectin, syndecan, and laminin) 
and integrin ligands are upregulated in drug-resistant 
breast cancer cells.[28] Gene expression analysis of 
drug-resistant ovarian cancer cells also discovered 
that molecules in ECM networks, including COL3A1, 
COL5A2, COL15A1, and LOX, among others, are very 

significantly upregulated.[65] Gene expression profile 
studies from other labs also reveal that expression of 
genes involved in synthesis and organization of ECM 
are upregulated in the epithelium of invasive cancer 
cells.[53,63,66-68]

LAMC2 (gamma 2 chain gene of laminin 5) is highly 
expressed in invasive cancer cells in mammary, colon, 
melanoma and sarcoma tumora.[24-26,69] Hyaluronan 
synthesis is increased in a variety types of cancer cells, 
including breast tumor, melanoma tumor, and myeloma 
tumor.[22,23,27] Thrombospondin-1 is expressed in the 
stroma and cancer cells.[70] TNC, a key metastatic niche 
molecule required for the metastasis initiation, is also 
expressed in breast tumor cells and stroma cells.[8,16,18] 
Collagens are mainly synthesized by cancer-associated 
fibroblasts in breast cancer, but cancer cells are also 
an important source of the collagen.[63] In addition, the 
expression of collagen synthesis regulating enzymes 
P4H and PLOD is induced by the HIF-1 pathway in 
cancer cells.[30,31,51,64] We have summarized ECM 
proteins and ECM-related enzymes derived from the 
stroma cells and cancer cells in Table 1. This evidence 
clearly shows that cancer cells are a major source of 
tumor ECM.

CANCER CELL-DERIVED ECM IN CANCER 
PROGRESSION AND METASTASIS

ECM deposited by cancer cells is crucial for cancer 
progression and metastasis. It has been shown that 
inhibition of LOX expression in cancer cell represses 
cell adhesion, migration, and invasion.[29,71] Hyaluronan 

Figure 1: Stroma cell-derived extracellular matrix (ECM) and cancer cell-derived ECM collectively support cancer cell proliferation, 
invasion, and metastasis. ECM: extracellular matrix; BMDC: bone marrow-derived cells; PLOD: lysyl-hydroxylase; LOX: lysyl oxidase
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deposited by cancer cells promotes cell proliferation, 
migration, invasion, metastasis, multidrug resistance, 
and tumor-associated angiogenesis.[15,56,57] TNC that 
is derived from disseminated tumor cells promotes 
lung metastasis by enhancing NOTCH and WNT 
signaling pathways [Figure 1].[8,16,18] In addition, cancer 
cell-derived ECM proteins (fibronectin, collagen, and 
laminin) protect cancer cells from chemotherapy-
induced apoptosis via activation of the PI3k/AKT 
pathway [Figure 1].[72,73]

Cancer cell-derived ECM proteins mediate the cancer 
cell-stromal cell crosstalk. Hyaluronan production by 
stroma fibroblasts is stimulated by factors secreted by 
cancer cells.[74,75] Metastatic niche molecule POSTN is 
secreted by stoma fibroblasts of breast tumor under 
stimulation from the tumor cells that are produced 
TGF-β3 [Figure 1].[8,16-18] Cancer cells also remotely 
recruit stromal cells to create a premetastatic niche 
before metastasis. Cancer cells-derived TNC initiates 
cancer cell metastasis, and then it stimulates stroma 
cell-derived TNC synthesis. Ablation of TNC expression 
in cancer cells at an early time in the metastatic process 
inhibits the outgrowth of lung metastases. Interestingly, 
inhibition TNC expression in cancer cells at a late 
stage of metastasis does not affect micrometastases 
expanding to macrometastases, because metastatic 
cancer cells have already induced TNC expression 
in stromal cells to promote tumor growth.[8,16,18] These 
results indicate that cancer cell-derived ECM molecules 
are critical regulators of the initiation of metastasis 
outgrowth through activating the stromal cells in the 
secondary organs [Figure 1].

CONCLUSION

In summary, tumor cells play critical roles in ECM 
deposition and remodeling during cancer development 
and progression. Accumulated evidence demonstrates 
that ECM molecules deposited by cancer cells 
promote cancer progression by enhancing cell 
survival and proliferation. However, it largely remains 
to be determined how cancer cell-derived ECM is 
regulated and how those ECM proteins function in 
tumor microenvironment remodeling. Answering those 
questions is critical for developing potential cancer 
treatment strategies by targeting the cancer cell-
derived ECM and ECM-related enzymes.
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